
A Proofs

One of the key quantities that is used in our proofs is the empirical process:

�(h, g) =

1
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L(h, st, Zt), (12)

where (h, g) is an element of F and s the sequence generated by g. The following result gives a
high-probability bound on the supremum of such empirical process.

Another definition that is required in the proofs below is the notion of decoupled tangent sequence.
Given a sequence of random variables ZT

1

we say that Z0T
1

is a decoupled tangent sequence if Z 0
t

is distributed according to P(·|Zt�1

1

) and is independent of Z1
t . It is always possible to construct

such a sequence of random variables [De la Peña and Giné, 1999]. We begin with the following
concentration result.
Lemma 1. Fix ✏ > 2↵ > 0. Then, the following holds:
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Symmetric result with �(h, g) replaced by ��(h, g) also holds.

Proof. Note that, for any sequence z
1

, . . . , zT , we can write sequence L(h, s
1

, z
1

), . . . , L(h, sT , zT ),
(where s is generated by g) as a sequence f

1

(z
1

), . . . , fT (zT ). The rest of the proof follows the same
arguments as in Theorem 1 in Kuznetsov and Mohri [2015] where instead of a fixed f at each time t,
we use ft. For completeness, we include the full derivation of the result.

By Markov’s inequality, for any � > 0, the following inequality holds:
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If Z0T
1

is a tangent sequence the following equalities hold: E[ft(Zt)|Zt�1

1

] = E[ft(Z 0
t)|Zt�1

1

] =

E[ft(Z 0
t)|ZT

1

]. Using these equalities and Jensen’s inequality, we obtain the following:
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where the last expectation is taken over the joint measure of ZT
1

and Z

0T
1

. Applying Lemma 2, we
can further bound this expectation by
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where for the second inequality we used Young’s inequality and for the last equality we used symmetry.
Given z let C denote the minimal ↵-cover with respect to the `

1

-norm of F on z. Then, the following
bound holds

sup
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By the monotonicity of the exponential function,
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Since ct(�) depends only on �
1

, . . . , �T�1

, by Hoeffding’s bound,
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and iterating this inequality and using the union bound, we obtain the following:
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Optimizing over � completes the proof of the first statement. The second statement holds by
symmetry.

The following lemma is used in the proof of Lemma 1.

Lemma 2. Given a sequence of random variables ZT
1

with joint distribution p, let Z0T
1

be a decoupled
tangent sequence. Then, for any measurable function G, the following equality holds
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(13)

Proof. The proof follows an argument in the proof of Theorem 3 of [Rakhlin et al., 2011]. We only
need to check that every step holds for a time-varying ft instead f fixed over time and for an arbitrary
measurable function G, instead of the identity function. Observe that we can write the left-hand side
of (13) as
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where � = (1, . . . , 1) 2 {±1}T and ⌃(�) =
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1

T (ft(Z 0
t) � ft(Zt)). Now, by definition of

decoupled tangent sequences, the value of the last expression is unchanged if we swap the sign of any
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for any sequence � 2 {±1}T , where St(1) = Zt and Z 0
t otherwise. Since this equality holds for any

�, it also holds for the mean with respect to uniformly distributed �. Therefore, the last expression is
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This last expectation coincides with the expectation with respect to drawing a random tree z from
T (p) (and its tangent tree z

0) and a random path � to follow in that tree. That is, the last expectation
is equal to

E
�

E
z⇠T (p)

h
G
⇣

sup

f

1

T
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�t(ft(z
0
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,

which concludes the proof.

Now we proceed with the proofs of our main results.

Theorem 1. Fix s 2 ST+1. For any � > 0, with probability at least 1 � �, for all h 2 H and all
↵ > 0,

L(f |ZT
1

)  1

T

TX

t=1

L(h, Xt, st) + disc(s) + 2↵ + M

s
2 log

Ev⇠T (P)[N1(↵,Rs,v)]

�

T
,

where R
s

= {(z, s) 7! L(h, s, z) : h 2 H} ⇥ {s}.

Proof. The proof of this result immediately follows from Theorem 2 by fixing G to be a singelton
{g}, where g generates s on any input.

Theorem 2. For any � > 0, with probability at least 1 � �, for all f = (h, g) 2 H ⇥ G and all
↵ > 0,

L(f |ZT
1

)  1

T

TX

t=1

L(h, Xt, st) + disc(s) + 2↵ + M

s
2 log

Ev⇠T (P)[N1(↵,R,v)]

�

T
,

where st = g(Xt, st�1

) for all t and R = {(z, s) 7! L(h, s, z) : h 2 H} ⇥ G.

Proof. Define the following empirical process

�

0

(h, g) = L(f |ZT
1

) � 1

T

TX

t=1

L(h, Xt, st).

Observe that since difference of supermums is upper bounded by the supremum of the difference the
following inequality holds

sup

g2G

 
sup

h2H
�

0

(h, g) � disc(sg)

!
 sup

g2G
sup

h2H
�(h, g),

where we use notation sg to emphasize dependence of state sequences s on g. The result now follows
by application of Lemma 1.

Theorem 3. For any � > 0, with probability at least 1 � �, for all ↵ > 0, the following bound holds:
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1
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⇤
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)
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r
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log

2
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T
,

where s⇤
t = g⇤

(Xt, s⇤
t�1

) and k(f⇤
) is the smallest integer k such that f⇤ 2 Hk ⇥ Gk.
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Proof. To simplify the notation, we let N (k) = E
v⇠T (P)

[N
1

(↵, Rk,v)]. Observe that the following
chain of inequalities holds:
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!
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log k
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✏ + M

r
log k

T
+ M

r
2 log N (k)

T

◆
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
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!

= exp

⇣
� 2T ✏2

M2

⌘ 1X

k=1

1
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⇣
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⌘
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⇣
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⌘
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where we use the union bound for the first inequality, Theorem 2 for the second inequality and
(a + b)2  2a2

+ 2b2 for the third inequality. Next, we observe that
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(
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1
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(f⇤|ZT
1
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⇤
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)
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)
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> ✏

!
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(
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1
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!
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1
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⇤
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T
>

✏

2

!
,

where we used the union bound and the fact that F (

ef,ek)�F (f⇤, k(f⇤
))  0 since ef is minimizer of

F . The first term is bounded by 2 exp

⇣
� 2T ✏2

M2

⌘
by the previous argument. Similarly, by Lemma 1,

the second term is bounded by 2 exp

⇣
� 2T ✏2
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⌘
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F (f⇤, k(f⇤
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1
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⇤
) � ↵ � 2Bk(f⇤

)

� M

r
log k(f⇤

)

T

can be upper bounded by

1

T
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1

) � ↵ � disc(s

⇤
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r
2 log N (k(f⇤
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T
.

This completes the proof of this result.

Theorem 4. Under Assumption 1, for any � > 0, with probability at least 1 � �, for all ↵ > 0,
LT+1

(h
0

, g
0

|ZT
1

) � LT+1

(f⇤|ZT
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,

where s⇤
t = g⇤

(Xt, s⇤
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) and k(f⇤
) is the smallest integer k such that f⇤ 2 Hk ⇥ Gk.

13



Proof. Observe that the following decomposition holds

1

T
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t=1

Lt(h0

, g
0

|Zt�1

1
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⇤, g⇤|Zt�1

1
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⇣
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1
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0
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⌘
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⇣
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Since eF (h
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0
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0
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)  0 by definition of eF and (h

0
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0
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0

), it follows from the
union bound that
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!
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Since we can upper bound

eF (h⇤, g⇤, k⇤
) � 1
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T
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the second term is bounded by 2 exp

⇣
� 2T ✏2

M2

⌘
. We are using notation N (k) =

E
v⇠T (P)

[N
1

(↵, Rk,v)] to simplify the presentation. To complete the proof, observe that the follow-
ing chain of inequalities holds, by union bound and Lemma 1:
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=
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!
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Arguments similar to the ones in the proof of Theorem 3 show that this term also bounded 2 exp

⇣
�

2T ✏2

M2

⌘
. Therefore, by Assumption 1 it follows that for any � > 0, with probability at least 1 � �, for

all ↵ > 0, LT+1

(h
0

, g
0

|ZT
1

) � LT+1

(f⇤|ZT
1

) < r(✏) and this completes the proof.

B Complexities of DSSMs

In this Section, we prove upper bounds on the expected sequential covering numbers of some
commonly used hypothesis sets. We start with a following lemma that gives a general upper bound in
terms of the sequential Rademacher complexity:

Rseq
T (L � H) = sup

z,s
E
✏,�

"
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h2H

⇣
1

T

TX

t=1

�tL(h, st(�), zt(�))

⌘#
, (14)
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Table 1: Weighted sequential cover and sequential covering numbers.

where the supremum is taken over all pairs of complete Z-valued binary tree z and S-valued binary
tree s.

Lemma 3. The following bound holds:

sup

↵>0

↵

2

p
log N

2

(2↵, R)  3

r
⇡

2

log T Rseq
T (L � H),

whenever N
2

(2↵, R) < 1.

Proof. As in the previous proofs, we use the convention that for any sequence of z
1

, . . . , zT ,
we can write sequence L(h, s

1

, z
1

), . . . , L(h, sT , zT ), (where s is generated by g) as a sequence
f
1

(z
1

), . . . , fT (zT ). We consider the following Gaussian-Rademacher sequential complexity:

Gseq
T (F , z) = E

�,�

"
sup

f2F

⇣
1

T

TX

t=1

�t�tft(zt(�))

⌘#
, (15)

where � is an independent sequence of Rademacher random variables, � is an independent sequence
of standard Gaussian random variables and z is a complete binary tree of depth T with values in Z .

Observe that if V is any ↵-cover with respect to the `
2

-norm of F on z, then, the following holds by
independence of � and �:

Gseq
(F , z) � E

�
E
�

"
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⇣
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⌘#
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"
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⇣
1
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⌘#
.

Notice that V is also a 2↵-cover with respect to the `
2

-norm of F on z. We can obtain a smaller
2↵-cover V

0

from V by eliminating vs that are ↵-close to some other v0 2 V . Since V is finite,
let V = {v1, . . . ,v|V |}, and for each v

i we delete v

j 2 {vi+1

, . . . ,v|V |} such that the following
inequality holds:

"
1

T

TX

t=1

⇣
v

i
t(�) � v

j
t (�)

⌘
2

#
1/2

 ↵.

It is straightforward to verify that V
0

is a 2↵-cover with respect to the `
2

-norm of F on z. Furthermore,
it follows that for a fixed �, the following holds:

E
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1

T

TX
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0
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⌘
2

#
� ↵2
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for any v

0,v 2 V
0

. Let Zi, i = 1, . . . , |V
0

| be a sequence of independent Gaussian random variables
with E[Zi] = 0 and E[Z2

i ] = ↵2/2. Observe that E[(Zi � Zj)] = ↵2 and hence by the Sudakov-
Fernique inequality it follows that
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where the last inequality is the standard result for Gaussian random variables. Therefore, we conclude
that Gseq

(F , z) � sup↵>0

↵
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p
log N
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(2↵, F , z). On the other hand, using standard properties of
Gaussian complexity Ledoux and Talagrand [1991], we have
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where ✏ is an independent sequence of Rademacher variables. We re-arrange z into z

✏ so that
zt(�) = z✏t (✏�) for all � 2 {±1}T and it follows that
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Therefore, the following inequality holds

sup

↵>0
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p
log N

2

(2↵, F , z)  3

r
⇡

2

log TRseq
T (L � H),

and the conclusion of the theorem follows by taking the supremum with respect to z on both sides of
this inequality.

The following lemma decomposes the complexity of structural time series models into the complexi-
ties of its subcomponents.
Lemma 4. Let p � 1 and L � H = {(x, s, y) ! (w ·  (x) + w

0 · s � y)

p
: w 2 S,w0 2 S0} for

some S, S0. Assume that the condition |w · x � y|  M holds for all (x, y) 2 Z and all w such that
kwkH  ⇤. Then, the following inequalities hold:

Rseq
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1

) + Rseq
T (H

1

)), (16)

where H
1

= {x ! w ·  (x) : w 2 S}, H
2

= {s ! w

0 · s : w

0 2 S0} and CT = 8(1 +

4

p
2 log

3/2
(eT 2

)).

Proof. Since x ! |x|p is pMp�1-Lipschitz over [�M, M ], by Lemma 13 in [Rakhlin et al., 2015a],
the following bound holds:

Rseq
T (L � F)  pMp�1CTR

seq
T (H 0

),
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where H 0
= {(x, s, y) ! w · (x) + w

0 · s � y : w 2 S,w 2 S0}. Note that Lemma 13 requires
that Rseq

T (H 0
) > 1/T which is guaranteed by Khintchine’s inequality. By definition of the sequential

Rademacher complexity
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where, for the last equality, we used the fact that �ts are mean zero random variables and �t is
independent of y(�) = y(�

1

, �
2

, . . . , �t�1

). This completes the proof.

Observe that, for example, if H
1

= {x ! w ·  (x) : kwkH  ⇤} where H is a Hilbert space
with a corresponding feature map  : X ! H and PDS kernel K, then, by Lemma 6 in [Kuznetsov
and Mohri, 2015], we have the inequality Rseq

T (H
1

)  ⇤rp
T

, where r = supx K(x, x). Similarly, if
H

2

= {s ! w · s : kwk
2
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0

} then we have Rseq
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)  ⇤0r0p
T

, with r
0

= sup

s

ksk
2

. The next
result gives a bound on the sequential complexity of a weighted combination of N binary-valued
functions H

1

. A common choice of such binary-valued functions are decision trees. Note that result
is logarithmic in the number of such functions, which suggests using a large set of functions.

Lemma 5. Let H = {x ! (w· (x) : kwk
1

 ⇤} where, for each j 2 [1, N ], j is a binary-valued
function. Then, the following inequalities hold:
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T
. (17)

Proof. We observe that, by the definition of the dual now, the following equalities hold:

sup

x

E
�

"
sup

kwk1⇤

TX

t=1

�tw · (xt(�))

#
= ⇤ sup

x

E
�

�����

TX

t=1

�t (xt(�))

�����
1

= ⇤ sup

x

E
�

"
max

j2[1,N ],s2{±1}

TX

t=1

�t j(xt(�))

#
.

To bound the last quantity, we apply an argument similar to the one used in the proof of Massart’s
lemma. The key difference is that here xt depends on �, which requires a more careful analysis.
Observe that, by the monotonicity of exp, the following upper bound holds, for any u > 0:
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Next, since �T and xT (�) = xT (�
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) are independent, by Hoeffding’s bound, we can
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Iterating this result over t and optimizing over u yields the desired upper bound.
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C State Discrepancy Estimation

We can decompose the discrepancy as follows:

disc(s)  sup

h2H

✓
1

⌧

TX

t=T�⌧+1

Lt(h, g|Zt�1

1

) � 1

T

TX

t=1

Lt(h, g|Zt�1

1

)

◆
(18)

+ sup

h2H

✓
LT+1

(h, g|ZT
1

) � 1

⌧

TX

t=T�⌧+1

Lt(h, g|Zt�1

1

)

◆
.

We will assume that the second term, which we will denote by disc⌧ , is sufficiently small and will
show that the first term can be estimated from data. Note that, in general, the requirement that disc⌧

is small is necessary for learning Barve and Long [1996].

The following result shows that we can estimate the first term appearing in the upper bound (18) on
disc(s).
Theorem 5. For any � > 0, with probability at least 1 � �, the following holds for all ↵ > 0:
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where u is the uniform distribution over the sample, u⌧ a uniform distribution over the last s points,
and

d
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Proof. We upper bound the difference of suprema by the supremum of the difference and then apply
the same arguments as in the proof of Lemma 1, with the only difference that the examples are here
weighted by (1/T � 1/⌧).

D Experiments

In this section, we present the results of experiments with the BOOSTSM algorithm.

As subcomponents of our BOOSTSM algorithm, we used a linear trend model and an ensemble
of decision trees as described in Section 5. As a baseline comparator, we used a regular STSM
model with subcomponents that consists of a trend model and a linear model. Note that, since our
comparator can only choose a single trend model, to make the comparison fair, we restricted our
algorithm to choose a single trend model as well.

For our experiments we used web traffic data from Wikipedia articles. Each of these time series
represents a number of daily views (integer) of a different Wikipedia article starting from January, 1st,
2012 up to March, 1st, 2017. This data is obtained via public pageviews API https://wikitech.
wikimedia.org/wiki/Analytics/PageviewAPI. In our experiments, we used time series for
nine articles that appear among top twenty articles in 2016 (in terms of number of total views):
Bernie Sanders, Batman vs Superman , Brownian motion , Donald Trump , Java, Isaac
Newton , Janet Jackson, Merle Haggard, Main Page, Ted Cruz.

The following experimental setup was used in our experiments. Each algorithm was trained on the
first 1500 days, then used to predict the next 25 days. The average error was recorded and then the
algorithm was retrained with 1525 days and used to predict the next 25 and so on. We report the
average error across all these rounds in Table 2. We also report the running errors in Figure 3.

Since the time series used in our experiments have vastly different scales, both within time series
and between different time series, RMSE is not an appropriate evaluation metric. Thus, for ease of
comparison, we chose Symmetric Absolute Percentage Error (SMAPE) as our evaluation metric.
This loss function is defined by L(x, y) = |x � y|/(|x| + |y|) if at least one of x, y is not zero and
L(x, y) = 0 otherwise. Note, however, that both algorithms were trained using the squared loss, as
discussed in the previous sections. SMAPE is not a convex loss function and is generally hard to
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Table 2: Mean SMAPE for BOOSTSMand STSM.
BOOSTSM STSM

Batman vs Superman 0.6060 ± 0.0958 0.6489 ± 0.1056
Bernie Sanders 0.7247 ± 0.0805 0.7118 ± 0.0829

Brownian motion 0.4226 ± 0.0499 0.6078 ± 0.1118
Donald Trump 0.7124 ± 0.0727 0.7304 ± 0.0603
Java 0.5800 ± 0.1497 0.7982 ± 0.0451
Isaac Newton 0.4896 ± 0.0911 0.5988 ± 0.0823
Janet Jackson 0.7003 ± 0.0671 0.7150 ± 0.0565
Merle Haggard 0.7400 ± 0.0703 0.7205 ± 0.0728

Main Page 0.5639 ± 0.1041 0.5809 ± 0.0958
Ted Cruz 0.6910 ± 0.0972 0.7272 ± 0.1067

optimize, which is why we used MSE as our optimization objective. The ranking of the models in
our experiments in terms of RMSE is the same as the obtained using SMAPE.

In our experiments, BOOSTSM outperformed STSM on eight out of ten datasets, in some cases by a
substantial margin. This suggests that BOOSTSM may be able to better adapt to different types of
non-stationarities present in the data.
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Table 3: Running SMAPE for BOOSTSM (blue) and STSM (green). Datasets appear in alphabetic
order: left to right, top to bottom.
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