
Training Deep Networks without Learning Rates
Through Coin Betting

Francesco Orabona∗
Department of Computer Science

Stony Brook University
Stony Brook, NY

francesco@orabona.com

Tatiana Tommasi∗
Department of Computer, Control, and

Management Engineering
Sapienza, Rome University, Italy
tommasi@dis.uniroma1.it

Abstract

Deep learning methods achieve state-of-the-art performance in many application
scenarios. Yet, these methods require a significant amount of hyperparameters
tuning in order to achieve the best results. In particular, tuning the learning rates
in the stochastic optimization process is still one of the main bottlenecks. In this
paper, we propose a new stochastic gradient descent procedure for deep networks
that does not require any learning rate setting. Contrary to previous methods, we
do not adapt the learning rates nor we make use of the assumed curvature of the
objective function. Instead, we reduce the optimization process to a game of betting
on a coin and propose a learning-rate-free optimal algorithm for this scenario.
Theoretical convergence is proven for convex and quasi-convex functions and
empirical evidence shows the advantage of our algorithm over popular stochastic
gradient algorithms.

1 Introduction

In the last years deep learning has demonstrated a great success in a large number of fields and has
attracted the attention of various research communities with the consequent development of multiple
coding frameworks (e.g., Caffe [Jia et al., 2014], TensorFlow [Abadi et al., 2015]), the diffusion of
blogs, online tutorials, books, and dedicated courses. Besides reaching out scientists with different
backgrounds, the need of all these supportive tools originates also from the nature of deep learning: it
is a methodology that involves many structural details as well as several hyperparameters whose
importance has been growing with the recent trend of designing deeper and multi-branches networks.
Some of the hyperparameters define the model itself (e.g., number of hidden layers, regularization
coefficients, kernel size for convolutional layers), while others are related to the model training
procedure. In both cases, hyperparameter tuning is a critical step to realize deep learning full potential
and most of the knowledge in this area comes from living practice, years of experimentation, and, to
some extent, mathematical justification [Bengio, 2012].

With respect to the optimization process, stochastic gradient descent (SGD) has proved itself to be a
key component of the deep learning success, but its effectiveness strictly depends on the choice of
the initial learning rate and learning rate schedule. This has primed a line of research on algorithms
to reduce the hyperparameter dependence in SGD—see Section 2 for an overview on the related
literature. However, all previous algorithms resort on adapting the learning rates, rather than removing
them, or rely on assumptions on the shape of the objective function.

In this paper we aim at removing at least one of the hyperparameter of deep learning models. We
leverage over recent advancements in the stochastic optimization literature to design a backprop-

∗The authors contributed equally.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

agation procedure that does not have a learning rate at all, yet it is as simple as the vanilla SGD.
Specifically, we reduce the SGD problem to the game of betting on a coin (Section 4). In Section 5,
we present a novel strategy to bet on a coin that extends previous ones in a data-dependent way,
proving optimal convergence rate in the convex and quasi-convex setting (defined in Section 3).
Furthermore, we propose a variant of our algorithm for deep networks (Section 6). Finally, we show
how our algorithm outperforms popular optimization methods in the deep learning literature on a
variety of architectures and benchmarks (Section 7).

2 Related Work

Stochastic gradient descent offers several challenges in terms of convergence speed. Hence, the topic
of learning rate setting has been largely investigated.

Some of the existing solutions are based on the use of carefully tuned momentum terms [LeCun et al.,
1998b, Sutskever et al., 2013, Kingma and Ba, 2015]. It has been demonstrated that these terms can
speed-up the convergence for convex smooth functions [Nesterov, 1983]. Other strategies propose
scale-invariant learning rate updates to deal with gradients whose magnitude changes in each layer of
the network [Duchi et al., 2011, Tieleman and Hinton, 2012, Zeiler, 2012, Kingma and Ba, 2015].
Indeed, scale-invariance is a well-known important feature that has also received attention outside of
the deep learning community [Ross et al., 2013, Orabona et al., 2015, Orabona and Pal, 2015]. Yet,
both these approaches do not avoid the use of a learning rate.

A large family of algorithms exploit a second order approximation of the cost function to better capture
its local geometry and avoid the manual choice of a learning rate. The step size is automatically
adapted to the cost function with larger/shorter steps in case of shallow/steep curvature. Quasi-
Newton methods [Wright and Nocedal, 1999] as well as the natural gradient method [Amari, 1998]
belong to this family. Although effective in general, they have a spatial and computational complexity
that is square in the number of parameters with respect to the first order methods, which makes the
application of these approaches unfeasible in modern deep learning architectures. Hence, typically
the required matrices are approximated with diagonal ones [LeCun et al., 1998b, Schaul et al., 2013].
Nevertheless, even assuming the use of the full information, it is currently unclear if the objective
functions in deep learning have enough curvature to guarantee any gain.

There exists a line of work on unconstrained stochastic gradient descent without learning
rates [Streeter and McMahan, 2012, Orabona, 2013, McMahan and Orabona, 2014, Orabona, 2014,
Cutkosky and Boahen, 2016, 2017]. The latest advancement in this direction is the strategy of reduc-
ing stochastic subgradient descent to coin-betting, proposed by Orabona and Pal [2016]. However,
their proposed betting strategy is worst-case with respect to the gradients received and cannot take
advantage, for example, of sparse gradients.

3 Definitions

We now introduce the basic notions of convex analysis that are used in the paper—see, e.g., Bauschke
and Combettes [2011]. We denote by ‖·‖1 the 1-norm in Rd. Let f : Rd → R ∪ {±∞}, the Fenchel
conjugate of f is f∗ : Rd → R ∪ {±∞} with f∗(θ) = supx∈Rd θ>x− f(x).

A vector x is a subgradient of a convex function f at v if f(v)− f(u) ≤ (v − u)>x for any u in
the domain of f . The differential set of f at v, denoted by ∂f(v), is the set of all the subgradients of
f at v. If f is also differentiable at v, then ∂f(v) contains a single vector, denoted by∇f(v), which
is the gradient of f at v.

We go beyond convexity using the definition of weak quasi-convexity in Hardt et al. [2016]. This
definition is relevant for us because Hardt et al. [2016] proved that τ -weakly-quasi-convex objective
functions arise in the training of linear recurrent networks. A function f : Rd → R is τ -weakly-quasi-
convex over a domain B ⊆ Rd with respect to the global minimum v∗ if there is a positive constant
τ > 0 such that for all v ∈ B, f(v)− f(v∗) ≤ τ(v − v∗)>∇f(v). From the definition, it follows
that differentiable convex function are also 1-weakly-quasi-convex.

Betting on a coin. We will reduce the stochastic subgradient descent procedure to betting on a
number of coins. Hence, here we introduce the betting scenario and its notation. We consider a

2

gambler making repeated bets on the outcomes of adversarial coin flips. The gambler starts with
initial money ε > 0. In each round t, he bets on the outcome of a coin flip gt ∈ {−1, 1}, where +1
denotes heads and −1 denotes tails. We do not make any assumption on how gt is generated.

The gambler can bet any amount on either heads or tails. However, he is not allowed to borrow any
additional money. If he loses, he loses the betted amount; if he wins, he gets the betted amount back
and, in addition to that, he gets the same amount as a reward. We encode the gambler’s bet in round t
by a single number wt. The sign of wt encodes whether he is betting on heads or tails. The absolute
value encodes the betted amount. We define Wealtht as the gambler’s wealth at the end of round t
and Rewardt as the gambler’s net reward (the difference of wealth and the initial money), that is

Wealtht = ε+

t∑
i=1

wigi and Rewardt = Wealtht− ε =

t∑
i=1

wigi . (1)

In the following, we will also refer to a bet with βt, where βt is such that
wt = βt Wealtht−1 . (2)

The absolute value of βt is the fraction of the current wealth to bet and its sign encodes whether
he is betting on heads or tails. The constraint that the gambler cannot borrow money implies that
βt ∈ [−1, 1]. We also slighlty generalize the problem by allowing the outcome of the coin flip gt to
be any real number in [−1, 1], that is a continuous coin; wealth and reward in (1) remain the same.

4 Subgradient Descent through Coin Betting

In this section, following Orabona and Pal [2016], we briefly explain how to reduce subgradient
descent to the gambling scenario of betting on a coin.

Consider as an example the function F (x) := |x− 10| and the optimization problem minx F (x).
This function does not have any curvature, in fact it is not even differentiable, thus no second order
optimization algorithm could reliably be used on it. We set the outcome of the coin flip gt to be
equal to the negative subgradient of F in wt, that is gt ∈ ∂[−F (wt)], where we remind that wt is the
amount of money we bet. Given our choice of F (x), its negative subgradients are in {−1, 1}. In the
first iteration we do not bet, hence w1 = 0 and our initial money is $1. Let’s also assume that there
exists a function H(·) such that our betting strategy will guarantee that the wealth after T rounds will
be at least H(

∑T
t=1 gt) for any arbitrary sequence g1, · · · , gT .

We claim that the average of the bets, 1
T

∑T
t=1 wt, converges to the solution of our optimization

problem and the rate depends on how good our betting strategy is. Let’s see how.

Denoting by x∗ the minimizer of F (x), we have that the following holds

F

(
1

T

T∑
t=1

wt

)
− F (x∗) ≤ 1

T

T∑
t=1

F (wt)− F (x∗) ≤ 1

T

T∑
t=1

gtx
∗ − 1

T

T∑
t=1

gtwt

≤ 1
T + 1

T

(
T∑
t=1

gtx
∗ −H

(
T∑
t=1

gt

))
≤ 1

T + 1
T max

v
vx∗ −H(v)

= H∗(x∗)+1
T ,

where in the first inequality we used Jensen’s inequality, in the second the definition of subgradients,
in the third our assumption on H , and in the last equality the definition of Fenchel conjugate of H .

In words, we used a gambling algorithm to find the minimizer of a non-smooth objective function
by accessing its subgradients. All we need is a good gambling strategy. Note that this is just a
very simple one-dimensional example, but the outlined approach works in any dimension and for
any convex objective function, even if we just have access to stochastic subgradients [Orabona and
Pal, 2016]. In particular, if the gradients are bounded in a range, the same reduction works using a
continuous coin.

Orabona and Pal [2016] showed that the simple betting strategy of βt =
∑t−1

i=1 gi
t gives optimal growth

rate of the wealth and optimal worst-case convergence rates. However, it is not data-dependent so it
does not adapt to the sparsity of the gradients. In the next section, we will show an actual betting
strategy that guarantees optimal convergence rate and adaptivity to the gradients.

3

Algorithm 1 COntinuous COin Betting - COCOB
1: Input: Li > 0, i = 1, · · · , d;w1 ∈ Rd (initial parameters); T (maximum number of iterations);
F (function to minimize)

2: Initialize: G0,i ← Li, Reward0,i ← 0, θ0,i ← 0, i = 1, · · · , d
3: for t = 1, 2, . . . , T do
4: Get a (negative) stochastic subgradient gt such that E[gt] ∈ ∂[−F (wt)]
5: for i = 1, 2, . . . , d do
6: Update the sum of the absolute values of the subgradients: Gt,i ← Gt−1,i + |gt,i|
7: Update the reward: Rewardt,i ← Rewardt−1,i +(wt,i − w1,i)gt,i
8: Update the sum of the gradients: θt,i ← θt−1,i + gt,i

9: Calculate the fraction to bet: βt,i = 1
Li

(
2σ
(

2θt,i
Gt,i+Li

)
− 1
)

, where σ(x) = 1
1+exp(−x)

10: Calculate the parameters: wt+1,i ← w1,i + βt,i (Li + Rewardt,i)
11: end for
12: end for
13: Return w̄T = 1

T

∑T
t=1wt or wI where I is chosen uniformly between 1 and T

5 The COCOB Algorithm

We now introduce our novel algorithm for stochastic subgradient descent, COntinuous COin Betting
(COCOB), summarized in Algorithm 1. COCOB generalizes the reasoning outlined in the previous
section to the optimization of a function F : Rd → R with bounded subgradients, reducing the
optimization to betting on d coins.

Similarly to the construction in the previous section, the outcomes of the coins are linked to the
stochastic gradients. In particular, each gt,i ∈ [−Li, Li] for i = 1, · · · , d is equal to the coordinate
i of the negative stochastic gradient gt of F in wt. With the notation of the algorithm, COCOB is
based on the strategy to bet a signed fraction of the current wealth equal to 1

Li

(
2σ
(

2θt,i
Gt,i+Li

)
− 1
)

,

where σ(x) = 1
1+exp(−x) (lines 9 and 10). Intuitively, if θt,i

Gt,i+Li
is big in absolute value, it means

that we received a sequence of equal outcomes, i.e., gradients, hence we should increase our bets, i.e.,
the absolute value of wt,i. Note that this strategy assures that |wt,igt,i| < Wealtht−1,i, so the wealth
of the gambler is always positive. Also, it is easy to verify that the algorithm is scale-free because
multiplying all the subgradients and Li by any positive constant it would result in the same sequence
of iterates wt,i.

Note that the update in line 10 is carefully defined: The algorithm does not use the previous wt,i in
the update. Indeed, this algorithm belongs to the family of the Dual Averaging algorithms, where the
iterate is a function of the average of the past gradients [Nesterov, 2009].

Denoting by w∗ a minimizer of F , COCOB satisfies the following convergence guarantee.

Theorem 1. Let F : Rd → R be a τ -weakly-quasi-convex function and assume that gt satisfy
|gt,i| ≤ Li. Then, running COCOB for T iterations guarantees, with the notation in Algorithm 1,

E[F (wI)]− F (w∗) ≤
d∑
i=1

Li+|w∗
i−w1,i|

√√√√E
[
Li(GT,i+Li) ln

(
1+

(GT,i+Li)
2(w∗

i−w1,i)
2

L2
i

)]
τT ,

where the expectation is with respect to the noise in the subgradients and the choice of I . Moreover,
if F is convex, the same guarantee with τ = 1 also holds for wT .

The proof, in the Appendix, shows through induction that betting a fraction of money equal to
βt,i in line 9 on the outcomes gi,t, with an initial money of Li, guarantees that the wealth after T

rounds is at least Li exp
(

θ2T,i

2Li(GT,i+Li)
− 1

2 ln
GT,i

Li

)
. Then, as sketched in Section 4, it is enough to

calculate the Fenchel conjugate of the wealth and use the standard construction for the per-coordinate
updates [Streeter and McMahan, 2010]. We note in passing that the proof technique is also novel
because the one introduced in Orabona and Pal [2016] does not allow data-dependent bounds.

4

x

y

x

y

0 50 100 150 200

Iterations

0

1

2

3

4

5

6

E
ff

e
c
ti
v
e

 L
e

a
rn

in
g

 R
a

te

Effective Learning Rate of COCOB

Figure 1: Behaviour of COCOB (left) and gradient descent with various learning rates and same
number of steps (center) in minimizing the function y = |x− 10|. (right) The effective learning rates
of COCOB. Figures best viewed in colors.

When |gt,i| = 1, we have βt,i ≈
∑t−1

i=1 gi
t that recovers the betting strategy in Orabona and Pal [2016].

In other words, we substitute the time variable with the data-dependent quantity Gt,i. In fact, our
bound depends on the terms GT,i while the similar one in Orabona and Pal [2016] simply depends
on LiT . Hence, as in AdaGrad [Duchi et al., 2011], COCOB’s bound is tighter because it takes
advantage of sparse gradients.

COCOB converges at a rate of Õ(‖w
∗‖1√
T

) without any learning rate to tune. This has to be compared

to the bound of AdaGrad that is2 O(1√
T

∑d
i=1((w∗)2

ηi
+ ηi)), where ηi are the initial learning rates

for each coordinate. Usually all the ηi are set to the same value, but from the bound we see that
the optimal setting would require a different value for each of them. This effectively means that the
optimal ηi for AdaGrad are problem-dependent and typically unknown. Using the optimal ηi would
give us a convergence rate of O(‖w

∗‖1√
T

), that is exactly equal to our bound up to polylogarithmic
terms. Indeed, the logarithmic term in the square root of our bound is the price to pay to be adaptive
to anyw∗ and not tuning hyperparameters. This logarithmic term is unavoidable for any algorithm
that wants to be adaptive to w∗, hence our bound is optimal [Streeter and McMahan, 2012, Orabona,
2013].

To gain a better understanding on the differences between COCOB and other subgradient descent
algorithms, it is helpful to compare their behaviour on the simple one-dimensional function F (x) =
|x− 10| already used in Section 4. In Figure 1 (left), COCOB starts from 0 and over time it increases
in an exponential way the iterate wt, until it meets a gradient of opposing sign. From the gambling
perspective this is obvious: The wealth will increase exponentially because there is a sequence of
identical outcomes, that in turn gives an increasing wealth and a sequence of increasing bets.

On the other hand, in Figure 1 (center), gradient descent shows a different behaviour depending on
its learning rate. If the learning rate is constant and too small (black line) it will take a huge number
of steps to reach the vicinity of the minimum. If the learning rate is constant and too large (red line),
it will keep oscillating around the minimum, unless some form of averaging is used [Zhang, 2004]. If
the learning rate decreases as η√

t
, as in AdaGrad [Duchi et al., 2011], it will slow down over time,

but depending of the choice of the initial learning rate η it might take an arbitrary large number of
steps to reach the minimum.

Also, notice that in this case the time to reach the vicinity of the minimum for gradient descent is
not influenced in any way by momentum terms or learning rates that adapt to the norm of the past
gradients, because the gradients are all the same. Same holds for second order methods: The function
in figure lacks of any curvature, so these methods could not be used. Even approaches based on the
reduction of the variance in the gradients, e.g. [Johnson and Zhang, 2013], do not give any advantage
here because the subgradients are deterministic.

Figure 1 (right) shows the “effective learning” rate of COCOB that is η̃t := wt

√∑t
i=1 g

2
i . This is

the learning rate we should use in AdaGrad to obtain the same behaviour of COCOB. We see a very

2The AdaGrad variant used in deep learning does not have a convergence guarantee, because no projections
are used. Hence, we report the oracle bound in the case that projections are used inside the hypercube with
dimensions |w∗

i |.

5

Algorithm 2 COCOB-Backprop
1: Input: α > 0 (default value = 100); w1 ∈ Rd (initial parameters); T (maximum number of

iterations); F (function to minimize)
2: Initialize: L0,i ← 0, G0,i ← 0, Reward0,i ← 0, θ0,i ← 0, i = 1, · · · , number of parameters
3: for t = 1, 2, . . . , T do
4: Get a (negative) stochastic subgradient gt such that E[gt] ∈ ∂[−F (wt)]
5: for each i-th parameter in the network do
6: Update the maximum observed scale: Lt,i ← max(Lt−1,i, |gt,i|)
7: Update the sum of the absolute values of the subgradients: Gt,i ← Gt−1,i + |gt,i|
8: Update the reward: Rewardt,i ← max(Rewardt−1,i +(wt,i − w1,i)gt,i, 0)
9: Update the sum of the gradients: θt,i ← θt−1,i + gt,i

10: Calculate the parameters: wt,i ← w1,i +
θt,i

Lt,i max(Gt,i+Lt,i,αLt,i)
(Lt,i + Rewardt,i)

11: end for
12: end for
13: Return wT

interesting effect: The learning rate is not constant nor is monotonically increasing or decreasing.
Rather, it is big when we are far from the optimum and small when close to it. However, we would
like to stress that this behaviour has not been coded into the algorithm, rather it is a side-effect of
having the optimal convergence rate.

We will show in Section 7 that this theoretical gain is confirmed in the empirical results.

6 Backprop and Coin Betting

The algorithm described in the previous section is guaranteed to converge at the optimal convergence
rate for non-smooth functions and does not require a learning rate. However, it still needs to know
the maximum range of the gradients on each coordinate. Note that for the effect of the vanishing
gradients, each layer will have a different range of the gradients [Hochreiter, 1991]. Also, the weights
of the network can grow over time, increasing the value of the gradients too. Hence, it would be
impossible to know the range of each gradient beforehand and use any strategy based on betting.

By following the previous literature, e.g. [Kingma and Ba, 2015], we propose a variant of COCOB
better suited to optimizing deep networks. We name it COCOB-Backprop and its pseudocode is in
Algorithm 2. Although this version lacks the backing of a theoretical guarantee, it is still effective in
practice as we will show experimentally in Section 7.

There are few differences between COCOB and COCOB-Backprop. First, we want to be adaptive
to the maximum component-wise range of the gradients. Hence, in line 6 we constantly update the
values Lt,i for each variable. Next, since Li,t−1 is not assured anymore to be an upper bound on
gt,i, we do not have any guarantee that the wealth Rewardt,i is non-negative. Thus, we enforce the
positivity of the reward in line 8 of Algorithm 2.

We also modify the fraction to bet in line 10 by removing the sigmoidal function because 2σ(2x)−1 ≈
x for x ∈ [−1, 1]. This choice simplifies the code and always improves the results in our experiments.
Moreover, we change the denominator of the fraction to bet such that it is at least αLt,i. This has
the effect of restricting the value of the parameters in the first iterations of the algorithm. To better
understand this change, consider that, for example, in AdaGrad and Adam with learning rate η the
first update is w2,i = w1,i − ηSGN(g1,i). Hence, η should have a value smaller than w1,i in order
to not “forget” the initial point too fast. In fact, the initialization is critical to obtain good results
and moving too far away from it destroys the generalization ability of deep networks. Here, the first
update becomes w2,i = w1,i − 1

α SGN(g1,i), so 1
α should also be small compared to w1,i.

Finally, as in previous algorithms, we do not return the average or a random iterate, but just the last
one (line 13 in Algorithm 2).

6

Figure 2: Training cost (cross-entropy) (left) and testing error rate (0/1 loss) (right) vs. the number
epochs with two different architectures on MNIST, as indicated in the figure titles. The y-axis is
logarithmic in the left plots. Figures best viewed in colors.

7 Empirical Results and Future Work

We run experiments on various datasets and architectures, comparing COCOB with some popular
stochastic gradient learning algorithms: AdaGrad [Duchi et al., 2011], RMSProp [Tieleman and
Hinton, 2012], Adadelta [Zeiler, 2012], and Adam [Kingma and Ba, 2015]. For all the algorithms,
but COCOB, we select their learning rate as the one that gives the best training cost a posteriori using
a very fine grid of values3. We implemented4 COCOB (following Algorithm 2) in Tensorflow [Abadi
et al., 2015] and we used the implementations of the other algorithms provided by this deep learning
framework. The best value of the learning rate for each algorithm and experiment is reported in the
legend.

We report both the training cost and the test error, but, as in previous work, e.g., [Kingma and Ba,
2015], we focus our empirical evaluation on the former. Indeed, given a large enough neural network
it is always possible to overfit the training set, obtaining a very low performance on the test set.
Hence, test errors do not only depends on the optimization algorithm.

Digits Recognition. As a first test, we tackle handwritten digits recognition using the MNIST
dataset [LeCun et al., 1998a]. It contains 28 × 28 grayscale images with 60k training data, and
10k test samples. We consider two different architectures, a fully connected 2-layers network and a
Convolutional Neural Network (CNN). In both cases we study different optimizers on the standard
cross-entropy objective function to classify 10 digits. For the first network we reproduce the structure
described in the multi-layer experiment of [Kingma and Ba, 2015]: it has two fully connected hidden
layers with 1000 hidden units each and ReLU activations, with mini-batch size of 100. The weights
are initialized with a centered truncated normal distribution and standard deviation 0.1, the same
small value 0.1 is also used as initialization for the bias. The CNN architecture follows the Tensorflow
tutorial 5: two alternating stages of 5× 5 convolutional filters and 2× 2 max pooling are followed
by a fully connected layer of 1024 rectified linear units (ReLU). To reduce overfitting, 50% dropout
noise is used during training.

3[0.00001, 0.000025, 0.00005, 0.000075, 0.0001, 0.00025, 0.0005, 0.00075, 0.001, 0.0025, 0.005, 0.0075,
0.01, 0.02, 0.05, 0.075, 0.1]

4https://github.com/bremen79/cocob
5https://www.tensorflow.org/get_started/mnist/pros

7

https://github.com/bremen79/cocob
https://www.tensorflow.org/get_started/mnist/pros

Figure 3: Training cost (cross-entropy) (left) and testing error rate (0/1 loss) (right) vs. the number
epochs on CIFAR-10. The y-axis is logarithmic in the left plots. Figures best viewed in colors.

0 10 20 30 40
Epochs

0

100

200

300

400

500

600

P
er

pl
ex

ity

Word Prediction on PTB - Training Cost

AdaGrad 0.25
RMSprop 0.001
Adadelta 2.5
Adam 0.00075
COCOB

0 10 20 30 40
Epochs

50

100

150

200

250

300

350

400

P
er

pl
ex

ity

Word Prediction on PTB - Test Cost

AdaGrad 0.25
RMSprop 0.001
Adadelta 2.5
Adam 0.00075
COCOB

Figure 4: Training cost (left) and test cost (right) measured as average per-word perplexity vs. the
number epochs on PTB word-level language modeling task. Figures best viewed in colors.

Training cost and test error rate as functions of the number of training epochs are reported in Figure 2.
With both architectures, the training cost of COCOB decreases at the same rate of the best tuned
competitor algorithms. The training performance of COCOB is also reflected in its associated test
error which appears better or on par with the other algorithms.

Object Classification. We use the popular CIFAR-10 dataset [Krizhevsky, 2009] to classify 32×32
RGB images across 10 object categories. The dataset has 60k images in total, split into a training/test
set of 50k/10k samples. For this task we used the network defined in the Tensorflow CNN tutorial6.
It starts with two convolutional layers with 64 kernels of dimension 5× 5× 3, each followed by a
3× 3× 3 max pooling with stride of 2 and by local response normalization as in Krizhevsky et al.
[2012]. Two more fully connected layers respectively of 384 and 192 rectified linear units complete
the architecture that ends with a standard softmax cross-entropy classifier. We use a batch size of
128 and the input images are simply pre-processed by whitening. Differently from the Tensorflow
tutorial, we do not apply image random distortion for data augmentation.

The obtained results are shown in Figure 3. Here, with respect to the training cost, our learning-
rate-free COCOB performs on par with the best competitors. For all the algorithms, there is a good
correlation between the test performance and the training cost. COCOB and its best competitor
AdaDelta show similar classification results that differ on average ∼ 0.008 in error rate.

Word-level Prediction with RNN. Here we train a Recurrent Neural Network (RNN) on a lan-
guage modeling task. Specifically, we conduct word-level prediction experiments on the Penn Tree
Bank (PTB) dataset [Marcus et al., 1993] using the 929k training words and its 73k validation words.
We adopted the medium LSTM [Hochreiter and Schmidhuber, 1997] network architecture described
in Zaremba et al. [2014]: it has 2 layers with 650 units per layer and parameters initialized uniformly
in [−0.05, 0.05], a dropout of 50% is applied on the non-recurrent connections, and the norm of the
gradients (normalized by mini-batch size = 20) is clipped at 5.

6https://www.tensorflow.org/tutorials/deep_cnn

8

https://www.tensorflow.org/tutorials/deep_cnn

We show the obtained results in terms of average per-word perplexity in Figure 4. In this task COCOB
performs as well as Adagrad and Adam with respect to the training cost and much better than the other
algorithms. In terms of test performance, COCOB, Adam, and AdaGrad all show an overfit behaviour
indicated by the perplexity which slowly grows after having reached its minimum. Adagrad is the
least affected by this issue and presents the best results, followed by COCOB which outperforms all
the other methods. We stress again that the test performance does not depend only on the optimization
algorithm used in training and that early stopping may mitigate the overfitting effect.

Summary of the Empirical Evaluation and Future Work. Overall, COCOB has a training
performance that is on-par or better than state-of-the-art algorithms with perfectly tuned learning
rates. The test error appears to depends on other factors too, with equal training errors corresponding
to different test errors.

We would also like to stress that in these experiments, contrary to some of the previous reported
empirical results on similar datasets and networks, the difference between the competitor algorithms
is minimal or not existent when they are tuned on a very fine grid of learning rate values. Indeed, the
very similar performance of these methods seems to indicate that all the algorithms are inherently
doing the same thing, despite their different internal structures and motivations. Future more detailed
empirical results will focus on unveiling what is the common structure of these algorithms that give
rise to this behavior.

In the future, we also plan to extend the theory of COCOB beyond τ -weakly-quasi-convex functions,
characterizing the non-convexity present in deep networks. Also, it would be interesting to evaluate a
possible integration of the betting framework with second-order methods.

Acknowledgments

The authors thank the Stony Brook Research Computing and Cyberinfrastructure, and the Institute
for Advanced Computational Science at Stony Brook University for access to the high-performance
SeaWulf computing system, which was made possible by a $1.4M National Science Foundation grant
(#1531492). The authors also thank Akshay Verma for the help with the TensorFlow implementation
and Matej Kristan for reporting a bug in the pseudocode in the previous version of the paper. T.T. was
supported by the ERC grant 637076 - RoboExNovo. F.O. is partly supported by a Google Research
Award.

References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/. Software
available from tensorflow.org.

S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, 2011.

Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In G. Mon-
tavon, G. B. Orr, and K.-R. Müller, editors, Neural Networks: Tricks of the Trade: Second Edition,
pages 437–478. Springer, Berlin, Heidelberg, 2012.

A. Cutkosky and K. Boahen. Online learning without prior information. In Conference on Learning
Theory (COLT), pages 643–677, 2017.

A. Cutkosky and K. A. Boahen. Online convex optimization with unconstrained domains and losses.
In Advances in Neural Information Processing Systems (NIPS), pages 748–756, 2016.

9

http://tensorflow.org/

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

M. Hardt, T. Ma, and B. Recht. Gradient descent learns linear dynamical systems. arXiv preprint
arXiv:1609.05191, 2016.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für
Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093,
2014.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In Advances in Neural Information Processing Systems (NIPS), pages 315–323, 2013.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems (NIPS), pages 1097–1105, 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998a. URL http://yann.lecun.
com/exdb/mnist/.

Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural networks: Tricks
of the trade, pages 9–48. Springer, 1998b.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english:
The penn treebank. Computational linguistics, 19(2):313–330, 1993.

H. B. McMahan and F. Orabona. Unconstrained online linear learning in Hilbert spaces: Minimax
algorithms and normal approximations. In Conference on Learning Theory (COLT), pages 1020–
1039, 2014.

Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

F. Orabona. Dimension-free exponentiated gradient. In Advances in Neural Information Processing
Systems (NIPS), pages 1806–1814, 2013.

F. Orabona. Simultaneous model selection and optimization through parameter-free stochastic
learning. In Advances in Neural Information Processing Systems (NIPS), pages 1116–1124, 2014.

F. Orabona and D. Pal. Scale-free algorithms for online linear optimization. In International
Conference on Algorithmic Learning Theory (ALT), pages 287–301. Springer, 2015.

F. Orabona and D. Pal. Coin betting and parameter-free online learning. In Advances in Neural
Information Processing Systems (NIPS), pages 577–585. 2016.

F. Orabona, K. Crammer, and N. Cesa-Bianchi. A generalized online mirror descent with applications
to classification and regression. Machine Learning, 99(3):411–435, 2015.

S. Ross, P. Mineiro, and J. Langford. Normalized online learning. In Proc. of the Twenty-Ninth
Conference on Uncertainty in Artificial Intelligence (UAI), 2013.

10

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. In International conference on
Machine Learning (ICML), pages 343–351, 2013.

M. Streeter and H. B. McMahan. Less regret via online conditioning. arXiv preprint arXiv:1002.4862,
2010.

M. Streeter and H. B. McMahan. No-regret algorithms for unconstrained online convex optimization.
In Advances in Neural Information Processing Systems (NIPS), pages 2402–2410, 2012.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum
in deep learning. In International conference on Machine Learning (ICML), pages 1139–1147,
2013.

T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.

S. Wright and J. Nocedal. Numerical optimization. Springer, 1999.

W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv preprint
arXiv:1409.2329, 2014.

M. D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent algorithms.
In International Conference on Machine Learning (ICML), pages 919–926, 2004.

A Proof of Theorem 1

First we state some technical lemmas that will be used in the proof of the convergence rate of COCOB.

Lemma 1. [Orabona and Pal, 2016, extended version, Lemma 18] Define f(x) = β exp x2

2α , for
α, β > 0. Then

f∗(y) ≤ |y|

√
α log

(
αy2

β2
+ 1

)
− β .

Lemma 2. Let a ≥ 2. Then, with the notation of Algorithm 1, for any t we have

(1 + βt,igt,i) exp

 θ2t−1,i
aLi(Gt−1,i + Li)

−
t−1∑
j=1

|gj,i|
a(Gj−1,i + Li)

≥ exp

 θ2t,i
aLi(Gt,i + Li)

−
t∑

j=1

|gj,i|
a(Gj−1,i + Li)

 .

Proof. The statement to prove is equivalent to

ln(1 + βtgt) +
θ2t−1

aL(L+
∑t−1
j=1 |gj |)

≥ (θt + gt)
2

aL(L+
∑t
j=1 |gj |)

− |gt|
a(L+

∑t−1
l=1 |gl|)

,

where for clarity we dropped the index i.

Consider the function

φ(x) = − log(1 + βtx) +
(θt−1 + x)2

aL(Gt−1 + |x|)
.

We have that φ(x) is piece-wise convex on [−∞, 0] and [0,∞]. Hence, we have that

φ(x) ≤ φ(0) +
x

L
(φ(L)− φ(0)),∀0 ≤ x ≤ L

φ(x) ≤ φ(0) +
x

L
(φ(0)− φ(−L)),∀ − L ≤ x ≤ 0 .

11

Also, βt is such that φ(L) = φ(−L). Hence, we have

φ(x) ≤ φ(0) +
|x|
L

(φ(L)− φ(0)),∀ − L ≤ x ≤ L,

that is

θ2t−1
aLGt−1

− (θt−1 + gt)
2

aL(Gt−1 + |gt|)
+ log(1 + βtgt)

= φ(0)− φ(gt)

≥ |gt|
L

(φ(0)− φ(L))

=
|gt|
L

(
θ2t−1

aLGt−1
− (θt−1 + L)2

aL(Gt−1 + L)
+ log(1 + βtL)

)
,∀ − L ≤ gt ≤ L .

Using this relation we have that

θ2t−1
aLGt−1

− (θt−1 + gt)
2

aL(Gt−1 + |gt|)
+ log(1 + βtgt)

≥ |gt|
L

(
θ2t−1

aLGt−1
− (θt−1 + L)2

aLi(Gt−1 + L)
+ log(1 + Lβt)

)
=
|gt|
L

(
(Gt−1 + L)θ2t−1 − (θ2t−1 + 2Lθt−1)Gt−1

aLGt−1(Gt−1 + L)
+ log(1 + Lβt)

)
− |gt|
a(Gt−1 + L)

=
|gt|
L

(
θ2t−1

aGt−1(Gt−1 + L)
− 2θt−1
a(Gt−1 + L)

+ log(1 + Lβt)

)
− |gt|
a(Gt−1 + L)

.

We now use the Taylor expansion, to obtain

log

(
1 +

exp(x)− 1

exp(x) + 1

)
≥ x

2
− x2

8
∀x ∈ R

and, using the expression of βt, have

log (1 + Lβt) = log

1 +
exp

(
4θt−1

a(Gt−1+L)

)
− 1

exp
(

4θt−1

a(Gt−1+L)

)
+ 1

 ≥ 2θt−1
a(Gt−1 + L)

−
2θ2t−1

a2(Gt−1 + L)2
.

Hence the expression

θ2t−1
aGt−1(Gt−1 + L)

− 2θt−1
a(Gt−1 + L)

+ log(1 + Lβt) ≥
θ2t−1

aGt−1(Gt−1 + Li)
−

2θ2t−1
a2(Gt−1 + L)2

≥
aLiθ

2
t−1 + aGt−1θ

2
t−1 − 2Gt−1θ

2
t−1

a2Gt−1(Gt−1 + L)2

is greater than zero if a ≥ 2, that is true by definition of a.

We can now prove Theorem 1.

Proof of Theorem 1. First, assume that w1 = 0, then we will show how to remove this assumption.

Define Ht,i(x) = Li exp
(

x2

2Li(Gt,i+Li)
−
∑t
j=1

|gj |
2(Li+Gj−1,i)

)
. By induction, we first prove that

Wealtht,i ≥ Ht,i(θt,i). For t = 0, it is obvious because Wealth0,i = Li. We now assume that
Wealtht−1 ≥ Ht−1,i(θt−1,i). Note that |βt,igt,i| < 1. Hence, using Lemma 2, we have

Wealtht,i = Wealtht−1,i +gt,iwt,i = Wealtht−1,i(1 + gt,iβt,i)

≥ (1 + gt,1βt,i)Ht−1,i(θt−1,i)

≥ Ht,i(θt,i),

(3)

12

that proves the induction.

Now, in the convex case, using the fact that the stochastic subgradient are unbiased, the definition of
the subgradients, and Jensen’s inequality, we have

T (E[F (w̄T)]− F (w∗)) ≤
T∑
t=1

(E[F (wt)]− F (w∗)) ≤
T∑
t=1

E[(w∗ −wt)
>gt] .

While, in the the τ -weakly-quasi-convex case, we have

T (E[F (wI)]− F (w∗)) =

T∑
t=1

(E[F (wt)]− F (w∗)) ≤ τ
T∑
t=1

E[(w∗ −wt)
>gt]

by fact that the gradient are unbiased, the definition of wI , and the definition of τ -weakly-quasi-
convexity. Hence, the two cases are the same up to the factor τ . We can then proceed in both cases
with

T∑
t=1

E[(w∗ −wt)
>gt] =

d∑
i=1

T∑
t=1

E[w∗i gt,i − gt,iwt,i] =

d∑
i=1

E[Li + w∗i θT,i −WealthT,i] . (4)

Using the definition of Fenchel’s conjugate, (4) and the lower bound on the wealth in (3), we have

T∑
t=1

E[(w∗ −wt)
>gt] = E

[
d∑
i=1

(Li + w∗i θT,i −WealthT,i)

]

≤ E

[
d∑
i=1

(Li + w∗i θT,i −HT,i(θT,i))

]

≤ E

[
d∑
i=1

Li + max
x

(w∗i x−HT,i(x))

]
= E

[
d∑
i=1

Li +H∗T,i(w
∗
i)

]
.

Also, the concavity of the logarithm implies that a−ba ≤ ln a− ln b for all a ≥ b > 0. Hence

T∑
j=1

|gj |
Li +Gj−1,i

≤
T∑
j=1

|gj |
Gj,i

≤
T∑
j=1

(lnGj,i − lnGj−1,i) = ln
GT,i
G0,i

= ln
GT,i
Li

. (5)

Using Lemma 1, the inequality in (5), and overapproximating, we have

H∗T,i(w
∗
i) ≤ |w∗i |

√
Li(GT,i + Li) ln

(
1 +

(GT,i+Li)
2(w∗

i)
2

L2
i

)
.

Putting all together, using Jensen’s inequality to bring the expectation under the square root, and
dividing by T give us the stated bound, with w1 = 0.

Now, running the algorithm on the function F̃ (w) = F (wt +w1), for an arbitrary w1, would result
in the update in Algorithm 1 and would guarantee the same upper bound on E[F̃ (w̄T)] − F̃ (w∗)
that implies the stated bound.

13

	Introduction
	Related Work
	Definitions
	Subgradient Descent through Coin Betting
	The COCOB Algorithm
	Backprop and Coin Betting
	Empirical Results and Future Work
	Proof of Theorem 1

