
Supplementary material for “Excess risk bounds for the Bayes
risk using variational inference in latent Gaussian models”

A Details for Section 3

Convexity Based results from RCLM Theorem: We have already noted that q?Gib(w) is the RCLM
solution for `Gib(q(w), (x, y)) = −Eq(w)[log p(y|w, x)]. We therefore get:

Corollary 15. If the KL regularizer is σ-strong-convex over Q and `Gib(q(w), (x, y)) is ρ-Lipschitz
and convex in q(w), then, for all q ∈ Q, ES∼Dn [rGib(q?Gib(w))] ≤ rGib(q) + 1

ηnKL
(
q‖p
)

+ 4ρ2η
σ .

Similarly, q?2Bi(w) and q?2D(w) are RCLM solutions for the 2L model with losses
defined as `2Gib(q(w), (x, y)) = −Eq(w)[log Ep(f |w,x)[p(y|f)]] and `2Bay(q(w), (x, y)) =
− log Eq(w)[Ep(f |w,x)[p(y|f)]]. We therefore get:

Corollary 16. If the KL regularizer is σ-strong-convex over Q and `2Gib(q(w), (x, y)) is ρ-Lipschitz
and convex in q(w) then, for all q ∈ Q, ES∼Dn [r2Gib(q?2Bi(w))] ≤ r2Gib(q) + 1

ηnKL(q||p) + 4ρ2η
σ .

Corollary 17. If theKL regularizer is σ-strong-convex overQ and `2Bay(q(w), (x, y)) is ρ-Lipschitz
and convex in q(w) then, for all q ∈ Q, ES∼Dn [r2Bay(q

?
2D(w))] ≤ r2Bay(q) + 1

ηnKL(q||p) + 4ρ2η
σ .

Note that for the variational algorithm η = 1 and the KL term decays at a rate of 1/n but the residual
term 4ρ2η

σ does not decay. On the other hand if we use η = 1/
√
n both terms decay at a rate of 1/

√
n.

This type of behavior was pointed out by [7] and holds for the result of [1]. The main paper discusses
how Theorem 2 achieves both rates using η = 1.

Proof of Theorem 2 (RCLM Theorem): We start with a lemma from [20]. Recall that for
hypothesis space H and hypothesis h ∈ H we used the notation `(h, (x, y)), and r(h) =
E(x,y)∼D[`(h, (x, y))] and defined the solution RCLM(H, `,R, η, S). Similarly for a sample S
define r̂(h, S) = 1

n

∑
i `
(
h, (xi, yi)

)
.

Lemma 18 ([20]). If h? = RCLM(H, `,R, η, S), then ∀h ∈ H ,

E
S∼Dn

[r(h?)] ≤ r(h) +
1

ηn
R(h) + E

S∼Dn
[r(h?)− r̂(h?, S)]. (12)

For completeness we include the proof for this lemma [20]:

Proof. We prove the equivalent statement ∀q ∈ Q,ES∼Dn [r̂(q?, S)] ≤ r(q) + 1
ηnR(q). Since

q? = RCLM(Q, `,R, η, S), ∀q ∈ Q,nr̂(q, S) + 1
ηR(q) ≥ nr̂(q?, S) + 1

ηR(q?) ≥ nr̂(q?, S).
Dividing both sides by n and taking expectations with respect to Dn yields the result. �

We next extend the reasoning from [7] to derive a bound for RCLM. For this recall the notation
of loss and risk for individual base parameters `W (w, (x, y)) = −log p(y|w, x), rW (w) =
ED[`W (w, (x, y))], and r̂W (w, S) = − 1

n

∑
i log p(yi|w, xi).

The compression lemma [2] states that for any measurable function f , we have Eq(w)[f(w)] ≤
KL(q(w)||p(w))+ logEp(w)[e

f(w)]. As in [7], applying this to the function, λ(rW (w)− r̂W (w, S))
the following is valid for all q:

rGib(q(w))− r̂Gib(q(w), S) ≤ 1

λ

(
KL
(
q‖p
)

+ log E
p(w)

[eλ(rW (w)−r̂W (w,S))]

)
(13)

12



where λ is a scalar. Evaluating (13) at q? ∈ Q (note that q? is a function of the sample S) and taking
expectations of both sides with respect to the draw of the sample yields

E
S∼Dn

[rGib(q?)− r̂Gib(q?, S)] ≤ E
S∼Dn

[
1

λ

(
KL
(
q?‖p

)
+ log E

p(w)
[eλ(rW (w)−r̂W (w,S))]

)
]

=
1

λ

(
E

S∼Dn
[KL

(
q?‖p

)
] + E

S∼Dn
[log E

p(w)
[eλ(rW (w)−r̂W (w,S))]]

)

≤ 1

λ

(
max
q∈Q

KL
(
q‖p
)

+ E
S∼Dn

[log E
p(w)

[eλ(rW (w)−r̂W (w,S))]]

)

≤ 1

λ

(
max
q∈Q

KL
(
q‖p
)

+ log E
S∼Dn

[ E
p(w)

[eλ(rW (w)−r̂W (w,S))]]

)

=
1

λ

(
max
q∈Q

KL
(
q‖p
)

+ Ψ(λ, n)

)
(14)

where in the third step we replace expectation with maximum, in the fourth step we used Jensen’s
inequality, and Ψ(λ, n) = log ES∼Dn [Ep(w)[e

λ(rW (w)−r̂W (w,S))]] as defined in [7].

Applying Lemma 18 to the RCLM algorithm q?Gib and combining this with (14) we get that for all
q ∈ Q:

E
S∼Dn

[rGib(q?)] ≤ rGib(q) +
1

ηn
KL
(
q‖p
)

+
1

λ
max
q∈Q

KL
(
q‖p
)

+
1

λ
Ψ(λ, n). (15)

�

A.1 Bounds on Ψ(λ, n)

For completeness this subsection recalls facts from [4, 7] who provided bounds on Ψ(λ, n).

Let r̂W (w, (xi, yi)) denote − log p(yi|w, xi). By considering the loss centered w.r.t. D, ∆ri(w) =
rW (w)− r̂W (w, (xi, yi)), Ψ(λ, n) can be expressed as4

Ψ(λ, n) = log E
p(w)

[
∏
i

E
p(∆ri(w))

[exp

(
λ

n
∆ri(w)

)
]]. (16)

Each term of the product in (16) is the moment generating function (MGF) of ∆ri(w). Hence, if the
MGF of ∆ri(w) can be bounded, then (16) can be evaluated.

If− log p(y|w, x) is bounded in [a, b], then ∆ri(w) will be bounded in [a− b, b−a] (and zero-mean).
Then, by Hoeffding’s lemma [4], Ep(∆ri(w))[exp

(
λ
n∆ri(w)

)
] ≤ exp

(
λ2(b−a)2

2n2

)
. Plugging this

into (16) we observe that the expectation over p(w) returns the same bound (because its argument
does not depend on w) and we get Ψ(λ, n) ≤ λ2(b−a)2

2n . If − log p(y|w, x) is not bounded, but
∆ri(w) is sub-Gaussian or sub-gamma, then Ψ(λ, n) can be bounded with additional assumptions
on the underlying distribution D.

B Details for Section 4

The KL divergence from q(w) = N (w|m,V ) to p(w) = N (w|µ,Σ) is given by

KL
(
q‖p
)

=
1

2

(
tr(Σ−1V ) + (µ−m)TΣ−1(µ−m) + log

|Σ|
|V |
−M

)
. (17)

We first show that the KL divergence is σ strong convex (needed for Corollaries 15, 16, 17).

4The interchange of the expectations over p(w) and Dn is justified by a special case of Fubini’s theorem for
non-negative functions.
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Lemma 19. If (i) bV ≤ λj (V ) ≤ BV for 1 ≤ j ≤ M , and (ii) ‖m‖2 ≤ Bm,
then KL

(
N (m,V )‖N (µ,Σ)

)
is σ-strong convex w.r.t. vector and matrix ‖·‖2, where σ =

min
(

1
λmax(Σ) ,

1
2B2

V

)
,

Proof. Since ∇2
mKL(m,V ) = Σ−1, (17) is σm-strongly convex w.r.t. m where σm = 1

λmax(Σ) .
W.r.t. V , ∇2

VKL(m,V ) = 1
2V
−1 ⊗ V −1, and (17) is not strongly convex unless its minimum

eigenvalue 1
2(λmax(V ))2 is bounded away from zero. The condition 1

2(λmax(V ))2 ≥ σV > 0 requires

λmax (V ) ≤ 1√
2σV
, BV . Hence, σ = min(σm, σV ) = min

(
1

λmax(Σ) ,
1

2B2
V

)
. �

Proof of Lemma 4 (KL Bound): Let λmin (V ) ≥ bV and λmax (V ) = ‖V ‖2 ≤ BV . Use tr(AB) ≤
λmax (B) tr(A) (see e.g., [27]) to bound the first term of (17) with MBV

λmin(Σ) . Bound the second term

of (17) w.r.t. 2-norm as‖µ−m‖22
∥∥Σ−1

∥∥
2
≤
(
‖µ‖22 +‖m‖22

)
λmax

(
Σ−1

)
=
‖µ‖22+‖m‖22
λmin(Σ) . Finally, for

a symmetric positive definite matrix A of dimension M , use the identity λmin (A)
M ≤ det(A) ≤

λmax (A)
M to bound the third term by M log λmax(Σ)

bV
. �

Derivation of 1√
n

rate for Theorem 6 bound: For µ = 0 and Σ = νI where ν > 0,

B′R(ν) = 1
2

(
1
ν

(
MBV +B2

m

)
+M log ν −M

)
. Taking the derivative of B′R(ν) w.r.t. ν yields

1
2

(
− 1
ν2

(
MBV +B2

m

)
+ M

ν

)
which equals 0 at ν? = 1

M

(
MBV +B2

m

)
. For this value of ν, we

have B′R(ν?) = 1
2M log

(
BV + 1

MB2
m

)
.

Plugging B′R(ν?) into the ∆(BH) term of (10) yields 1
2AM

(
1 + log BH

A + log
(
BV + 1

MB2
m

))
.

With η = 1 and λ =
√
n, A equals 1√

n
+ 1

n , and

∆(BH) =
1

2

(
1√
n

+
1

n

)
M

(
1 + logBH − log

(
1√
n

+
1

n

)
+ log

(
BV +

1

M
B2
m

))

≤ M√
n

(
1 + logBH + log n+ log

(
BV +

1

M
B2
m

))
.

where the inequality follows from the relationship 2
n ≤

1√
n

+ 1
n ≤

2√
n

. Using the bounded loss

result, 1
λΨ ≤ λ(b−a)2

2n = (b−a)2

2
√
n

, yields the overall bound:

∆(BH) +
1

λ
Ψ(λ, n) ≤ M√

n

(
1 + logBH + log n+ log

(
BV +

1

M
B2
m

)
+

(b− a)2

2M

)
.

�

Proof of Corollary 9 (CTM):

We derive bounds on Ψ() and BH as required in Corollary 8. Recall that CTM uses the logistic
transformation hk(w) = exp(wk)

1+
∑K−1

l=1 exp(wl)
, if k < K and hk(w) = 1

1+
∑K−1

l=1 exp(wl)
, otherwise. The

log loss is given by `(w, (x, y)) = − log
(∑K

k=1 βk,yhk(w)
)

. To derive a bound on Ψ, note that the
loss is bounded since the entries βk,y of the topics satisfy 0 < γ ≤ βk,y ≤ 1. Now because hk(w) is
a distribution we have γ ≤

∑
k βk,yhk(w) ≤ 1, and Ψ ≤ λ2(log γ)2

2n .

We next show that BH is bounded. Let e(k) ∈ RK denote the standard Euclidean unit vector in the
k-th coordinate, and for any x ∈ RK , let x̃ ∈ RK−1 denote the first K − 1 elements of x. Then, the
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Hessian of ` w.r.t. w is described by (suppressing dependence of ` on y for clarity):

∇whk(w) = hk(w)(ẽ(k) − h̃(w))

∇2
whk(w) = hk(w)

[
(ẽ(k) − h̃(w))(ẽ(k) − h̃(w))T − diag(h̃(w)) + h̃(w)h̃(w)T

]
∇w`(w) = − exp(`(w)))

∑
k

βk,y∇whk(w)

∇2
w`(w) = − exp(`(w))

∑
k

βk,y∇2
whk(w)

+
(
∇w`(w)

) (
∇w`(w)

)T
The maximum eigenvalue of the first term of∇2

w`(w) is

λmax

− exp(`(w))

∑
k

βk,y∇2
whk(w)


 ≤ exp(`(w))

∑
k

βk,yλmax

(
−∇2

whk(w)
)
.

≤ exp(`(w))
∑
k

βk,yhk(w) max diag(h̃(w))

≤ exp(`(w))
∑
k

βk,yhk(w)

= 1

where the first inequality is due to the identity λmax(A+B) ≤ λmax(A) + λmax(B) for symmetric
A,B, the second inequality is due to the previous identity combined with retaining the positive terms
of λmax

(
−∇2

whk(w)
)
, the third inequality is due to the fact that the elements of h(w) must sum to 1,

and the final equality is due to the definition of `(w).

The maximum eigenvalue of the second term of∇2
w`(w) is

λmax

((
∇w`(w)

) (
∇w`(w)

)T)
=

∥∥∥∥∥∥exp(`(w))
∑
k

βk,y∇whk(w)

∥∥∥∥∥∥
2

2

= exp(2`(w))

‖∑
k

βk,y∇whk(w)‖

2

≤ exp(2`(w))

∑
k

βk,y‖∇whk(w)‖

2

= exp(2`(w))

∑
k

βk,yhk(w)
∥∥∥ẽ(k) − h̃(w)

∥∥∥
2

2

≤ exp(2`(w))

2
∑
k

βk,yhk(w)

2

= 4 exp(2`(w))

∑
k

βk,yhk(w)

2

= 4.

The first equality follows since the outer product aaT has one eigenvalue given by‖a‖22. The first and
second inequalities make use of the triangle inequality. The final equality follows from the definition
of `(w). Finally, summing the two bounds for the maximum eigenvalues for each component of the
Hessian provides the result. �
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Proof of Lemma 10 (BH bound for deterministic f |w): We prove the lemma for the case
of the smoothed log loss, with the case of log loss handled similarly. Let ˜̀(w, (x, y)) =
− log

(
(1− α)p(y|f(w)) + α

)
= const − log

(
p(y|f(w)) + α′

)
where α′ = α

1−α and the

dependence of f on x is suppressed for clarity. Then, ∇w ˜̀(w) =
∂
[
− log(p(y|f)+α′)

]
∂f ∇wf(w),

and

∇2
w

˜̀(w) =
∂2
[
− log(p

(
y|f
)

+ α′)
]

∂f2

(
∇wf(w)

) (
∇wf(w)

)T
+
∂
[
− log(p

(
y|f
)

+ α′)
]

∂f
∇2
wf(w).

(18)
We use the identity λmax(A + B) ≤ λmax(A) + λmax(B) to bound each part separately. For the
first term ∇w∇Tw is positive and therefore λmax ≤ c2c

f
1 . In the second term, ∇2

w is not guaranteed
to be positive. We therefore use bounds on the absolute values of the univariate derivative and the
eigenvalues (i.e., we use the singular values of the Hessian) to get λmax ≤ c1cf2 . �

GLM instances: Letting α′ = α
1−α , the second derivative of the smoothed log loss is given by

∂2
[
− log(p(y|f)+α′)

]
∂f2 =

1

(p
(
y|f
)

+ α′)2

(
∂p(y|f)
∂f

)2

− 1

p
(
y|f
)

+ α′
∂2p(y|f)
∂f2 . (19)

Logistic We use p(y|f) = σ(yf) where y ∈ {−1, 1} and σ() is the sigmoid function. Evaluating
the likelihood derivatives, we have

∂p(y|f)
∂f = yσ(yf)(1− σ(yf)) ≤ 1

4
, (20)

∂2p(y|f)
∂f2 = y2σ(yf)(1− σ(yf))(1− 2σ(yf)). (21)

The minimum value of the second derivative (21) is found by optimizing. Letting σ , σ(yf), the 3rd
derivative of σ w.r.t. f is given by

∂
∂f y

2(σ(1− σ)(1− 2σ)) = ∂
∂f y

2(σ − 3σ2 + 2σ3))

= y3(σ(1− σ)− 6σ2(1− σ) + 6σ3(1− σ))

= y3σ(1− σ)(1− 6σ + 6σ2). (22)

Since σ is an invertible function of f , we can determine the maximum of the second derivative in
terms of σ. The roots of (22) are 0, 1, 1

2 ±
√

3
6 . Plugging the roots back into the second derivative, the

minimum value is attained at either 1
2 +

√
3

6 or 1
2 −

√
3

6 (depending on the sign of y). However, the

minimum value always equals −
√

3
18 . Therefore,

∂2
[
− log(p(y|f)+α′)

]
∂f2 ≤ c = 1

16
1

(α′)2 +
√

3
18

1
α′ .

Gaussian Here, p(y|f) = 1√
2πσY

exp(− 1
2

(y−f)2

σ2
Y

). The likelihood derivatives are given by

∂p(y|f)
∂f =

1√
2πσ3

Y

exp(−1

2

(y − f)2

σ2
Y

) (y − f) , (23)

∂2p(y|f)
∂f2 =

1√
2πσ3

Y

exp(−1

2

(y − f)2

σ2
Y

)

(
−1 +

(y − f)2

σ2
Y

)
. (24)

From (24), it can be seen that (23) has stationary points at y − f = ±σY . The maximum occurs at
y − f = σY , so, ∂p(y|f)

∂f ≤ 1√
2πσ2

Y

e−
1
2 . Also, (24) is bounded from below when y − f = 0 which

yields a lower bound − 1√
2πσ3

Y

. Therefore,
∂2

[
− log(p(y|f)+α′)

]
∂f2 ≤ c =

(
1

2πσ4
Y e

1
(α′)2 + 1√

2πσ3
Y

1
α′

)
.

�

Proof of Corollary 13 (Binary classification in GLM with convex loss): The loss function
`′(w, (x, y)) = 1

8 (y − (2p(y|w, x)− 1))2 is bounded between 0 and 1
2 . So, 1

λΨ ≤ 1
λ

λ2( 1
2 )2

2n = λ
8n .
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To find a bound for BH , we derive the Hessian ∇2
w`
′(w, (x, y)) which equals

∂2`′

∂p2 (∇wp(y|w, x))(∇wp(y|w, x))T + ∂`′

∂p ∇
2
wp(y|w, x). The 1st and 2nd derivatives of `′

w.r.t. p are ∂`′

∂p = 1
2 (2p − y − 1) and ∂2`′

∂p2 = 1. Letting σ , σ(ywTx), the gradient
and Hessian of p w.r.t. w are given by (1 − σ)σyx and (1 − 2σ)(1 − σ)σy2xxT . Thus,
∇2
w`
′(w, (x, y)) =

[
(1− σ)σ

]2
y2xxT + 1

2 (2p − y − 1)(1 − 2σ)(1 − σ)σy2xxT =

(1− σ)σy2
[
(1− σ)σ + 1

2 (2p− y − 1)(1− 2σ)
]
xxT � 1

4 ( 1
4 + 1)xxT = 5

16xx
T . �

Proof of Theorem 14 (Surrogate loss): Written in terms of z =
( m
vec(V )

)
, the loss function

evaluates to

1

2
log (2π) +

1

2
log
(
σ2 + σ2

Y + (a⊗ a)TPV z
)

+
1

2

(y − aTPmz − b)2

σ2 + σ2
Y + (a⊗ a)TPV z

, (25)

where Pm and PV are matrices s.t. Pmz = m and PV z = vec(V ). The loss (25) is not convex
because of the logarithm in the second term. The surrogate loss `surr() (which drops the log) upper
bounds (25) and is convex in z since β(z)2

α(z) is convex in
(
β(z)
α(z)

)
(see e.g., [5]) and β and α are each

linear in z. The derivatives of the convex surrogate w.r.t. m and vec(V ) are given by are given by

∂
∂(Pmz)

: − y − aTPmz − b
σ2 + σ2

Y + (a⊗ a)TPV z
a, (26)

∂
∂(PV z)

:
1

2

(
1

σ2 + σ2
Y + (a⊗ a)TPV z

− (y − aTPmz − b)2

(σ2 + σ2
Y + (a⊗ a)TPV z)2

)
(a⊗ a). (27)

The Lipschitz bound w.r.t. norm ‖ · ‖ for a convex function is equal to the maximum value
of the dual norm ‖ · ‖∗ of its derivative [19]. Since vector 2-norm is self dual, the Lipschitz
bound w.r.t. z is upper-bounded by

√
ρ2
m + ρ2

V where ρm and ρV are bounds on the 2-norms
of (26) and (27) given by ρm = 1

σ2
Y

maxx∈X‖a‖2 maxx∈X,y∈Y,m
∣∣mTa+ b− y

∣∣, and ρV =

1
2σ2

Y
maxx∈X,y∈Y,m‖a‖22

(
1 + (y−aTm−b)2

σ2
Y

)
. Hence, the convex surrogate is ρ-Lipschitz w.r.t. 2-

norm in
( m
vec(V )

)
with ρ =

√
ρ2
m + ρ2

V .

Noting that the regularizer is 1
2 -strongly convex, we can apply Theorem 1 to get

E
S∼Dn

[r2Bay(q?2Ds)] ≤ E
S∼Dn

[rsurr
2Bay(q?2Ds)] ≤ min

q∈Q
rsurr

2Bay(q(w)) +
1

ηn

(
B2
m +B2

V

)
+ 8(ρ2

m + ρ2
V )η.

(28)

Setting η = 1√
n

and utilizing Markov’s inequality yields the result. �

C Details for Section 5

The results in this paper expose the fact that different variational algorithms are apparently implicitly
optimizing criteria for different loss functions. In particular, q?2A optimizes for r2A, q?2Bi optimizes for
r2Gib and q?2D optimizes for r2Bay. Even though we were able to bound r2Bay of the q?2Bi algorithm, it
is interesting to check the performance of these algorithms in practice.

We present an experimental study comparing these algorithms on the correlated topic model (CTM).

p(w) = N (w|µ,Σ), p(f |w) =
∏
i

Discrete(fi|h(w)), p(yi|fi) = Discrete(yi|βfi,yi), (29)

where h() is the logistic transformation.

For this model the simple loss `2A is

`2A(q, yi) =

∫ ∑
k

− log
(
βk,yi

)
hk(w)

 q(w)dw, (30)
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“Posterior”
∑
yi∈test `2A(yi)

∑
yi∈test `2Gib(yi)

∑
yi∈test `2Bay

q?2A 2960.624 (0.119) 2956.082 (0.159) 2955.171 (0.321)
q?2Bi 3058.442 (2.846) 2920.572 (0.581) 2915.615 (0.578)
q?2D 3066.244 (6.034) 2931.522 (1.339) 2915.317 (0.580)

Table 1: Artificial data. Final (converged) cumulative loss of model learned by different variational
algorithms. The cumulative loss is evaluated on test. The values represent the mean of 30 trials (1-σ
values in parentheses). Cumulative `2Bay of the generative model evaluated on test is 2912.304.

For the other two losses, note that we can explicitly integrate out f to get a closed form expression
for p(yi|w) =

∑
k βk,yihk(w). This yields

`2Gib(q, yi) =

∫
− log

∑
k

βk,yihk(w)

 q(w)dw, (31)

`2Bay(q, yi) = − log

∫ ∑
k

βk,yihk(w)

 q(w)dw. (32)

To explore the relation between the algorithms and their performance we run the three algorithms and
report their empirical risk on a test set, where the risk is also measured in three different ways. We
repeat this on one 1000-word document artificially created with the generative model and one real
1300-word document randomly selected from the nips dataset [13].

Each document is randomly split into equal size train and test sets. Optimizing the three objectives
on the training set results in three posteriors which are then evaluated on the test set. We use K = 50
topics and the hyperparameters µ,Σ, β are fixed to the parameters of the generative model in the
artificial data, and to values inferred from a larger subset of the nips dataset (excluding the previously
selected test document).

The optimization algorithm is SGD in the mean m and Cholesky factor C of the covariance V .
Equation 7 of [18] is used to calculate the derivative w.r.t. the mean, and equation 10 of [18] is used
to calculate the derivative w.r.t. the Cholesky factor. We use 10 Monte Carlo samples to compute
derivatives during training. The experiment is repeated 30 times and averages and standard deviations
across these runs are reported. Test set losses (30-32) are not available in closed form, so we use 1000
Monte Carlo samples to calculate loss function values (the use of 104 samples produced visually
indistinguishable results).

Results for the 1000-word artificial document are presented in Table 1 and results for the nips
document are shown in Table 2. The tables show results at convergence where we can clearly see that
indeed each algorithm is best at optimizing its own implicit criterion. However, considering r2Bay,
the differences between the outputs of the variational algorithm q?2Bi and direct loss minimization q?2D
are relatively small. Figure 1 shows the corresponding training curves on the artificial document.
We see that at least in this case q?2Bi takes longer to reach the optimal point for r2Bay. Clearly, except
for its own implicit criterion, q?2A should not be used. This agrees with prior empirical work on q?2A
and q?2Bi [22]. The current experiment shows the potential of direct loss optimization for improved
performance but justifies the use of q?2Bi both under correct model specification (artificial data) and
when the model is incorrect (real data).
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“Posterior”
∑
yi∈test `2A(yi)

∑
yi∈test `2Gib(yi)

∑
yi∈test `2Bay

q?2A 5447.317 (0.128) 5423.254 (0.855) 5418.343 (1.403)
q?2Bi 5708.557 (3.625) 5029.380 (4.998) 5020.091 (2.248)
q?2D 5719.236 (5.433) 5062.755 (3.065) 5016.625 (1.077)

Table 2: Real data. Final (converged) cumulative loss of model learned by different variational
algorithms on one document from nips dataset. The cumulative loss is evaluated on test. The values
represent the mean of 30 trials (1-σ values in parentheses).
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