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Abstract

In this supplementary material, we present fully detailed information on 1) learning
algorithm of the proposed Dual-Agent Generative Adversarial Network (DA-GAN)
model; 2) details on the IJB-A benchmark dataset (7); 3) network architectures; 4)
training details; 5) qualitative analysis of DA-GAN; 6) high-resolution visualized
verification results for IJB-A (7) split1; 7) high-resolution visualized identification
results for IJB-A (7) split1.

1 Learning algorithm of DA-GAN model
We summarize detailed the training procedures of our DA-GAN in Algorithm. 1.

2 Details on the IJB-A benchmark dataset
IJB-A (7) contains both images and video frames from 500 subjects with 5,397 images and 2,042
videos that are split into 20,412 frames, 11.4 images and 4.2 videos per subject, captured from
in-the-wild environment to avoid the near frontal bias, along with protocols for evaluation of both
verification (1:1 comparison) and identification (1:N search) tasks. For training and testing, 10
random splits are provided by each protocol, respectively.

IJB-A (7) defines the minimal facial representation unit to be a “template" enrolled with multiple
face images and / or video frames under extreme conditions of pose, expression, occlusion, and
illumination. Such problem setting is aligned better with real-world scenario where each subject’s
appearance is more likely to be captured more than once using different approaches, turning the
traditional face recognition problem into a more challenging set-to-set matching problem under
extreme conditions in the wild. The verification task requires the evaluation system to determine
whether two input face templates are of the same subject or not. At a given threshold, the Receiver
Operating Characteristic (ROC) analysis measures the True Accept Rate (TAR), which is the fraction
of genuine comparisons that correctly exceed the threshold, and the False Accept Rate (FAR), which
is the fraction of impostor comparisons that incorrectly exceed the threshold. For identification, the
evaluation system needs to determine the subject matching a probe identity from a closed set or
an open set. For a closed set, the Cumulative Match Characteristic (CMC) analysis measures the
percentage of probe searches returning probe gallery mates within a given Rank. For an open set,
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Algorithm 1 Learning algorithm of DA-GAN

Input: Sets of synthetic profile face images xi, real face images yj , and the associated identity
labels Yi, max number of epoches (nb_e), batch size (b), number of network updates per step
(nb_s), input size (im_w, im_h, im_c), weight decay, learning rate (lr), k0, λ1, λ2, α, γ;

Output: DA-GAN generator Gθ and discriminator Dφ;
for e=1, · · · , nb_e do

for s=1, · · · , nb_s do
1. Optimize Dφ;
2. Optimize Gθ;
3. Update kt;
4. Measure network convergence Lcon;
5. Visualize intermediate results;

end for
Archive Gθ and Dφ models for each training epoch;

end for

Feature Extraction

Feature Extraction

ResNext-50
e

GoogleNet-BN
e

Target Domain

W, b

Pos

Neg

Feature Fusion SVM

Is the S
am

e ?

Template A
e

Template B
e

W, b
Target Domain

Pos

Neg

Feature Fusion SVM

W
ho is this ?

Template C
e

Source Domain

C
ross-E

ntrop
y L

oss
C

ross-E
ntrop

y L
oss

VGG Face Data
e

Ours Face Data
e

M
u

lti-score
fu

sion
M

u
lti-score

fu
sion

OSS

OSS

Figure 1: Framework overview of “recognition via generation". We transfer learn two state-of-the-
art deep neural networks – ResNext-50 (11) and GoogleNet-BN (9) from source domain to target
domain extended by DA-GAN. We ensemble the compensate two-view information from the two
models to train template adapted SVMs (2). The resulted margins are robust and discriminative for
unconstrained face recognition. Best viewed in color.
at a given threshold, the evaluation system measures the False Positive Identification Rate (FPIR),
which is the fraction of comparisons between probe templates and non-mate gallery templates that
corresponds to a match score exceeding the threshold, and the False Negative Identification Rate
(FNIR), which is the fraction of probe searches that fail to match a mated gallery template above a
score of the threshold. More details on the evaluation metrics can be found in (7).
3 Network architectures

• Simulator: RAR framework (10) (face RoI extraction & 68 facial landmark detection), 3D
MM (12) (profile face image simulation with pre-defined yaw angles).

• Generator: Input 224× 224× 3, Conv 64× 7× 7, ReLU3, BN4, 10×Residual block (Conv
64× 7× 7, ReLU, BN, Conv 64× 7× 7, Ele-Sum5, ReLU, BN), Conv 3× 1× 1.

3ReLU is short for Rectified Linear Units (5).
4BN is short for Batch Normalization (6).
5Ele-Sum is short for element-wise summation.
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• Discriminator: Input 224×224×3, Conv 3×3×3, ReLU, Transition down (Conv 128×3×3,
ReLU, Conv 128× 3× 3/2, ReLU, Conv 256× 3× 3, ReLU, Conv 256× 3× 3/2, ReLU,
Conv 384×3×3, ReLU, Conv 384×3×3/2, ReLU), Flatten, FC 784, Reshape, Transition
up (Conv 128 × 3 × 3, ReLU, Deconv 128 × 3 × 3/2, ReLU, Conv 128 × 3 × 3, ReLU,
Deconv 128× 3× 3/2, ReLU, Conv 128× 3× 3, ReLU, Deconv 128× 3× 3/2, ReLU),
Conv 3× 1× 1, ReLU.

• Deep recognition models: Input 224 × 224 × 3, ResNext-50 (cardinality = 32) (11) &
GoogleNet-BN (9) (model fusion), template adapted Support Vector Machine (SVM) (2)
(metric learning).

The overview of our proposed “recognition via generation" framework is illustrated in Figure. 1. We
transfer learn two state-of-the-art deep neural networks – ResNext-50 (11) and GoogleNet-BN (9)
from source domain (MS-Celeb-1M (4), removed overlapping parts with IJB-A (7)) to target domain
of IJB-A (7) extended by DA-GAN. We ensemble the compensate two-view information (learned
deep features) from the ResNext-50 (11) and GoogleNet-BN (9) models to train template adapted
SVMs (2). The resulted margins are robust and discriminative for unconstrained face recognition.

4 Training details
• DA-GAN: 1) Extract face RoIs from the available training data of each IJB-A (7) split,

and detect 68 facial landmark points using the RAR framework (10). 2) Simulate profile
faces with pre-defined yaw angles ∈ {±10,±20,±30,±40,±50,±60,±70,±80,±90}
using 3D MM (12). 3) Train DA-GAN using Adam with mini-batch (FC 333 with Softmax
appended to the output of the bottleneck layer of Dφ for Lip during training); set the mini-
batch size to 16; W = 224, H = 224, C = 3; initialize DA-GAN using vanishing residuals;
set an initial learning rate to 5× 10−5, decaying by a factor of 2 when Lcon stalls; set the
weight decay to 5× 10−4; set k0 = 0; λ1 = 2.5× 10−2, λ2 = 3× 10−2, α = 1× 10−3,
γ = 5 × 10−1; alternatively optimize discriminator Dφ, generator Gθ and update kt for
each mini-batch.

• Deep recognition models: 1) Set the mini-batch size to 256; W = 224, H = 224, C = 3;
set an initial learning rate to 0.01 and divided by 10 every 30 epoches; set the weight decay
to 1 × 10−4; set the momentum to 0.9. 2) Pre-process MS-Celeb-1M (4) data, including
overlapping part removal with IJB-A (7) and face RoI extraction, resulting in 4,356,052
face images for 53,317 subjects in total. 3) Train ResNext-50 (cardinality = 32) (11) &
GoogleNet-BN (9) using Stochastic Gradient Descent (SGD) on the cleaned MS-Celeb-1M
(4) data. 4) Reset the learning rate to 0.0001 and divided by 10 every 10 epoches. 5) Inject
the refined profile face images and video frames into IJB-A (7) each split training data and
fine-tune the pre-trained deep recognition models.

• Template adapted SVM models: 1) Concat the learned pose-invariant features from the
penultimate layers of deep recognition models (R2048 C-Sum6 R1024 7→ R3072). 2) Train
template adapted SVM models similarly as introduced in (2).

More formally, the template adapted SVMs are learned by optimizing the following `2-regularized
objective function:

LSVM = min
w

1

2
wTw + λ+

N+∑
i=1

max
[
0, 1− yiwT fF (xi)

]2
+ λ−

N−∑
j=1

max
[
0, 1− yjwT fF (xj)

]2
, (1)

where fF (·) denotes the non-linear function learned by our deep recognition models, x denote the
face media, w denote the weights including bias term, yi ∈ {−1, 1} denotes the label indicating
whether the current sample being negative or possible, N+ indicates the number of positive samples,
N− indicates the number of negative ones, N− � N+, the constraint for negative samples λ− =

C N++N−
2N−

, the constraint for positive samples λ+ = C N++N−
2N+

, C is a trade-off factor, and we set it
to 20 in our method.

6C-Sum is short for concat.
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Since a template contains both face images and / or video frames, containing large variances in
terms of media modality, pose, expression, occlusion, and illumination. In order to better address the
underlying distracting factors within each template, we split each template into several sub-templates
according to the prior information on the media source (e.g., image / video). In particular, for the
deep features from a video sequence, we perform mean encoding to generate the corresponding
representation.

Let tVj be the mean encoding of the jth video sequence, then

tVj =
1

NV
j

NV
j∑

i=1

fF (xi), (2)

where NV
j is the number of frame in the jth video sequence, xi denotes the ith frame of video j.

Thus, the representations for the ath template can be expressed as

Ta =
{
tIi , ..., t

V
Na

}
, (3)

where tIi denotes the sub-template for the ith image, tVNa
denotes the sub-template for the N th

a video.

The media-level deep features are further L2-normalized for training template adapted SVMs (2).
For verification, the positive sample of template specific SVM is a probe template, and the large-
scale negative samples consist of the whole training set. For identification, the probe template
specific SVMs adopt the whole training set as the large-scale negative samples; whereas for gallery
template specific SVM, other gallery templates and the whole training set are bundled together as the
large-scale negative samples.

Based on one shot similarity, we compute the fine-grained similarity between two sub-template
representations p and q via s (p, q) = 1

2P (q) + 1
2Q (p) , where P(·) denotes the trained probe

template specific SVM model and Q(·) indicates the trained gallery template specific SVM model.

As described in Eq. (3), a template may contain various number of sub-templates. Thus, finally we
merge the resulting multiple matching scores into a single measurement to determine the face identity
for each template pair,

s (Ta, Tb) =

∑
ti∈Ta,tj∈Tb

s (ti, tj) e
β s(ti,tj)

∑
ti∈Ta,tj∈Tb

eβ s(ti,tj)
, (4)

where β is a bandwidth factor, and we set it to 0 in our method.

5 Qualitative analysis of DA-GAN
We visualize the high-resolution refined results of DA-GAN under various poses with yaw angles
ranging from −90◦ to −10◦ and +10◦ to +90◦ at a stride of 10◦ in Figure. 2 and Figure. 3 to verify
the compelling perceptual quality of DA-GAN. As can be seen, DA-GAN is able to adaptively remove
artifacts (e.g., face fragments and black holes) introduced by the simulator, stitch fragments, and
compensate texture losses in terms of facial details and color realism, especially for large poses. As a
result, the refined faces of DA-GAN present more intuitively photorealistic and natural characteristics.

To verify the superiority of DA-GAN as well as the contribution of each component, we also compare
the qualitative results produced by the vanilla GAN (3), Apple GAN (8), BE-GAN (1), and three
variations of DA-GAN in terms of w/o Ladv, Lip, Lpp in each case, repectively. As shown in
Figure. 4, inference without Lip deviates from the true appearance seriously, and the synthesis
without Ladv tends to be very blurry, while the results without the Lpp sometimes show blurry and
unnatural effect with strange artifacts / color involved. Compared with vanilla GAN (3), Apple
GAN (8) and BE-GAN (1), which all fail with poses larger than 60◦, our DA-GAN presents a good
identity preserving quality while producing photorealistic synthesis.

6 Verification result analysis for IJB-A Split1
For face verification, after computing the similarities for all pairs of probe and reference sets, we sort
the resulting list. Each row represents a probe and reference template pair. The original templates
within IJB-A (7) contain from one to dozens of media. Up to eight individual media are shown, with
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the last space showing a mosaic of the remaining media in the template. Between the templates are the
template IDs for probe and reference as well as the best matched and best non-matched similarities.
Figure. 5 shows the best matched cases. In the top-30 scoring correct matches, we immediately note
that every reference template contains dozens of media. The probe templates either contain dozens of
media or one medium that matches well. Figure. 6 illustrating the best non-matched cases shows
the most certain non-mates, again often involving large templates with enough guidance from the
relevant information of the same subject. Figure. 7 shows the worst matched cases, representing
failed matching. The thirty lowest matched results from single-medium probe sets are all under
extremely challenging unconstrained conditions. These extremely difficult cases cannot be solved
even using the specific operations designed in our “recognition via generation" framework. Figure. 8
illustrating the worst non-matched cases highlights the understandable errors, representing impostors
in challenging modalities.

7 Identification result analysis for IJB-A Split1
For face identification, Figure. 9 1st-column shows the query images from probe templates. Figure. 9
column 2-6 show the corresponding top-5 queried gallery templates. For each template, we provide
template ID, subject ID and similarity score. As can be seen, our approach always performs successful
searching in Rank1, which well proved the effectiveness of our DA-GAN based method for generic
transfer learning and face-centric analysis. It would be interesting to apply DA-GAN for other transfer
learning applications in the future.

Acknowledgement
The work of Jian Zhao was partially supported by China Scholarship Council (CSC) grant
201503170248.

The work of Jiashi Feng was partially supported by National University of Singapore startup grant
R-263-000-C08-133, Ministry of Education of Singapore AcRF Tier One grant R-263-000-C21-112
and NUS IDS grant R-263-000-C67-646.

We would like to thank Junliang Xing (Institute of Automation, Chinese Academy of Sciences),
Hengzhu Liu, and Xucan Chen (National University of Defense Technology) for helpful discussions.

References
[1] D. Berthelot, T. Schumm, and L. Metz. Began: Boundary equilibrium generative adversarial networks.

arXiv preprint arXiv:1703.10717, 2017.
[2] N. Crosswhite, J. Byrne, O. M. Parkhi, C. Stauffer, Q. Cao, and A. Zisserman. Template adaptation for

face verification and identification. arXiv preprint arXiv:1603.03958, 2016.
[3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems
(NIPS), pages 2672–2680, 2014.

[4] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face
recognition. In Proceedings of the European Conference on Computer Vision (ECCV), pages 87–102,
2016.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 1026–1034, 2015.

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[7] B. F. Klare, B. Klein, E. Taborsky, A. Blanton, J. Cheney, K. Allen, P. Grother, A. Mah, M. Burge, and
A. K. Jain. Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark
a. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
1931–1939, 2015.

[8] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. Learning from simulated and
unsupervised images through adversarial training. arXiv preprint arXiv:1612.07828, 2016.

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, 2015.

[10] S. Xiao, J. Feng, J. Xing, H. Lai, S. Yan, and A. Kassim. Robust facial landmark detection via recurrent
attentive-refinement networks. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 57–72, 2016.

[11] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural
networks. arXiv preprint arXiv:1611.05431, 2016.

5



[12] X. Zhu, J. Yan, D. Yi, Z. Lei, and S. Z. Li. Discriminative 3d morphable model fitting. In Proceedings
of the IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG),
volume 1, pages 1–8, 2015.

6



-1
0
°

-2
0
°

-3
0
°

-4
0
°

-5
0
°

-6
0
°

-7
0
°

-8
0
°

-9
0
°

R
ea
l

Si
m
u
la
te
d

R
ef
in
ed

R
ea
l

Si
m
u
la
te
d

R
ef
in
ed

R
ea
l

Si
m
u
la
te
d

R
ef
in
ed

R
ea
l

Si
m
u
la
te
d

R
ef
in
ed

R
ea
l

Si
m
u
la
te
d

R
ef
in
ed

R
ea
l

Si
m
u
la
te
d

R
ef
in
ed

Figure 2: Refined results of DA-GAN under various poses with yaw angles ranging from −90◦ to
−10◦ at a stride of 10◦.
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Figure 3: Refined results of DA-GAN under various poses with yaw angles ranging from +10◦ to
+90◦ at a stride of 10◦.
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Figure 4: Qualitative result comparison of DA-GAN with state-of-the-art GANs and three different
network settings.
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Figure 5: Verification results analysis for best matched cases on IJB-A (7) split1.
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Figure 6: Verification results analysis for best non-matched cases on IJB-A (7) split1.
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Figure 7: Verification results analysis for worst matched cases on IJB-A (7) split1.
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Figure 8: Verification results analysis for worst non-matched cases on IJB-A (7) split1.
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Figure 9: Identification results analysis on IJB-A (7) split1.
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