
7 Supplementary Material

7.1 Proof of Proposition 1

The steps of the proof for Proposition 1 are adopted from the analysis in [12]. We start the proof
by providing an upper bound for the difference between the loss functions Ln and Lm. The upper
bound is studied in the following lemma which uses the condition in (3).
Lemma 5. Consider Ln and Lm as the empirical losses of the sets Sn and Sm, respectively, where
they are chosen such that Sm ⇢ Sn. If we define n and m as the number of samples in the train-
ing sets Sn and Sm, respectively, then the expected absolute value of the difference between the
empirical losses is bounded above by

E [ |Ln(w)� Lm(w)| ]  n�m

n
(Vn�m + Vm) , (19)

for any w.

Proof. First we characterize the difference between the difference of the loss functions associated
with the sets Sm and Sn. To do so, consider the difference
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Notice that the set Sm is a subset of the set Sn and we can write Sn = Sm [ Sn�m. Thus, we can
rewrite the right hand side of (20) as
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Factoring (n�m)/n from the terms in the right hand side of (21) follows
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Now add and subtract the statistical loss L(w) and compute the expected value to obtain
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where the last inequality follows by using the triangle inequality and the upper bound in (3).

The result in Lemma 5 shows that the upper bound for the difference between the loss functions
associated with the sets Sm and Sn where Sm ⇢ Sn is proportional to the difference between the
size of these two sets n�m.

In the following lemma, we characterize an upper bound for the norm of the optimal argument w⇤
n

of the empirical risk Rn(w) in terms of the norm of statistical average loss L(w) optimal argument
w⇤.
Lemma 6. Consider Ln as the empirical loss of the set Sn and L as the statistical aver-
age loss. Moreover, recall w⇤ as the optimal argument of the statistical average loss L, i.e.,
w⇤

= argminw L(w). If Assumption 1 holds, then the norm of the optimal argument w⇤
n of the

regularized empirical risk Rn(w) := Ln(w) + cVnkwk2 is bounded above by

E[kw⇤
nk2] 

4

c
+ kw⇤k2 (24)
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Proof. The optimality condition of w⇤
n for the the regularized empirical risk Rn(w) = Ln(w) +

(cVn)/2kwk2 implies that

Ln(w
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2
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By regrouping the terms and computing the expectation we can show that E[kw⇤
nk2] is bounded

above by

E[kw⇤
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We proceed to bound the difference Ln(w⇤
)�Ln(w⇤

n). By adding and subtracting the terms L(w⇤
)

and L(w⇤
n) we obtain that
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Notice that the second bracket in (27) is non-positive since L(w⇤
)  L(w⇤

n). Therefore, it is
bounded by 0. According to (3), the first and third brackets in (27) are bounded above by Vn in
expectation. Replacing these upper bounds by the brackets in (27) yields

E[Ln(w
⇤
)� Ln(w
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n)]  2Vn. (28)

Substituting the upper bound in (28) into (26) implies the claim in (24).

Note that the difference Rn(wm)�Rn(w⇤
n) can be written as
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We proceed to bound the differences in (29). To do so, note that the difference Rn(wm)�Rm(wm)

can be simplified as
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where the inequality follows from the fact that Vn < Vm and Vn � Vm is negative. It follows from
the result in Lemma 5 that the right hand side of (30) is bounded by (n�m)/n (Vn�m + Vm).
Therefore,

E [|Rn(wm)�Rm(wm)|]  n�m

n
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According to the fact that wm as an �m optimal solution for the sub-optimality
E [Rm(wm)�Rm(w⇤

m)] we know that

E[Rm(wm)�Rm(w⇤
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Based on the definition of w⇤
m which is the optimal solution of the risk Rm, the third difference in
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Moreover, we can use the triangle inequality to bound the difference Rm(w⇤
n)�Rn(w⇤

n) in (29) as
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Replacing the differences in (29) by the upper bounds in (31)-(34) leads to
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n
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Substitute E[kw⇤
nk2] in (35) by the upper bound in (24) to obtain the result in (5).
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7.2 Proof of Theorem 2

According to the result in Proposition 1 and the condition that E[Rm(wm)� Rm(w⇤
m)]  Vm, we

obtain that
E[Rn(wm)�Rn(w
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If we assume that the first-order descent method that we use to update the iterates has a linear
convergence rate, then there exists a constant 0 < ⇢n < 1 we obtain that after sn iterations the error
is bounded above by

Rn(wn)�Rn(w
⇤
n)  ⇢snn (Rn(wm)�Rn(w

⇤
n)). (37)

The result in (37) holds for deterministic methods. If we use a stochastic linearly convergent method
such as SVRG, then the result holds in expectation and we can write

E[Rn(wn)�Rn(w
⇤
n)]  ⇢sn(Rn(wm)�Rn(w

⇤
n)), (38)

where the expectation is with respect to the index of randomly chosen functions.

It follows form computing the expected value of both sides in (37) with respect to the choice of
training sets and using the upper bound in (36) for the expected difference E[Rn(wm) � Rn(w⇤

n)]

that
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Note that the inequality in (39) also holds for stochastic methods. The difference is in stochas-
tic methods the expectation is with respect to the choice of training sets and the index of random
functions, while for deterministic methods it is only with respect to the choice of training sets.

To ensure that the suboptimality E[Rn(wn)�Rn(w⇤
n)] is smaller than Vn we need to guarantee that

the right hand side in (39) is not larger than Vn, which is equivalent to the condition
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By regrouping the terms in (40) we obtain that

sn � � log

⇥
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and the claim in (9) follows.

7.3 Proof of Theorem 3

Note that according to the convergence result for accelerated gradient descent in [13], the sub-
optimality of accelerated gradient descent method is linearly convergent with the constant 1�1/

p


where  is the condition number of the objective function. In particular, the suboptimality after sn
iterations is bounded above by
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where m is the constant of strong convexity. Replacing m
2 kwm � w⇤

nk2 by its upper bound
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Hence, if we follow the steps of the proof of Theorem 2 we obtain that sn should be larger than
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According to the inequality � log(1� x) > x, we can replace � log(1� 1/
p
) by its lower bound

1/
p
 to obtain
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Note if the condition in (45) holds, then the inequality in (44) follows. The condition number of
the risk Rn is given by n = (M + cVn)/cVn. Further, as stated in the statement of the theorem,
Vn can be written as Vn = �/n↵ where � is a positive constant and ↵ 2 [0.5, 1]. Based on these
expressions, we can rewrite (45) as
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which follows the claim in (13). If we assume that we start with m0 samples such that N/m0 = 2

q

where q is an integer then the total number of gradient computations to achieve VN for the risk RN
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Replacing q by log2(N/m0) leads to the bound in (14).

7.4 Proof of Theorem 4

Let’s recall the convergence result of SVRG after s outer loop where each inner loop contains r
iterations. We can show that if wm is the variable corresponding to m samples and n is the variable
associated with n samples, then we have

En[Rn(wn)�Rn(w
⇤
n)]  ⇢s [Rn(wm)�Rn(w

⇤
n)] , (48)

where the expectation is taken with respect to the indices chosen in the inner loops, and the constant
⇢ is defined as

⇢ :=

1

�⌘(1� 2L0⌘)r
+

2L0⌘

1� 2L0⌘
< 1 (49)

where � is the constant of strong convexity, L0 is the constant for the Lipschitz continuity of gradi-
ents, q is the number of inner loop iterations, and ⌘ is the stepsize. If we assume that Vn = O(1/n↵

),
then we obtain that � = c/n↵ and L0 = M + c/n↵. Further, if we set the number of inner loop
iteration as q = n and the stepsize as ⌘ = 0.1/L0, the expression for ⇢ can be simplified as
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where the inequality holds since the size of training set is such that (Mn↵
+ c)/(nc)  0.02.

Considering the result in (41) and the upper bound for the linear factor ⇢, to ensure that that outocme
of the Ada SVRG is within the statistical accuracy of the risk Rn the number of outer loops sn should
be larger than
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and the result in (17) follows.

Since each outer loop requires one full gradient computation and n inner loop iterations the total
number of gradient computations (computational complexity) of Ada SVRG at the stage of min-
imizing Rn is given by 2nsn. Therefore, if we assume that we start with m0 samples such that
N/m0 = 2

q where q is an integer, then the total number of gradient computations to achieve VN for
the risk RN is given by
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which yields the claim in (18).

7.5 Additional Numerical Experiments

For the experiments of this section we use the MNIST dataset containing images of dimension
p = 784. Since we are interested in a binary classification problem we only use the samples corre-
sponding to digits 0 and 8, and, therefore, the number of samples is 11, 774. We choose N = 6, 000
of these samples randomly and use them as the training set and use the remaining 5, 774 samples
as the test set. We use the logistic loss to evaluate the performance of the classifier and normalize
the samples to ensure that the constant for the Lipschitz continuity of the gradients is M = 1. In
our experiments we consider two different scenarios. First we compare GD, AGD, and SVRG with
their adaptive sample size versions when the additive regularization term is of order 1/

p
n. Then,

we redo the experiments for a regularization term of order 1/n.

The plots in Figure 3 compare the suboptimality of GD, AGD, and SVRG with Ada GD, Ada AGD,
and Ada SVRG when the regularization term in (1/

p
n)kwk2. Note that in this case the statistical

accuracy should be order of O(1/
p
n) and therefore we are interested in the number of required

iterations to achieve the suboptimality of order 10

�2. As we observe Ada GD reach this target
accuracy almost 6 times faster than GD. The improvement for Ada AGD and Ada SVRG is less
significant, but they still reach the suboptimality of 10

�2 significantly faster than their standard
(fixed sample size) methods. Figure 4 illustrates the test error of GD, AGD, SVRG, Ada GD,
Ada AGD, and Ada SVRG versus the number of effective passes over the dataset when the added
regularization is of the order O(1/

p
n). Comparison of these methods in terms of test error also

support the gain in solving subproblems sequentially instead of minimizing the ERM corresponding
to the full training set directly. In particular, for all three methods, the adaptive sample size version
reaches the minimum test error of 2.5% faster than the fixed sample size version.

We also run the same experiments for the case that the regularization term is order 1/n. Figure 5
shows the suboptimality of GD, AGD, and SVRG and their adaptive sample size version for the
MNIST dataset when Vn is assumed to be O(1/n). We expect from our theoretical achievements
the advantage of using adaptive sample size scheme in this setting should be more significant, since
log(N) is twice the value of log(

p
N). Figure 5 fulfills this expectation by showing that Ada GD,

Ada AGD, and Ada SVRG are almost 10 times faster than GD, AGD, and SVRG, respectively.
Figure 6 demonstrates the test error of these methods versus the number of effective passes for a
regularization of order O(1/n). In this case, this case all methods require more passes to achieve
the minimum test error comparing to the case that regularization is of order O(1/n). Interestingly,
the minimum accuracy in this case is equal to 1% which is lower than 2.5% for the previous setting.
Indeed, the difference between the number of required passes to reach the minimum test error for
adaptive sample size methods and their standard version is more significant since the factor log(N↵

)

is larger.
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Figure 3: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms of subopti-
mality vs. number of effective passes for MNIST dataset with regularization of the order O(1/

p
n).
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Figure 4: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms of test error
vs. number of effective passes for MNIST dataset with regularization of the order O(1/

p
n).
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Figure 5: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms of subopti-
mality vs. number of effective passes for MNIST dataset with regularization of the order O(1/n).
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Figure 6: Comparison of GD, AGD, and SVRG with their adaptive sample size versions in terms of test error
vs. number of effective passes for MNIST dataset with regularization of the order O(1/n).
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