Online Learning with Transductive Regret

Mehryar Mohri Scott Yang*
Courant Institute and Google Research D. E. Shaw & Co.
New York, NY New York, NY
mohri@cims.nyu.edu yangs@cims.nyu.edu
Abstract

We study online learning with the general notion of transductive regret, that is
regret with modification rules applying to expert sequences (as opposed to single
experts) that are representable by weighted finite-state transducers. We show how
transductive regret generalizes existing notions of regret, including: (1) external
regret; (2) internal regret; (3) swap regret; and (4) conditional swap regret. We
present a general and efficient online learning algorithm for minimizing transductive
regret. We further extend that to design efficient algorithms for the time-selection
and sleeping expert settings. A by-product of our study is an algorithm for swap
regret, which, under mild assumptions, is more efficient than existing ones, and a
substantially more efficient algorithm for time selection swap regret.

1 Introduction

Online learning is a general framework for sequential prediction. Within that framework, a widely
adopted setting is that of prediction with expert advice [Littlestone and Warmuth, 1994, Cesa-Bianchi
and Lugosi, 2006], where the algorithm maintains a distribution over a set of experts. At each round,
the loss assigned to each expert is revealed. The algorithm then incurs the expected value of these
losses for its current distribution and next updates its distribution.

The standard benchmark for the algorithm in this scenario is the external regret, that is the difference
between its cumulative loss and that of the best (static) expert in hindsight. However, while this
benchmark is useful in a variety of contexts and has led to the design of numerous effective online
learning algorithms, it may not constitute a useful criterion in common cases where no single fixed
expert performs well over the full course of the algorithm’s interaction with the environment. This
had led to several extensions of the notion of external regret, along two main directions.

The first is an extension of the notion of regret so that the learner’s algorithm is compared against
a competitor class consisting of dynamic sequences of experts. Research in this direction started
with the work of Herbster and Warmuth [1998] on tracking the best expert, who studied the scenario
of learning against the best sequence of experts with at most k switches. This work has been
subsequently improved [Monteleoni and Jaakkola, 2003], generalized [Vovk, 1999, Cesa-Bianchi
et al., 2012, Koolen and de Rooij, 2013], and modified [Hazan and Seshadhri, 2009, Adamskiy et al.,
2012, Daniely et al., 2015]. More recently, an efficient algorithm with favorable regret guarantees has
been given for the general case of a competitor class consisting of sequences of experts represented by
a (weighted) finite automaton [Mohri and Yang, 2017, 2018]. This includes as special cases previous
competitor classes considered in the literature.

The second direction is to consider competitor classes based on modifications of the learner’s sequence
of actions. This approach began with the notion of internal regret [Foster and Vohra, 1997, Hart and
Mas-Colell, 2000], which considers how much better an algorithm could have performed if it had

*Work done at the Courant Institute of Mathematical Sciences.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

switched all instances of playing one action with another, and was subsequently generalized to the
notion of swap regret [Blum and Mansour, 2007], which considers all possible in-time modifications
of a learner’s action sequence. More recently, Mohri and Yang [2014] introduced the notion of
conditional swap regret, which considers all possible modifications of a learner’s action sequence
that depend on some fixed bounded history. Odalric and Munos [2011] also studied regret against
history-dependent modifications and presented computationally tractable algorithms (with suboptimal
regret guarantees) when the comparator class can be organized into a small number of equivalence
classes.

In this paper, we consider the second direction and study regret with respect to modification rules. We
first present an efficient online algorithm for minimizing swap regret (Section 3). We then introduce
the notion of transductive regret in Section 4, that is the regret of the learner’s algorithm with respect
to modification rules representable by a family of weighted finite-state transducers (WFSTs). This
definition generalizes the existing notions of external, internal, swap, and conditional swap regret, and
includes modification rules that apply to expert sequences, as opposed to single experts. Moreover, we
present efficient algorithms for minimizing transductive regret. We further extend transductive regret
to the time-selection setting (Section 5) and present efficient algorithms minimizing time-selection
transductive regret. These algorithms significantly improve upon existing state-of-the-art algorithms
in the special case of time-selection swap regret. Finally, in Section 6, we extend transductive regret
to the sleeping experts setting and present new and efficient algorithms for minimizing sleeping
transductive regret.

2 Preliminaries and notation

We consider the setting of prediction with expert advice with a set X of NV experts. At each round
t € [T}, an online algorithm A selects a distribution p; over ¥, the adversary reveals a loss vector
1; € [0, 1], where I;(x) is the loss of expert x € ¥, and the algorithm incurs the expected loss p; - 1;.

Let ® C ¥* denote a set of modification functions mapping the expert set to itself. The objective
of the algorithm is to minimize its ®-regret, Reg (A, ®), defined as the difference between its
cumulative expected loss and that of the best modification of the sequence in hindsight:

Regp (A, ?) = max {ZIEM li(ze)] — E [lt(go(xt))}} . ()

ped Ti~Pt

This definition coincides with the standard notion of external regret [Cesa-Bianchi and Lugosi,
2006] when @ is reduced to the family of constant functions: @y, = {py: X — X:a € X,V €
Y, @a(z) = a}, with the notion of internal regret [Foster and Vohra, 1997] when & is the family
of functions that only switch two actions: @iy = {@ap: X — X: a,b € E,pap(x) = 1y=gb +
lp=pa + 21244}, and with the notion of swap regret [Blum and Mansour, 2007] when ® consists
of all possible functions mapping X to itself: ®gy,p. In Section 4, we will introduce a more general
notion of regret with modification rules applying to expert sequences, as opposed to single experts.

There are known algorithms achieving an external regret in O(y/T log N) with a per-iteration
computational cost in O(N) [Cesa-Bianchi and Lugosi, 2006], an internal regret in O(y/T log N)
with a per-iteration computational cost in O(N?) [Stoltz and Lugosi, 2005], and a swap regret in
O(y/TNlog N) with a per-iteration computational cost in O(N?3) [Blum and Mansour, 2007].

3 Efficient online algorithm for swap regret

In this section, we present an online algorithm, FASTSWAP, that achieves the same swap regret
guarantee as the algorithm of Blum and Mansour [2007], O(v/T N log N), but admits the more
favorable per-iteration complexity of O(NN? log(T')), under some mild assumptions.

Existing online algorithms for internal or swap regret minimization require, at each round, solving
for a fixed-point of an N x N-stochastic matrix [Foster and Vohra, 1997, Stoltz and Lugosi, 2005,
Blum and Mansour, 2007]. For example, the algorithm of Blum and Mansour [2007] is based on
a meta-algorithm A that makes use of N external regret minimization sub-algorithms {A; };c[n]
(see Figure 1). Sub-algorithm A, is specialized in guaranteeing low regret against swapping expert
¢ with any other expert j. The meta-algorithm .4 maintains a distribution p; over the experts and,

Figure 1: Illustration of the swap regret algorithm of Blum and Mansour [2007] or the FASTSWAP
algorithm, which use a meta-algorithm to control a set of IV external regret minimizing algorithms.

Algorithm 1: FASTSWAP; {A;}}, are external regret minimization algorithms.

Algorithm: FASTSWAP((A;)Y)

fort < 1toT do
fori <+ 1to N do
qi < QUERY(A;)
Q'+ [q1---qn] "
for j < 1to N do
cj rninfz\[:1 Q;j

log JE

ar = llelli; 7 [%]
if 7 < N then

Pr Pt o

(27

for 7 + 1to 7; do
(P1) " (1) T(Q" —TeT): py ¢ pi+p]
Pt = Toelle
else
p/ = FIXED-POINT(Q?)
Z¢ < SAMPLE(p:); l; < RECEIVELOSS()
fori < 1to N do
ATTRIBUTELOSS(p:[i]1:, A;)

at each round ¢, assigns to sub-algorithm A; only a fraction of the loss, (p;;l;), and receives the
distribution q; (over the experts) returned by A;. At each round ¢, the distribution p; is selected to be
the fixed-point of the N' x N-stochastic matrix Q = [q; - - - qn] . Thus, p; = p;Q? is the stationary
distribution of the Markov process defined by Q. This choice of the distribution is natural to ensure
that the learner’s sequence of actions is competitive against a family of modifications, since it is
invariant under a mapping that relates to this family of modifications.

The computation of a fixed-point involves solving a linear system of equations, thus, the per-round
complexity of these algorithms is in O(NN?) using standard methods (or O(N?2373), using the method
of Coppersmith and Winograd). To improve upon this complexity in the setting of internal regret,
Greenwald et al. [2008] estimate the fixed-point by applying, at each round, a single power iteration
to some stochastic matrix. Their algorithm runs in O(/N?) time per iteration, but at the price of a

regret guarantee that is only in O(v/NT 10).

Here, we describe an efficient algorithm for swap regret, FASTSWAP. Algorithm 1 gives its pseu-
docode. As with the algorithm of Blum and Mansour [2007], FASTSWAP is based on a meta-algorithm
A making use of N external regret minimization sub-algorithms {A;};c[n]. However, unlike the
algorithm of Blum and Mansour [2007], which explicitly computes the stationary distribution of
Q! at round ¢, or that of Greenwald et al. [2008], which applies a single power iteration at each
round, our algorithm applies multiple modified power iterations at round ¢ (7, power iterations). Our
modified power iterations are based on the REDUCEDPOWERMETHOD (RPM) algorithm introduced
by Nesterov and Nemirovski [2015]. Unlike the algorithm of Greenwald et al. [2008], FASTSWAP
uses a specific initial distribution at each round, applies the power method to a modification of the
original stochastic matrix, and uses, as an approximation, an average of all the iterates at that round.

Theorem 1. Let Ay, ..., Ay be external regret minimizing algorithms admitting data-dependent
regret bounds of the form O(\/Lr(A;)log N), where L1 (A;) is the cumulative loss of A; after T

