
Efficient Sublinear-Regret Algorithms for Online
Sparse Linear Regression with Limited Observation

Shinji Ito
NEC Corporation

s-ito@me.jp.nec.com

Daisuke Hatano
National Institute of Informatics

hatano@nii.ac.jp

Hanna Sumita
National Institute of Informatics

sumita@nii.ac.jp

Akihiro Yabe
NEC Corporation

a-yabe@cq.jp.nec.com

Takuro Fukunaga
JST, PRESTO

takuro@nii.ac.jp

Naonori Kakimura
Keio University

kakimura@math.keio.ac.jp

Ken-ichi Kawarabayashi
National Institute of Informatics
k-keniti@nii.ac.jp

Abstract

Online sparse linear regression is the task of applying linear regression analysis
to examples arriving sequentially subject to a resource constraint that a limited
number of features of examples can be observed. Despite its importance in many
practical applications, it has been recently shown that there is no polynomial-
time sublinear-regret algorithm unless NP⊆BPP, and only an exponential-time
sublinear-regret algorithm has been found. In this paper, we introduce mild as-
sumptions to solve the problem. Under these assumptions, we present polynomial-
time sublinear-regret algorithms for the online sparse linear regression. In addi-
tion, thorough experiments with publicly available data demonstrate that our al-
gorithms outperform other known algorithms.

1 Introduction

In online regression, a learner receives examples one by one, and aims to make a good prediction
from the features of arriving examples, learning a model in the process. Online regression has
attracted attention recently in the research community in managing massive learning data.In real-
world scenarios, however, with resource constraints, it is desired to make a prediction with only a
limited number of features per example. Such scenarios arise in the context of medical diagnosis of
a disease [3] and in generating a ranking of web pages in a search engine, in which it costs to obtain
features or only partial features are available in each round. In both these examples, predictions need
to be made sequentially because a patient or a search query arrives online.

To resolve the above issue of limited access to features, Kale [8] proposed online sparse regression.
In this problem, a learner makes a prediction for the labels of examples arriving sequentially over
a number of rounds. Each example has d features that can be potentially accessed by the learner.
However, in each round, the learner can acquire the values of at most k′ features out of the d features,
where k′ is a parameter set in advance. The learner then makes a prediction for the label of the
example. After the prediction, the true label is revealed to the learner, and the learner suffers a
loss for making an incorrect prediction. The performance of the prediction is measured here by the
standard notion of regret, which is the difference between the total loss of the learner and the total

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Table 1: Computational complexity of online sparse linear regression.

Assumptions Time complexity
(1) (2) (a) (b)
X X Hard [6]
X X Hard (Theorem 1)
X X X Polynomial time (Algorithms 1, 2)
X X X Polynomial time (Algorithm 3)

loss of the best predictor. In [8], the best predictor is defined as the best k-sparse linear predictor,
i.e., the label is defined as a linear combination of at most k features.

Online sparse regression is a natural online variant of sparse regression; however, its computational
complexity was not well known until recently, as Kale [8] raised a question of whether it is possible
to achieve sublinear regret in polynomial time for online sparse linear regression. Foster et al. [6]
answered the question by proving that no polynomial-time algorithm achieves sublinear regret unless
NP⊆BPP. Indeed, this hardness result holds even when observing Ω(k log d) features per example.
On the positive side, they also proposed an exponential-time algorithm with sublinear regret, when
we can observe at least k + 2 features in each round. However, their algorithm is not expected to
work efficiently in practice. In fact, the algorithm enumerates all the

(
d
k′

)
possibilities to determine

k′ features in each round, which requires exponential time for any instance.

Our contributions. In this paper, we show that online sparse linear regression admits a
polynomial-time algorithm with sublinear regret, under mild practical assumptions. First, we as-
sume that the features of examples arriving online are determined by a hidden distribution (Assump-
tion (1)), and the labels of the examples are determined by a weighted average of k features, where
the weights are fixed through all rounds (Assumption (2)). These are natural assumptions in the
online linear regression. However, Foster et al. [6] showed that no polynomial-time algorithm can
achieve sublinear regret unless NP⊆BPP even under these two assumptions.1

Owing to this hardness, we introduce two types of conditions on the distribution of features, both
of which are closely related to the restricted isometry property (RIP) that has been studied in the
literature of sparse recovery. The first condition, which we call linear independence of features
(Assumption (a)), is stronger than RIP. This condition roughly says that all the features are lin-
early independent. The second condition, which we call compatibility (Assumption (b)), is weaker
than RIP. Thus, an instance having RIP always satisfies the compatibility condition. Under these
assumptions, we propose the following three algorithms. Here, T is the number of rounds.

• Algorithm 1: A polynomial-time algorithm that achieves O(d
k′−k
√
T) regret, under As-

sumptions (1), (2), and (a), which requires at least k + 2 features to be observed per exam-
ple.

• Algorithm 2: A polynomial-time algorithm that achieves O(
√
dT + d16

k′16) regret, under
Assumptions (1), (2), and (a), which requires at least k features to be observed per example.

• Algorithm 3: A polynomial-time algorithm that achieves O(
√
dT + d16

k′16) regret, under
Assumptions (1), (2), and (b), which requires at least k features to be observed per example.

We can also construct an algorithm achieving O(d
k′−k
√
T) regret under Assumption (b) for the case

where k′ ≥ k + 2, analogous to Algorithm 1, but we omit it due to space limitations.

Assumptions (1)+(2)+(a) or (1)+(2)+(b) seem to be minimal assumptions needed to achieve sub-
linear regret in polynomial time. Indeed, as listed in Table 1, the problem is hard if any one of the
assumptions is violated, where hard means that no polynomial-time algorithm can achieve sublinear
regret unless NP⊆BPP. Note that Assumption (a) is stronger than (b).

In addition to proving theoretical regret bounds of our algorithms, we perform thorough experi-
ments to evaluate the algorithms. We verified that our algorithms outperform the exponential-time
algorithm [6] in terms of computational complexity as well as performance of the prediction. Our
algorithms also outperform (baseline) heuristic-based algorithms and algorithms proposed in [2, 7]

1 Although the statement in [6] does not mention the assumptions, its proof indicates that the hardness holds
even with these assumptions.

2

for online learning based on limited observation. Moreover, we observe that our algorithms perform
well even for a real dataset, which may not satisfy our assumptions (deciding whether the model
satisfies our assumptions is difficult; for example, the RIP parameter cannot be approximated within
any constant factor under a reasonable complexity assumption [10]). Thus, we can conclude that
our algorithm is applicable in practice.

Overview of our techniques. One naive strategy for choosing a limited number of features is to
choose “large-weight” features in terms of estimated ground-truth regression weights. This strategy,
however, does not achieve sublinear regret, as it ignores small-weight features. When we have
Assumption (a), we show that if we observe two more features chosen uniformly at random, together
with the largest k features, we can make a good prediction. More precisely, using the observed
features, we output the label that minimizes the least-square loss function, based on the technique
using an unbiased estimator of the gradient [2, 7] and the regularized dual averaging (RDA) method
(see, e.g., [12, 4]). This idea gives Algorithm 1, and the details are given in Section 4. The reason
why we use RDA is that it is efficient in terms of computational time and memory space as pointed
out in [12] and, more importantly, we will combine this with the `1 regularization later. However,
this requires at least k + 2 features to be observed in each round.

To avoid the requirement of two extra observations, the main idea is to employ Algorithm 1 with
a partial dataset. As a by-product of Algorithm 1, we can estimate the ground-truth regression
weight vector with high probability, even without observing extra features in each round. We use
the ground-truth weight vector estimated by Algorithm 1 to choose k features. Combining this idea
with RDA adapted for the sparse regression gives Algorithm 2 (Section 5.1) under Assumption (a).

The compatibility condition (Assumption (b)) is often used in LASSO (Least Absolute Shrinkage
and Selection Operator), and it is known that minimization with an `1 regularizer converges to the
sparse solution under the compatibility condition [1]. We introduce `1 regularization into Algo-
rithm 1 to estimate the ground-truth regression weight vector when we have Assumption (b) instead
of Assumption (a). This gives Algorithm 3 (Section 5.2).

Related work. In the online learning problem, a learner aims to predict a model based on the
arriving examples. Specifically, in the linear function case, a learner predicts the coefficient wt of
a linear function w>t xt whenever an example with features xt arrives in round t. The learner then
suffers a loss `t(wt) = (yt−w>t xt)

2. The aim is to minimize the total loss
∑T
t=1(`t(wt)− `t(w))

for an arbitrary w. It is known that both the gradient descent method [13] and the dual averaging
method [12] attain anO(

√
T) regret even for the more general convex function case. However, these

methods require access to all features of the examples.

In linear regression with limited observation, the limited access to features in regression has been
considered [2, 7]. In this problem, a learner can acquire only the values of at most k′ features among
d features. The purpose here is to estimate a good weight vector, e.g., minimize the loss function
`(w) or the loss function with `1 regularizer `(w) + ‖w‖1. Let us note that, even if we obtain a
good weight vector w with small `(w), we cannot always compute w>xt from limited observation
of xt and, hence, in our setting the prediction error might not be as small as `(w). Thus, our setting
uses a different loss function, defined in Section 2, to minimize the prediction error.

Another problem incorporating the limited access is proposed by Zolghadr et al. [14]. Here, instead
of observing k′ features, one considers the situation where obtaining a feature has an associated cost.
In each round, one chooses a set of features to pay some amount of money, and the purpose is to
minimize the sum of the regret and the total cost. They designed an exponential-time algorithm for
the problem.

Online sparse linear regression has been studied in [6, 8], but only an exponential-time algorithm
has been proposed so far. In fact, Foster et al. [6] suggested designing an efficient algorithm for a
special class of the problem as future work. The present paper aims to follow this suggestion.

Recently, Kale et al. [9]2 presented computationally efficient algorithms to achieve sublinear regret
under the assumption that input features satisfy RIP. Though this study includes similar results to
ours, we can realize some differences. Our paper considers the assumption of the compatibility
condition without extra observation (i.e., the case of k′ = k), whereas Kale et al. [9] studies a

2The paper [9] was published after our manuscript was submitted.

3

stronger assumption with extra observation (k′ ≥ k + 2) that yields a smaller regret bound than
ours. They also studies the agnostic (adversarial) setting.

2 Problem setting

Online sparse linear regression. We suppose that there are T rounds, and an example arrives
online in each round. Each example is represented by d features and is associated with a label,
where features and labels are all real numbers. We denote the features of the example arriving in
round t by xt = (xt1, . . . , xtd)

> ∈ {x ∈ Rd | ‖x‖ ≤ 1}, where the norm ‖ · ‖ without subscripts
denotes the `2 norm. The label of each example is denoted by yt ∈ [−1, 1].

The purpose of the online sparse regression is to predict the label yt ∈ R from a partial observation
of xt in each round t = 1, . . . , T . The prediction is made through the following four steps: (i) we
choose a set St ⊆ [d] := {1, . . . , d} of features to observe, where |St| is restricted to be at most k′;
(ii) observe the selected features {xti}i∈St ; (iii) on the basis of observation {xti}i∈St , estimate a
predictor ŷt of yt; and (iv) observe the true value of yt.

From St, we define Dt ∈ Rd×d to be the diagonal matrix such that its (i, i)th entries are 1 for i ∈ St
and the other entries are 0. Then, observing the selected features {xti}i∈St in (ii) is equivalent to
observing Dtxt. The predictor ŷt is computed by ŷt = w>t Dtxt in (iii).

Throughout the paper, we assume the following conditions, corresponding to Assumptions (1) and
(2) in Section 1, respectively.

Assumption (1) There exists a weight vector w∗ ∈ Rd such that ‖w‖ ≤ 1 and yt = w∗>xt + εt
for all t = 1, . . . , T , where εt ∼ Dε, independent and identically distributed (i.i.d.), and
E[εt] = 0, E[εt

2] = σ2. There exists a distribution Dx on Rd such that xt ∼ Dx, i.i.d. and
independent of {εt}.

Assumption (2) The true weight vector w∗ is k-sparse, i.e., S∗ = supp(w∗) = {i ∈ [d] | w∗i 6= 0}
satisfies |S∗| ≤ k.

Regret. The performance of the prediction is evaluated based on the regret RT (w) defined by

RT (w) =

T∑
t=1

(ŷt − yt)2 −
T∑
t=1

(w>xt − yt)2. (1)

Our goal is to achieve smaller regret RT (w) for an arbitrary w ∈ Rd such that ‖w‖ ≤ 1 and
‖w‖0 ≤ k. For random inputs and randomized algorithms, we consider the expected regret
maxw:‖w‖0≤k,‖w‖≤1 E[RT (w)].

Define the loss function `t(w) = (w>xt − yt)2. If we compute a predictor ŷt = w>t Dtxt using
a weight vector wt = (wt1, . . . , wtd)

> ∈ Rd in each step, we can rewrite the regret RT (w) in (1)
using Dt and wt as

RT (w) =

T∑
t=1

(`t(Dtwt)− `t(w)) (2)

because (ŷt − yt)2 = (w>t Dtxt − yt)2 = `t(Dtwt). It is worth noting that if our goal is only to
construct wt that minimizes the loss function `t(wt), then the definition of the regret should be

R′T (w) =

T∑
t=1

(`t(wt)− `t(w)). (3)

However, the goal of online sparse regression involves predicting yt from the limited observation.
Hence, we use (2) to evaluate the performance. In terms of the regret defined by (3), several algo-
rithms based on limited observation have been developed. For example, the algorithms proposed by
Cesa-Bianchi et al. [3] and Hazan and Koren [7] achieve O(

√
T) regret of (3).

4

3 Extra assumptions on features of examples

Foster et al. [6] showed that Assumptions (1) and (2) are not sufficient to achieve sublinear regret.
Owing to this observation, we impose extra assumptions.

Let V := E[x>t xt] ∈ Rd×d and let L be the Cholesky decomposition of V (i.e., V = L>L). Denote
the largest and the smallest singular values of L by σ1 and σd, respectively. Under Assumption (1)
in Section 2, we have σ1 ≤ 1 because, for arbitrary unit vector u ∈ Rd, it holds that u>V u =
E[(u>x)2] ≤ 1. For a vector w ∈ R[d] and S ⊆ [d], we let wS denote the restriction of w onto S.
For S ⊆ [d], Sc denotes [d] \ S. We assume either one of the following conditions holds.

(a) Linear independence of features: σd > 0.
(b) Compatibility: There exists a constant φ0 > 0 that satisfies φ20‖wS∗‖21 ≤ kw>Vw for all

w ∈ Rd with ‖w(S∗)c‖1 ≤ 2‖wS∗‖1.

We assume the linear independence of features in Sections 4 and 5.1, and the compatibility in Sec-
tion 5.2 to develop efficient algorithms.

Note that condition (a) means that L is non-singular, and so is V . In other words, condition (a)
indicates that the features in xt are linearly independent. This is the reason why we call condition
(a) the “linear independence of features” assumption. Note that the linear independence of features
does not imply the stochastic independence of features.

Conditions (a) and (b) are closely related to RIP. Indeed, condition (b) is a weaker assumption than
RIP, and RIP is weaker than condition (a), i.e., (a) linear independence of features =⇒ RIP =⇒
(b) compatibility (see, e.g., [1]). We now clarify how the above two assumptions are connected to
the regret. The expectation of the loss function `t(w) is equal to

Ext,yt [`t(w)] = Ext∼Dx,εt∼Dε [(w
>xt −w∗>xt − εt)2]

= Ext∼Dx [((w −w∗)>xt)
2] + Eεt∼Dε [ε

>
t εt] = (w −w∗)>V (w −w∗) + σ2

for all t, where the second equality comes from E[εt] = 0 and that xt and εt are independent. Denote
this function by `(w), and then `(w) is minimized when w = w∗. If Dt and wt are determined
independently of xt and yt, the expectation of the regret RT (w) satisfies

E[RT (w)] = E[

T∑
t=1

(`(Dtwt)− `(w))] ≤ E[

T∑
t=1

(`(Dtwt)− `(w∗))]

= E[

T∑
t=1

(Dtwt −w∗)>V (Dtwt −w∗)] = E[

T∑
t=1

‖L(Dtwt −w∗)‖2]. (4)

We bound (4) in the analysis.

Hardness result. Similarly to [6], we can show that it remains hard under Assumptions (1), (2),
and (a). Refer to Appendix A for the proof.
Theorem 1. Let D be any positive constant, and let cD ∈ (0, 1) be a constant dependent on D.
Suppose that Assumptions (1) and (2) hold with k = O(dcD) and k′ = bkD ln dc. If an algorithm
for the online sparse regression problem runs in poly(d, T) time per iteration and achieves a regret
at most poly(d, 1/σd)T

1−δ in expectation for some constant δ > 0, then NP⊆BPP.

4 Algorithm with extra observations and linear independence of features

In this section, we present Algorithm 1. Here we assume k′ ≥ k + 2, in addition to the linear
independence of features (Assumption (a)). The additional assumption will be removed in Section 5.

As noted in Section 2, our algorithm first computes a weight vector wt, chooses a set St of k′
features to be observed, and computes a label ŷt by ŷt = w>t Dtxt in each round t. In addition,
our algorithm constructs an unbiased estimator ĝt of the gradient gt of the loss function `t(w) at
w = wt, i.e., gt = ∇w`t(wt) = 2xt(x

>
t wt − yt) at the end of the round. In the following, we

describe how to compute wt, St, and ĝt in round t, respectively, assuming that wt′ , St′ , and ĝt′ are
computed in the previous rounds t′ = 1, . . . , t−1. The entire algorithm is described in Algorithm 1.

5

Algorithm 1
Input: {xt, yt} ⊆ Rd × R, {λt} ⊆ R>0, k′ ≥ 2 and k1 ≥ 0 such that k1 ≤ k′ − 2.

1: Set ĥ0 = 0.
2: for t = 1, . . . , T do
3: Define wt by (5) and define St by Observe(wt, k

′, k1).
4: Observe Dtxt and output ŷt := w>t Dtxt.
5: Observe yt and define ĝt by (6) and set ĥt = ĥt−1 + ĝt
6: end for

Computing wt. We use ĝ1, . . . , ĝt−1 to estimate wt by the dual averaging method as follows.
Define ĥt−1 =

∑t−1
j=1 ĝj , which is the average of all estimators of gradients computed in the pre-

vious rounds. Moreover, let (λ1, . . . , λT) be a monotonically non-decreasing sequence of positive
numbers. From these, we define wt by

wt = arg min
w∈Rd,‖w‖≤1

{
ĥ>t−1w +

λt
2
‖w‖2

}
= − 1

max{λt, ‖ĥt−1‖}
ĥt−1, (5)

Computing St. Let k1 be an integer such that k1 ≤ k′− 2. We define Ut ⊆ [d] as the set of the k1
largest features with respect to wt, i.e., choose Ut so that |Ut| = k1 and all i ∈ Ut and j ∈ [d] \ Ut
satisfy |wti| ≥ |wtj |. Let Vt be the set of (k′ − k1) elements chosen from [d] \ Ut uniformly at
random. Then our algorithm observes the set St = Ut ∪Vt of the k′ features. We call this procedure
to obtain St Observe(wt, k

′, k1).

Observation 1. We observe that Ut ⊆ St and Prob[i, j ∈ St] ≥ (k′−k1)(k′−k1−1)
d(d−1) =: Cd,k′,k1 .

Thus, Prob[i, j ∈ St] > 0 for all i, j ∈ [d] if k′ ≥ k1 + 2.

For simplicity, we use the notation p(t)i = Prob[i ∈ St] and p(t)ij = Prob[i, j ∈ St] for i, j ∈ [d].

Computing ĝt. Define X̃t = (x̃tij) ∈ Rd×d by X̃t = Dtx
>
t xtDt and let Xt ∈ Rd×d be a matrix

whose (i, j)-th entry is x̃tij/p
(t)
ij . It follows that Xt is an unbiased estimator of xtx>t . Similarly,

defining zt = (zti) ∈ Rd by zti = xti/p
(t)
i for i ∈ St and zti = 0 for i /∈ St, we see that zt is an

unbiased estimator of xt. Using Xt and zt, we define ĝt to be

ĝt = 2Xtwt − 2ytzt. (6)

Regret bound of Algorithm 1. Let us show that the regret achieved by Algorithm 1 is
O(d

k′−k
√
T) in expectation.

Theorem 2. Suppose that the linear independence of features is satisfied and k ≤ k′ − 2. Let k1
be an arbitrary integer such that k ≤ k1 ≤ k′ − 2. Then, for arbitrary w ∈ Rd with ‖w‖ ≤ 1,

Algorithm 1 achieves E[RT (w)] ≤ 3
σ2
d

(
16

Cd,k′,k1

∑T
t=1

1
λt

+ λT+1

2

)
. By setting λt = 8

√
t/Cd,k′,k1

for each t = 1, . . . , T , we obtain

E[RT (w)] ≤ 24

σ2
d

√
d(d− 1)

(k′ − k1)(k′ − k1 − 1)
·
√
T + 1. (7)

The rest of this section is devoted to proving Theorem 2. By (4), it suffices to evaluate
E[
∑T
t=1 ‖L(Dtwt − w∗)‖2] instead of E[RT (w)]. The following lemma asserts that each term

of (4) can be bounded, assuming the linear independence of features. Proofs of all lemmas are given
in the supplementary material.

Lemma 3. Suppose that the linear independence of features is satisfied. If St ⊇ Ut,

‖L(Dtwt −w∗)‖2 ≤ 3

σ2
d

‖L(wt −w∗)‖2. (8)

6

Proof. We have

‖L(Dtwt −w∗)‖2 ≤ σ2
1‖Dtwt −w∗‖2 = σ2

1

 ∑
i∈S∗∩St

(wti − w∗i)2 +
∑

i∈S∗\St

w∗2i +
∑

i∈St\S∗
w2
ti

≤ σ2

1

‖wt −w∗‖2 +
∑

i∈S∗\St

w∗2i

 , (9)

where the second inequality holds since w∗i = 0 for i ∈ [d] \ S∗. It holds that∑
i∈S∗\St

w∗2i ≤
∑

i∈S∗\Ut

w∗2i ≤
∑

i∈S∗\Ut

(
2w2

ti + 2(wti − w∗i)2
)

≤ 2
∑

i∈Ut\S∗
w2
ti + 2

∑
i∈S∗\Ut

(wti − w∗i)2 ≤ 2‖wt −w∗‖2. (10)

The first and third inequalities come from Ut ⊆ St and the definition of Ut. Putting (10) into (9),
we have

‖L(Dtwt −w∗)‖2 ≤ 3σ2
1‖wt −w∗‖2 ≤ 3σ2

1

σ2
d

‖L(wt −w∗)‖2.

It follows from the above lemma that, if wt converges to w∗, we have Dtwt = w∗, and hence St
includes the support of w∗. Moreover, it holds that

∑T
t=1 E[‖L(wt−w∗)‖2] = E[

∑T
t=1(`t(wt)−

`t(w
∗))] = E[R′T (w∗)], since wt is independent of xt and yt. Thus, to bound

∑T
t=1 E[‖L(wt −

w∗)‖2], we shall evaluate E[R′T (w∗)].

Lemma 4 ([12]). Suppose that wt is defined by (5) for each t = 1, . . . , T , and w ∈ Rd satisfies
‖w‖ ≤ 1. Let Gt = E[‖ĝt‖2] for t = 1, . . . , T . Then,

E[R′T (w)] ≤
T∑
t=1

1

λt
Gt +

λT+1

2
. (11)

If Gt = O(1) and λt = Θ(
√
t), the right-hand side of (11) is O(

√
T). The following lemma shows

that this is true if p(t)ij = Ω(1).

Lemma 5. Suppose that the linear independence of features is satisfied. Let t ∈ [T], and let q be a
positive number such that q ≤ min{p(t)i , p

(t)
ij }. Then we have Gt ≤ 16/q.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The expectation E[RT (w)] of the regret is bounded as E[RT (w)] ≤∑T
t=1 E[‖L(Dtwt − w∗)‖2] ≤ 3

σ2
d

∑T
t=1 E[‖L(wt − w∗)‖2] = 3

σ2
d
E[R′T (w∗)], where the first

inequality comes from (4) and the second comes from Lemma 3. From Lemma 4, E[R′T (w∗)]

is bounded by E[R′T (w∗)] ≤ HT :=
∑T
t=1

1
λt
Gt + λT+1

2 . Lemma 5 and Observation 1 yield

Gt ≤ 16/Cd,k′,k1 . Hence, for λt = 8
√
Cd,k′,k1t, HT satisfies HT ≤

∑T
t=1

16
Cd,k′,k1λt

+ λT+1

2 =∑T
t=1

2√
Cd,k′,k1 t

+ 4√
Cd,k′,k1

√
T + 1 ≤ 8 1√

Cd,k′,k1

√
T + 1. Combining the above three inequali-

ties, we obtain (7).

5 Algorithms without extra observations

5.1 Algorithm 2: Assuming (a) the linear independence of features

In Section 4, Lemma 3 showed a connection between RT and R′T : E[RT (w)] ≤ 3σ2
1

σd2
E[R′T (w∗)]

under Ut ⊆ St. Then, Lemmas 4 and 5 gave an upper bound of E[R′T (w∗)]: E[R′T (w∗)] = O(
√
T)

7

under p(t)ij = Ω(1). In the case of k′ = k, however, the conditions Ut ⊆ St and p(t)ij = Ω(1) may
not be satisfied simultaneously, since, if Ut ⊆ St and |St| = k′ = k ≥ k1 = |Ut|, then we have
Ut = St, which means p(t)ij = 0 for i /∈ Ut or j /∈ Ut. Thus, we cannot use both relationships for the
analysis. In Algorithm 2, we bound RT (w) without bounding R′T (w).

Let us describe an idea of Algorithm 2. To achieve the claimed regret, we first define a subset J
of {1, 2, . . . , T} by the set of squares, i.e., J = {s2 | s = 1, . . . , b

√
T c}. Let ts denote the s-th

smallest number in J for each s = 1, . . . , |J |. In each round t, the algorithm computes St, a weight
vector w̃t, and a vectorDtg̃t, where g̃t is the gradient of `t(w) at w = Dtw̃t. In addition, if t = ts,
the algorithm computes other weight vectors ws and w̄s := 1

s

∑s
j=1 wj , and an unbiased estimator

ĝs of the gradient of the loss function `t(w) at ws.

At the beginning of round t, if t = ts, the algorithm first computes ws, and w̄s is defined as the
average of w1, . . . ,ws. Roughly speaking, ws is the weight vector computed with Algorithm 1
applied to the examples (xt1 , yt1), . . . , (xts , yts), setting k1 to be at most k − 2. Then, we can
show that w̄s is a consistent estimator of w∗. This step is only performed if t ∈ J . Then St is
defined from w̄s, where s is the largest number such that ts ≤ t. Thus, St does not change for any
t ∈ [ts, ts+1 − 1]. After this, the algorithm computes w̃t from D1g̃1, . . . , Dt−1g̃t−1, and predicts
the label of xt as ŷt := w̃>t Dtxt. At the end of the round, the true label yt is observed, and Dtg̃t
is computed from wt and (Dtxt, yt). In addition, if t = ts, ĝs is computed as in Algorithm 1. We
need ĝs for computing ws′ with s′ > s in the subsequent rounds ts′ .

The following theorem bounds the regret of Algorithm 2. See the supplementary material for details
of the algorithm and the proof of the theorem.

Theorem 6. Suppose that (a), the linear independence of features, is satisfied and k ≤ k′. Then,
there exists a polynomial-time algorithm such that E[RT (w)] is at most

8(1+
√
d)
√
T + 1+12T

∑
i∈S∗
|w∗i | exp(−

C2
d,k′,0(T

1
4 − 1)|w∗i |2σ2

d

18432
)+4

∑
i∈S∗
|w∗i |(

4096

C2
d,k′,0w

∗4
i σ

4
d

+1)2,

for arbitrary w ∈ Rd with ‖w‖ ≤ 1, where Cd,k′,0 = k′(k′−1)
d(d−1) = O(k

′2

d2).2

5.2 Algorithm 3: Assuming (b) the compatibility condition

Algorithm 3 adopts the same strategy as Algorithm 2 except for the procedure for determining ws

and w̄s. In the analysis of Algorithm 2, we show that, to achieve the claimed regret, it suffices to
generate {St} that satisfies

∑T
t=1 Prob[i /∈ St] = O(

√
T) for i ∈ S∗. The condition was satisfied

by defining St as the set of k largest features with respect to a weight vector w̄s =
∑s
j=1 wj/s.

The linear independence of features guarantees that w̄s computed in Algorithm 2 converges to w∗,
and hence {St} defined as above possesses the required property. Unfortunately, if the assumption
of the independence of features is not satisfied, e.g., if we have almost same features, then w̄s does
not converge to w∗. However, if we introduce an `1-regularization to the minimization problem in
the definition of ws and change the definition of w̄s to a weighted average of the modified vectors
w1, . . . ,ws, then we can generate a required set {St} under the compatibility assumption. See the
supplementary material for details and the proof of the following theorem.

Theorem 7. Suppose that (b), the compatibility assumption, is satisfied and k ≤ k′. Then, there
exists a polynomial-time algorithm such that E[RT (w)] is at most

8(1+
√
d)
√
T+1 + 12T

∑
i∈S∗
|w∗i | exp(−Cd,k

′,0

√
T

1
4−1|w∗i |2φ20

5832k
) + 4

∑
i∈S∗
|w∗i |(

64 · 364k2

C2
d,k′,0w

∗4
i φ

4
0

+1)2,

for arbitrary w ∈ Rd with ‖w‖ ≤ 1, where Cd,k′,0 = k′(k′−1)
d(d−1) = O(k

′2

d2).3,4

3 The asymptotic regret bound mentioned in Section 1, can be yielded by bounding the second term with
the aid of the following: maxT≥0 T exp(−αT β) = (αβ)

− 1
β exp(−1/β) for arbitrary α > 0, β > 0.

4Note that φ0 is the constant appearing in Assumption (b) in Section 3.

8

6 Experiments

In this section, we compare our algorithms with the following four baseline algorithms: (i) a greedy
method that chooses the k′ largest features with respect to wt computed as in Algorithm 1; (ii)
a uniform-random method that chooses k′ features uniformly at random; (iii) the algorithm of [7]
(called AELR); and (iv) the algorithm of [6] (called FKK). Owing to space limitations, we only
present typical results here. Other results and the detailed descriptions on experiment settings are
provided in the supplementary material.

Synthetic data. First we show results on two kinds of synthetic datasets: instances with (d, k, k′)
and instances with (d, k1, k). We set k1 = k in the setting of (d, k, k′) and k′ = k in the setting of
(d, k1, k). The instances with (d, k, k′) assume that Algorithm 1 can use the ground truth k, while
Algorithm 1 cannot use k in the instances with (d, k1, k). For each (d, k, k′) and (d, k1, k), we
executed all algorithms on five instances with T = 5000 and computed the averages of regrets and
run time, respectively. When (d, k, k′) = (20, 5, 7), FKK spent 1176 s on average, while AELR
spent 6 s, and the others spent at most 1 s.

Figures 1 and 2 plot the regrets given by (1) over the number of rounds on a typical instance with
(d, k, k′) = (20, 5, 7). Tables 2 and 3 summarize the average regrets at T = 5000, where A1, A2,
A3, G, and U denote Algorithm 1, 2, 3, greedy, and uniform random, respectively. We observe that
Algorithm 1 achieves smallest regrets in the setting of (d, k, k′), whereas Algorithms 2 and 3 are
better than Algorithm 1 in the setting of (d, k1, k). The results match our theoretical results.

0 1000 2000 3000 4000 5000
T

0

1000

2000

3000

4000

5000

6000

7000

R T

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR
FKK

Figure 1: Plot of regrets with
(d, k, k′) = (20, 5, 7)

0 1000 2000 3000 4000 5000
T

0

1000

2000

3000

4000

5000

6000

7000

R T

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR
FKK

Figure 2: Plot of regrets with
(d, k1, k) = (20, 5, 7)

0 10000 20000 30000 40000 50000
T

0.00

0.25

0.50

0.75

1.00

1.25

1.50

T ∑ t=
0(

̂ y t
−
y t
)2

1e8

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR

Figure 3: CT-slice datasets

Table 2: Values of RT /102 when changing
(d, k, k′).

(d, k1, k) A1 A2 A3 G U AELR FKK
(10,2,4) 1.53 2.38 3.60 33.28 25.73 60.76 24.05

Table 3: Values of RT /102 when changing
(d, k1, k).

(d, k1, k) A1 A2 A3 G U AELR FKK
(10,2,4) 26.88 20.59 17.19 43.03 60.02 64.75 58.71

Real data. We next conducted experiments using a CT-slice dataset, which is available online [11].
Each data consists of 384 features retrieved from 53500 CT images associated with a label that
denotes the relative position of an image on the axial axis.

We executed all algorithms except FKK, which does not work due to its expensive run time. Since
we do not know the ground-truth regression weights, we measure the performance by the first term
of (1), i.e., square loss of predictions. Figure 3 plots the losses over the number of rounds. The
parameters are k1 = 60 and k′ = 70. For this instance, the run times of Algorithms 1 and 2, greedy,
uniform random, and AELR were 195, 35, 147, 382, and 477 s, respectively.

We observe that Algorithms 2 and 3 are superior to the others, which implies that Algorithm 2 and 3
are suitable for instances where the ground truth k is not known, such as real data-based instances.

Acknowledgement

This work was supported by JST ERATO Grant Number JPMJER1201, Japan.

References
[1] P. Bühlmann and S. van de Geer. Statistics for high-dimensional data. 2011.

9

[2] N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir. Some impossibility results for budgeted
learning. In Joint ICML-COLT workshop on Budgeted Learning, 2010.

[3] N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir. Efficient learning with partially observed
attributes. Journal of Machine Learning Research, 12:2857–2878, 2011.

[4] X. Chen, Q. Lin, and J. Pena. Optimal regularized dual averaging methods for stochastic
optimization. In Advances in Neural Information Processing Systems, pages 395–403, 2012.

[5] I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, pages 624–633. ACM, 2014.

[6] D. Foster, S. Kale, and H. Karloff. Online sparse linear regression. In 29th Annual Conference
on Learning Theory, pages 960–970, 2016.

[7] E. Hazan and T. Koren. Linear regression with limited observation. In Proceedings of the 29th
International Conference on Machine Learning (ICML-12), pages 807–814, 2012.

[8] S. Kale. Open problem: Efficient online sparse regression. In Proceedings of The 27th Con-
ference on Learning Theory, pages 1299–1301, 2014.

[9] S. Kale, Z. Karnin, T. Liang, and D. Pál. Adaptive feature selection: Computationally efficient
online sparse linear regression under rip. In Proceedings of the 34th International Conference
on Machine Learning (ICML-17), pages 1780–1788, 2017.

[10] P. Koiran and A. Zouzias. Hidden cliques and the certification of the restricted isometry prop-
erty. IEEE Trans. Information Theory, 60(8):4999–5006, 2014.

[11] M. Lichman. UCI machine learning repository, 2013.

[12] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11:2543–2596, 2010.

[13] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936, 2003.

[14] N. Zolghadr, G. Bartók, R. Greiner, A. György, and C. Szepesvári. Online learning with costly
features and labels. In Advances in Neural Information Processing Systems, pages 1241–1249,
2013.

10

Appendix

A Proof of Theorem 1

As is the case for Theorem 2 in [6], our reduction starts from the work of Dinur and Steurer [5].

Theorem 8 ([5]). For any given constant D > 0, there is a constant cD ∈ (0, 1) and a poly(nD)-
time algorithm that takes a 3CNF formula φ of size n as input and constructs a Set Cover instance
over a ground set of size m = poly(nD) with d = poly(n) sets, with the following properties:

1. if φ ∈ SAT, then there is a collection of k = O(dcD) sets, which covers each element
exactly once; and

2. if φ /∈ SAT, then no collection of k′ = bD ln(d)kc < d sets covers all elements; i.e., at
least one element is left uncovered.

The Set Cover instance generated from φ can be encoded as a binary matrix Mφ ∈ {0, 1}m×d with
the rows corresponding to the elements of the ground set, and the columns corresponding to the
sets such that each column is the indicator vector of the corresponding set. From the definition of
Mφ and the above theorem, if φ ∈ SAT, then there exists a k-sparse binary vector z ∈ {0, 1}m
Mφz = 1, where 1 is the all-ones vector, and if φ /∈ SAT, then for arbitrary S ⊆ [d] such that
|S| ≤ k′, there exists at least one row of Mφ that is 0 in all the coordinates in S.

Using this reduction, we show that an algorithm Alg for online sparse algorithm with properties of
Theorem 1 can be used to give a BPP algorithm for SAT. Algorithm 4 is a randomized algorithm
for deciding satisfiability of a given 3CNF formula φ using the algorithm Alg. Since Step 3 runs
in polynomial time and since T is a polynomial in n and Alg runs in poly(d, T) time per iteration,
Algorithm 4 is a polynomial-time algorithm.

We now claim that this algorithm correctly decides satisfiability of φ with probability at least 3/4,
and is hence a BPP algorithm for SAT.

Suppose that φ ∈ SAT. Then there exists a k-sparse vector z ∈ {0, 1}d such that Mφz = 1m.
Hence, for X and y defined in Algorithm 4, we have

γ = min
w∈Rd

‖Xw − ỹ‖22 ≤ min
w∈Rd,‖w‖0≤k′

‖Xw − ỹ‖22

≤ ‖ 1√
d
Xz− ỹ‖22 = ‖ 1

4
√
d(m+ d)3

z‖22 ≤
1

16(m+ d)6
, (13)

which means that Step 5 is not executed. Since the `2 norm of each row of X and each entry
of y are at most 1, it holds that ‖xt‖ ≤ 1 and |yt| ≤ 1. Next, let us see that xt, yt satisfies
Assumptions (1), (2), and (a). Since y = Xw̃, it holds for all t that yt = w̃>xt, which means that
Assumption (1) holds, where εt = 0. From the definition of xt, x1, . . . ,xT follows a distribution on
Rd independently, and independent of εt because εt are constant, and, hence, Assumption (2) holds.
Moreover, V = E[xtx

>
t] = 1

m+dX
>X is non-singular (i.e., Assumption (a) holds) and has the

smallest singular value at least 1
(m+d) . Indeed, for an arbitrary d-dimensional unit vector u ∈ Rd, the

`2 norm of Xu = [1√
d
Mφu; 1

4(m+d)3u] is at least 1
4(m+d)3 and, hence, u>X>Xu ≥ 1

(4(m+d)3)2 ,
which means that σd, the smallest singular value of V = 1

m+dX
>X , is at least 1

16(m+d)7 . Let us

now show that E[
∑T
t=0(yt− ŷt)2] ≤ T

8(m+d)5 . From the assumption on Alg, it holds for all k-sparse
vectors w that

E[RT (w)] ≤ p2(d, 16(m+ d)7)T 1−δ ≤ T

16(m+ d)5
, (14)

11

Algorithm 4 An algorithm for deciding satisfiability of 3CNF formula
Input: A constant D > 0, and an algorithm Alg for the (k, k′, d)-online sparse regression problem,

where k, k′, d and cD are the constants from Theorem 8, that runs in p1(d, T) time per itera-
tion, with expected regret bounded by p2(d, 1/σd)T

1−δ under Assumptions (1), (2), and (4) in
Section 2 and Assumption (a) in Section 3. A 3CNF formula φ.

1: Compute the matrix Mφ and the associated parameters k, k′, d,m from Theorem 8.
2: Define X ∈ R(m+d)×d and ỹ ∈ Rm+d by

X =

[
1√
d
Mφ

1
4(m+d)3 Id

]
, ỹ =

[
1
d1m
0d

]
. (12)

3: Compute w̃ ∈ arg min
w∈Rm

‖Xw − ỹ‖22 and define y = Xw̃, γ = ‖Xw̃ − ỹ‖22.

4: if γ > 1
16d2 then

5: Return “unsatisfiable.”
6: end if
7: Run Alg with the parameters k, k′, d for T := dmax{(16(m + d)5p1(d, 16(m +
d)7))1/δ, 256(m+ d)10}e iterations.

8: for t = 1, . . . , T do
9: Sample i from [m+ d] uniformly at random and set xt and yt to be the i-th row of X and the

i-th entry of y, respectively.
10: Obtain a set of coordinates St of size at most k′ by running Alg, and provide it with the

coordinates xt(St).
11: Obtain the prediction ŷt from Alg, and provide it with the true label yt.
12: end for
13: if

∑T
t=1(yt − ŷt)2 ≤ T

2(m+d)5 then
14: Return “satisfiable.”
15: else
16: Return “unsatisfiable.”
17: end if

where the second inequality comes from T ≥ (16(m + d)5p1(d, 16(m + d)7))
1
δ . Since z is a

k-sparse binary vector, we have

E[RT (
1√
d
z)] = E[

T∑
t=1

(yt − ŷt)2]−E[

T∑
t=1

(yt −
1√
d
z>xt)

2]

= E[

T∑
t=1

(yt − ŷt)2]− T

m+ d
‖y − 1√

d
Xz‖22.

Since we have ‖y − 1√
d
Xz‖22 ≤ ‖ỹ − 1√

d
Xz‖22 ≤ 1

16(m+d)6 , we obtain

E[

T∑
t=1

(yt − ỹt)2] ≤ T

16(m+ d)5
+

T

16(m+ d)7
≤ T

8(m+ d)5
. (15)

Since
∑T
t=1(yt − ỹt)2 is a non-negative random variable, by Markov’s inequality we conclude that

with probability at least 3/4, the total loss
∑T
t=1(yt − ỹt)2 is bounded by T

2(m+d)5 from above, and
hence Algorithm 4 correctly outputs “satisfiable.”

Next, suppose φ /∈ SAT. If γ > 1
16d2 , then Algorithm 4 correctly outputs “unsatisfiable.” Hence, it

suffices to consider the case of γ ≤ 1
16d2 . Fix any round t and let St be the set of coordinates of size

at most k′ selected by Alg to query. Since φ /∈ SAT, there is at least one element in the ground set
that is not covered by any set among these k′ sets. This implies that there is at least one row of Mφ

that is 0 in all the coordinates in St. Let d1 denote the number of such rows. Further, the number d2
of rows of Id that are 0 in all the coordinates in St is equal to d−k′. Since xt is a uniformly random

12

row of X chosen independently of St, we have

Prob[xt(St) = 0] =
d1 + d2
m+ d

≥ 2

m+ d
. (16)

The conditional probability that given xt(St) = 0, i in Step 9 is at most m is equal to d1
d1+d2

.

Now, we claim that E[(yt − ŷt)
2 | xt(St) = 0] ≥ 1

2(m+d)4 . Since yt and ŷt are conditionally
independent given xt(St), we have E[(yt− ŷt)2 | xt(St) = 0] ≥ var[yt | xt(St) = 0]. Let us recall
that Prob[i ≤ m | xt(St) = 0] = d1

d1+d2
for i in Step 9. If i ≤ m, then yt ≥ 3

4d and otherwise
yt ≤ 1

4d since the difference between y and ỹ is bounded in absolute value by ‖y−ỹ‖2 ≤
√
γ ≤ 1/3

and the ith element of ỹ is 1 if i ≤ m and 0 otherwise. Hence, given xt(St) = 0, yt ≥ 3
4d with

probability d1
d1+d2

and yt ≤ 1
4d with probability d2

d1+d2
. Since d1, d2 ≥ 1 and d1 + d2 ≤ m+ d, we

have E[(yt − ŷt)2 | xt(St) = 0] ≥ 2
(m+d)2 ·

1
(2d)2 ≥

1
2(m+d)4 . Further, from (16), we obtain

E[(yt − ŷt)2] ≥ E[(yt − ŷt)2 | xt(St) = 0] · Prob[xt(St) = 0] ≥ 1

2(m+ d)4
· 2

m+ d
=

1

(m+ d)5
.

(17)

Let Et denote the expectation of a random variable conditioned on all randomness prior to round t.
Since the choices of xt and yt are independent of previous choices in each round, the same argument
also implies that Et[(yt−ŷt)2] ≥ 1

(m+d)5 . Applying Azuma’s inequality to the martingale difference
sequence Et[(yt− ŷt)2]− (yt− ŷt)2 for t = 1, . . . , T , since each term is bounded in absolute value
by 4, we obtain

Prob[

T∑
t=1

Et[(yt − ŷt)2]− (yt − ŷt)2 ≥ 8
√
T] ≤ exp(− 64T

2 · 16T
) ≤ 1

4
. (18)

Thus, with probability at least 3/4, the total loss
∑T
t=1(yt − ŷt)2 is greater than

∑T
t=1 Et[(yt −

ŷt)
2]−8

√
T ≥ T

(m+d)5 −8
√
T ≥ T

2(m+d)5 since T ≥ 256(m+d)10. Thus, in the case of φ /∈ SAT,
Algorithm 4 correctly outputs “unsatisfiable” with probability at least 3/4.

B Preliminary lemmas

Before presenting the statement, let us introduce some notation. In the following, we use the fol-
lowing facts without notice:

• ‖gt‖ = 2‖xt(x>t wt − yt)‖ is bounded from above by 4; and
• |`t(w)− `(w)| is bounded from above by 8;

which come from w ≤ 1, ‖xt‖ ≤ 1 and |yt| ≤ 1. Further, we define the following numbers for
notational convenience:

• G = 4/Cd,k′,k1 , an upper bound of ‖ĝt − gt‖;
• C = 128/C2

d,k′,k1
= 8G2.

The following lemma is used for bounding R′T (w).
Lemma 9. Let (λ1, . . . , λT) be a monotonically non-decreasing sequence of positive numbers, and
let (ζ1, . . . , ζT) be a sequence of non-negative numbers. If wt is defined by

wt = arg min
w∈Rd,‖w‖≤1

{ĥ>t w +
λt
2
‖w‖2 +

t∑
j=1

ζj‖w‖1}

for all t = 1, . . . , T , then, for any w ∈ Rd satisfying ‖w‖ ≤ 1, it holds that

T∑
t=1

(
ĝ>t (wt −w) + ζt(‖wt‖1 − ‖w‖1)

)
≤

T∑
t=1

1

λt
‖ĝt‖2 +

λT+1

2
.

13

Proof. See, e.g., [12].

The following lemma is used for bounding the gap between
∑T
t=1 ‖L(wt − w∗)‖2 and∑T

t=1 ĝ
>
t (wt −w), with high probability.

Lemma 10. For arbitrary δ > 0, we have

Prob[

T∑
t=1

‖L(wt −w∗)‖2 ≥
T∑
t=1

ĝ>t (wt −w) + 3δ] ≤ 3 exp

(
− δ

2

Ct

)
. (19)

Proof. We have
∑t
j=1 ‖L(wj −w∗)‖2 =

∑t
j=1(`(wj)− `(w∗)), and this can be expanded as

t∑
j=1

(`(wj)− `(w∗)) =

t∑
j=1

(`(wj)− `j(wj)) +

t∑
j=1

(`j(w
∗)− `(w∗)) +

t∑
j=1

(`j(wj)− `j(w∗)).

From the convexity of `j , the term
∑t
j=1(`j(wj)− `j(w∗)) can be bounded as

t∑
j=1

(`j(wj)− `j(w∗)) ≤
t∑

j=1

g>j (wj −w∗) =

t∑
j=1

ĝ>j (wj −w∗) +

t∑
j=1

(gj − ĝj)
>(wj −w∗).

Summarizing the above inequalities,
∑t
j=1 ‖L(wj − w∗)‖2 −

∑T
t=1 ĝ

>
t (wt − w) is bounded

from above by the sum of (i)
∑t
j=1(gj − ĝj)

>(wj − w∗), (ii)
∑t
j=1(`(wj) − `j(wj)), and (iii)∑t

j=1(`j(w
∗)− `(w∗)). Let us construct bounds for each term.

First, consider (i). Denote the j-th input data (xj , yj) by zj . Since we have

E[(gj − ĝj)(wj −w∗)|z1, . . . , zj−1, S1, . . . , Sj−1] = 0

and |(gj − ĝj)
>(wj −w∗)| ≤ 2G, we can apply the Azuma–Hoeffding inequality to (i) to obtain

that

Prob[

t∑
j=1

(gj − ĝj)
>(wj −w∗) ≥ δ] ≤ exp(

−δ2

8tG2
).

The value of (ii) also can be bounded by using the Azuma–Hoeffding inequality, since we have

E[`(wj)− `j(wj)|z1, . . . , zj−1, S1, . . . , Sj−1] = 0,

and |`(wj)− `j(wj)| ≤ 8. Accordingly, we obtain

Prob[

t∑
j=1

`(wj)− `j(wj) ≥ δ] ≤ exp(
−δ2

128t
).

Similarly, since {`j(w∗)−`(w∗)} are independent random variables such that E[`j(w
∗)−`(w∗)] =

0 and |`j(w∗) − `(w∗)| ≤ 8, the value of (iii) can be bounded by using Hoeffding’s inequality, as
follows:

Prob[

t∑
j=1

`j(w
∗)− `(w∗) ≥ δ] ≤ exp(

−δ2

128t
).

Summarizing the above inequalities, we have

Prob

 t∑
j=1

‖L(wj −w∗)‖2 ≥
T∑
t=1

ĝ>t (wt −w) + 3δ

 ≤ 2 exp(
−δ2

128t
) + exp(

−δ2

8tG2
) ≤ 3 exp(

−δ2

Ct
).

By substituting this for λj = 2G
√
j, we obtain (19).

14

C Proofs of the lemmas in Section 4

C.1 Proof of Lemma 4

Since `t(w) is a convex function, it holds for arbitrary w ∈ Rd that `t(wt)− `t(w) ≤ g>t (wt−w).
By taking the expectation, we have E[`t(wt)− `t(w)] ≤ E[g>t (wt−w)] = E[ĝ>t (wt−w)] since
ĝt is an unbiased estimator of gt. By taking the sum of this inequality for t = 1, . . . , T , we obtain
that

E[R′T (w∗)] ≤ E[

T∑
t=1

ĝ>t (wt −w∗)].

From Lemma 9, the right-hand side of this can be bounded as

E[

T∑
t=1

ĝ>t (wt −w∗)] ≤ E[

T∑
t=1

1

λt
‖ĝt‖2 +

λT+1

2
] ≤

T∑
t=1

1

λt
Gt +

λT+1

2
,

where we used E[‖gt‖2] = Gt in the second inequality.

C.2 Proof of Lemma 5

Proof. First, ĝt defined by (6) satisfies

‖ĝt‖2 = ‖2Xwt − 2ytz‖2 ≤ 2‖2Xwt‖2 + 2‖2ytz‖2 ≤ 8‖X‖2F‖wt‖2 + 8|yt|‖z‖2.

The expectation of ‖X‖2F is bounded as

E[‖X‖2F] = E

 ∑
1≤i,j≤d

p
(t)
ij (

xtixtj

p
(t)
ij

)2

 ≤ E

1

q

∑
1≤i,j≤d

(xixj)
2

 ≤ 1

q
.

Similarly, we have E[‖z‖2] ≤ 1/q. By combining these inequalities, we obtain Lemma 5.

D Details of Algorithm 2

Estimating w∗ Although we assumed k′ ≥ k+ 2 in the analysis of the regret bound, Algorithm 1
can be defined even if k′ = k by setting k1 to a number at most k. At the end of round t, Algorithm 1
keeps weight vectors w1, . . . ,wt. From these weight vectors, define w̄t as 1

t

∑t
j=1 wj . In the

following, we prove that w̄t is a consistent estimator of w∗ even if k′ = k and k1 ≤ k − 2. We use
this fact in the next section.

Proposition 11. Let w̄t be the average of w1, . . . ,wt computed by Algorithm 1 with setting λt =
8
C

√
t for t = 1, . . . , T . Then, for arbitrary δ > 0, ‖L(w̄t −w∗)‖2 ≤ 1

t (
8
C

√
t+ 1 + 3δ) holds with

probability at least 1 − 3 exp(−C
2δ2

128t). Accordingly, assuming the linear independence of features,
‖w̄t −w∗‖2 ≤ 1

tσ2
d
(8
C

√
t+ 1 + 3δ) holds with probability at least 1− 3 exp(−C

2δ2

128t).

Proof. From the convexity of the square loss and Jensen’s inequality, we have ‖L(w̄t − w∗)‖ ≤
1
t

∑t
j=1 ‖L(wj −w∗)‖. Hence, it suffices to show that

Prob

 t∑
j=1

‖L(wj −w∗)‖ ≥ 2G
√
t+ 1 + 3δ

 ≤ 3 exp(
−δ2

Ct
). (20)

We have
∑t
j=1 ‖L(wj −w∗)‖2 =

∑t
j=1(`(wj)− `(w∗)) and this can be expanded as

t∑
j=1

(`(wj)− `(w∗)) =

t∑
j=1

(`(wj)− `j(wj)) +

t∑
j=1

(`j(w
∗)− `(w∗)) +

t∑
j=1

(`j(wj)− `j(w∗)).

15

From the convexity of `j , the term
∑t
j=1(`j(wj)− `j(w∗)) can be bounded as

t∑
j=1

(`j(wj)− `j(w∗)) ≤
t∑

j=1

g>j (wj −w∗) =

t∑
j=1

ĝ>j (wj −w∗) +

t∑
j=1

(gj − ĝj)
>(wj −w∗).

Summarizing the above inequalities,
∑t
j=1 ‖L(wj − w∗)‖2 is bounded by the sum of (i)∑t

j=1 ĝ
>
j (wj − w∗), (ii)

∑t
j=1(gj − ĝj)

>(wj − w∗), (iii)
∑t
j=1(`(wj) − `j(wj)), and (iv)∑t

j=1(`j(w
∗)− `(w∗)). Next, let us construct bounds for each term.

From Lemma 9, (i)
∑t
j=1 ĝ

>
j (wj −w∗) can be bounded as

t∑
j=1

ĝ>j (wj −w∗) ≤
t∑

j=1

G2

λj
+
λt+1

2

with probability 1. Next, consider (ii). Denote the j-th input data (xj , yj) by zj . Since we have

E[(gj − ĝj)(wj −w∗)|z1, . . . , zj−1, S1, . . . , Sj−1] = 0

and |(gj − ĝj)(wj − w∗)| ≤ 2G, we can apply the Azuma–Hoeffding inequality to (ii) to obtain
that

Prob[

t∑
j=1

(gj − ĝj)
>(wj −w∗) ≥ δ] ≤ exp(

−δ2

8tG2
).

The value of (iii) can also be bounded by using the Azuma–Hoeffding inequality, since we have

E[`(wj)− `j(wj)|z1, . . . , zj−1, S1, . . . , Sj−1] = 0,

and |`(wj)− `j(wj)| ≤ Q. Accordingly, we obtain

Prob[

t∑
j=1

`(wj)− `j(wj) ≥ δ] ≤ exp(
−δ2

2tRQ
).

Similarly, since {`j(w∗)−`(w∗)} are independent random variables such that E[`j(w
∗)−`(w∗)] =

0 and |`j(w∗) − `(w∗)| ≤ Q the value of (iv) can be bounded by using Hoeffding’s inequality, as
follows:

Prob[

t∑
j=1

`j(w
∗)− `(w∗) ≥ δ] ≤ exp(

−δ2

2tQ2
).

Summarizing the above inequalities, we have

Prob

 t∑
j=1

‖L(wj −w∗)‖2 ≥
t∑

j=1

G2

λj
+
λt+1

2
+ 3δ

 ≤ 2 exp(
−δ2

2tQ2
) + exp(

−δ2

8tG2
) ≤ 3 exp(

−δ2

Ct
).

By substituting this for λj = 2G
√
j, we obtain (20).

We note that the probability claimed in Proposition 11 is over the randomness of both the examples
and Algorithm 1.

Computing ws, w̄s, and ĝs. As noted above, w̄s is defined as the average of w1, . . . ,ws com-
puted as in Algorithm 1 applied to the examples {(xt1 , yt1), . . . , (xts , yts)}, setting k1 ≤ k − 2.
Recall that Algorithm 1 computes ws from ĝ1, . . . , ĝs−1 using (5), and computes ĝj from wtj

and {(Dt1xt1 , yt1), . . . , (Dtjxtj , ytj)} using (6) for any j ∈ [s]. We use Dtj defined from Stj in
Algorithm 2 instead of Algorithm 1.

For convenience, we define w̄0 as the zero vector.

16

Computing St. Let s be the largest number such that ts ≤ t. Then St is defined as the set of k
largest features with respect to w̄s. Note that St is the same for all t with ts ≤ t < ts+1. In the
following, we show from Proposition 11 that St contains S∗ with high probability.

Lemma 12. If w∗2i σ
2
d − 8Gs−

1
2 ≥ 0, the following holds for any i ∈ S∗ and t = ts, . . . , ts+1 − 1:

Prob[i /∈ St] ≤ 3 exp

(
− C

2s

4608
(w∗2i σ

2
d −

32

C
s−

1
2)2
)
.

Proof. If a feature i satisfies i ∈ S∗ \ St, it holds that ‖w̄s − w∗‖2 ≥ w∗2i /2, which can be
confirmed as follows. Since |S∗| = |St|, i ∈ S∗ \ St means that there exist j ∈ St \ S∗ such that
|w̄si| < |w̄sj |, which implies that ‖w̄s−w∗‖2 ≥ (w̄si−w∗i)2+(w̄sj−w∗j)2 = (w̄si−w∗i)2+w̄2

sj >

(w̄si − w∗i)2 + w̄2
si ≥ w∗2i /2, where the first equality comes from j /∈ S∗, the second inequality

comes from |w̄si| < |w̄sj |, and the third inequality holds for arbitrary w̄si ∈ R. Hence, we have

Prob[i /∈ St] ≤ Prob[‖w̄s −w∗‖2 ≥ w∗2i /2]. (21)

From Proposition 11, if δ := 1
6 (sσ2

dw
∗2
i − 4G

√
s+ 1) ≥ 0, we have

Prob[i /∈ St] ≤ 3 exp(
−δ2

Cs
)

for i ∈ S2. From the inequality δ ≥ s
6 (σ2

dw
∗2
i − 8Gs−

1
2), we obtain Lemma 12.

Computing w̃t and g̃t. We define w̃1 = 0. If t ≥ 2, w̃t is defined as follows. Recall that
D1g̃1, . . . , Dt−1g̃t−1 are available at the beginning of round t. Let h̃t−1 =

∑t−1
j=1Dj g̃j . We

prepare a sequence (λ̃1, . . . , λ̃T) of non-negative numbers in advance, and λ̃t is used in round t.
Then, w̃t is defined by

w̃t = arg min
w∈Rd,‖w‖≤1

{
h̃>t−1w +

λ̃t
2
‖w‖2

}
. (22)

We define g̃t as the gradient of the loss function `t(w) at w = Dtw̃t, i.e.,

g̃t = ∇w`t(Dtw̃t) = 2xt(x
>
t Dtw̃t − yt). (23)

Note that we cannot compute g̃t because all features in xt cannot be observed. Nevertheless, we can
compute Dtg̃t from available information Dtxt, yt, and w̃t.

Regret bound of Algorithm 2 We prove that Algorithm 2 achieves O(
√
dT) regret under the

independence of features assumption.
Lemma 13. If w ∈ Rd satisfies ‖w‖ ≤ 1, then we have

RT (w) ≤
T∑
t=1

w>(Dt − I)g̃t +

T∑
t=1

‖Dtg̃t‖2

λ̃t
+
λ̃T+1

2
. (24)

Proof. Since `t(w) is convex, we have `t(Dtw̃t) − `t(w) ≤ g̃>t (Dtwt − w). Hence, the regret
RT (w) can be bounded as

RT (w) ≤
T∑
t=1

g̃>t (Dtwt −w) =

T∑
t=1

g̃>t Dtwt −
T∑
t=1

g̃>t w.

From a similar argument to the proof of Lemma 9, we obtain
T∑
t=1

g̃>t Dtwt ≤ h̃>Tw +

T∑
t=1

‖Dtg̃t‖2

λ̃t
+
λ̃T+1‖w‖2

2
.

By combining the above two inequalities, we obtain (24).

17

Algorithm 2
Input: {(xt, yt)} ⊆ Rd × R, {λs}, {λ̃t} ⊆ R>0, k′ ≥ 2 and k1 ≥ 0 such that 0 ≤ k1 ≤ k′ − 2,

J ⊆ {1, . . . , T}
1: Set ĥ0 = 0, h̃0 = 0, w̄0 = 0, s = 0.
2: for t = 1, . . . , T do
3: if t ∈ J then
4: Set s = s+ 1.
5: Define ws by (5), and w̄s = w̄s−1 + ws.
6: end if
7: Define w̃t by (22).
8: Define St by Observe(w̄s, k

′, k1).
9: Observe Dtxt and output ŷt := w̃>t Dtxt.

10: Observe yt.
11: if t ∈ J then
12: Define ĝs by (6), and set ĥs = ĥs−1 + ĝs.
13: end if
14: Compute Dtg̃t (g̃t is defined by (23)).
15: Set h̃t = h̃t−1 +Dtg̃t.
16: end for

Because of (24), if ‖g̃t‖ = O(1) holds and we set λ̃t = Θ(
√
t), we have

E[RT (w∗)] = O

(
T∑
t=1

‖(Dt − I)w∗‖+
√
T

)
.

From Lemma 12, we can prove that St satisfies
∑T
t=1

∑
j∈S∗ Prob[j /∈ St] = O(

√
T). Combin-

ing these two facts, we obtain O(
√
T) regret. A more precise statement is given in the following

theorem.

Proof of Theorem 6

Proof. From Lemma 13 and that ‖Dtg̃t‖2 ≤ 4 and λ̃t = 8
√
t, we have

RT (w∗) ≤
T∑
t=1

w∗>(Dt − I)g̃t +

T∑
t=1

‖Dtg̃t‖2

λ̃t
+
λ̃T+1

2

=

T∑
t=1

w∗>(Dt − I)g̃t + 8
√
T + 1.

Further, since ((Dt − I)w∗)i = −w∗i if i ∈ S∗ \ St and ((Dt − I)w∗)i = 0 otherwise, the first
term can be bounded as

T∑
t=1

w∗>(Dt − I)g̃t = −
T∑
t=1

∑
i∈S∗\St

w∗i g̃ti ≤ 4

T∑
t=1

∑
i∈S∗\St

|w∗i |,

where the last inequality comes from ‖g̃t‖ ≤ 4. From the above two inequalities, by taking the
expectation, we obtain

E[RT (w∗)] ≤ 4

T∑
t=1

∑
i∈S∗
|w∗i |Prob[i /∈ St] + 8

√
T + 1. (25)

Next, we give a upper bound on
∑T
t=1 Prob[i /∈ St] for i ∈ S∗ by using Lemma 12. Define

γ(s) = 1
2σ

2
dw
∗2
i −8Gs−

1
2 . If s is large enough so that γ(s) ≥ 0, i.e., if s ≥ 256 G2

σ4
dw
∗4
i

=: κi, then we

18

have σ2
dw
∗2
i −8Gs−

1
2 ≥ 1

2σ
2
dw
∗2
i . From Lemma 12, then, we have Prob[i ∈ St] ≤ 3 exp(− sσ

2
dw
∗2
i

144C).
Thus, we have

T∑
t=1

Prob[i /∈ St] =
∑

t∈J∩[T]

Prob[i /∈ St] +
∑

t∈[T]\J

Prob[i /∈ St]

≤
√
T +

∑
t∈[T]\J

Prob[i /∈ St]

=
√
T +

∑
t∈[T]\J,

√
t−1≤κi

Prob[i /∈ St] +
∑

t∈[T]\J,
√
t−1>κi

Prob[i /∈ St]

≤
√
T + (κi + 1)2 +

∑
t∈[T]\J,

√
t−1>κi

Prob[i /∈ St], (26)

where the first inequality comes from |[T] ∪ J |, and the second inequality comes from |{t ≥ 1 |√
t− 1 ≤ κi}| ≤ (κi + 1)2. Note that, since s ≥

√
t− 1 holds in each step t,

√
t− 1 > κi implies

that s > κi and, hence, Prob[i /∈ St] ≤ 3 exp(− sσ
2
dw
∗2
i

144C) ≤ 3 exp(− (
√
t−1)σ2

dw
∗2
i

144C) holds. From this,
the last term of (26) can be bounded as∑
t∈[T]\J,

√
t−1>κi

Prob[i /∈ St] =
∑

t∈[T]\J,
√
t−1>κi,t≤

√
T

Prob[i /∈ St] +
∑

t∈[T]\J,
√
t−1>κi,t>

√
T

Prob[i /∈ St]

≤
√
T +

∑
t∈[T]\J,

√
t−1>κi,t>

√
T

3 exp(− (
√
t− 1)σ2

dw
∗2
i

144C
)

≤
√
T + 3T exp(

−(T
1
4 − 1)σ2

dw
∗2
i

144C
)

By combining the above two inequalities, we obtain

T∑
t=1

Prob[i /∈ St] ≤ 2
√
T + (κi + 1)2 + 3T exp(

−(T
1
4 − 1)σ2

dw
∗2
i

144C
).

By substituting this inequality into (25), we have

E[RT (w∗)] ≤ 8
∑
i∈S∗
|w∗i |
√
T + 8

√
T + 1 + 4

∑
i∈S∗
|w∗i |((κi + 1)2 + 3T exp(

−(T
1
4 − 1)σ2

dw
∗2
i

144C
)).

The first term of the right-hand side can be bounded as 4
∑
i∈S∗ |w∗i |

√
T = ‖w∗‖14T ≤√

d4
√
T + 1 because ‖w∗‖ ≤ 1. Further, substituting κi = 256 G2

σ4
dw
∗4
i

, we obtain Theorem 6.

E Details of Algorithm 3

Computing ws and w̄s. Let {λj}, {ηj} ⊆ R>0 be positive monotone increasing sequences. De-
note ζj = ηj − ηj−1 for j > 1 and ζ1 = η1. Then, we have ζj > 0 and ηs =

∑s
j=1 ζj .

Recall that ĥs−1 =
∑s−1
j=1 ĝj . We define ws and w̄s by

ws = arg min
w∈Rd,‖w‖≤1

{
ĥ>s−1w +

λs
2
‖w‖2 + ηs‖w‖1

}
= − 1

max{λt, ‖ĥt−1‖/1}
ĥt,

and w̄s =
∑s
j=1 ζjwj/ηs. Then, w̄s gets close to w∗ with high probability.

Lemma 14. Let G and C be as defined in Section B. Set λj = 8
C

√
j and ζj = φ0

√
4/(Ck)j−

1
4 .

Under the compatibility assumption, for arbitrary δ > 0, 4φ0(s
3
4 − 1)

√
4
Ck‖w̄s − w∗‖1 ≤

144
C

√
s+ 1 + 27δ holds with probability at least 1 − 3 exp(−C

2δ2

128s) over the randomness of both
the examples and the algorithm.

19

Proof. From the convexity of the triangle inequality of `1 norm, we have

ηt‖w̄t −w∗‖1 = ‖
t∑

j=1

ζj(wt −w∗)‖1 ≤
t∑

j=1

ζj‖wt −w∗‖1.

Hence, it suffices to give a bound on
∑t
j=1 ζj‖wt − w∗‖1. Define γj = ‖L(wj − w∗)‖2 +

ζj(‖wj‖1 − ‖w∗‖1), and we shall show the following bound on ζj‖ws −w∗‖1:

ζj‖wj −w∗‖1 ≤ 3kζ2j /φ
2
0 + 3γj

under the assumption of the compatibility condition, i.e., ‖w[d]\S∗‖1 ≤ 2‖wS∗‖1 =⇒ φ20‖wS∗‖21 ≤
k‖Lw‖2. In the following, we use the notation ∆ = wj −w∗ for convenience. Then, we have

γj = ‖L∆‖2 + ζj(‖wj |S∗‖1 + ‖wj |S∗c‖1 − ‖w∗|S∗‖1)

≥ ‖L∆‖2 + ζj(‖∆|S∗c‖1 − ‖∆|S∗‖1)

≥ ζj(‖∆|S∗c‖1 − ‖∆|S∗‖1). (27)

We will bound ∆ by considering the following two cases: (i) γj ≤ ζj‖∆|S∗‖1 and (ii) γj >
ζj‖∆|S∗‖1.

Case (i) γj ≤ ζj‖∆|S∗‖1:
From (27) and γj ≤ ζj‖∆|S∗‖1, we have

ζj‖∆|S∗c‖1 ≤ ζj‖∆|S∗‖1 + γj ≤ 2ζj‖∆|S∗‖1.
From the compatibility condition, we have φ20‖∆|S∗‖21 ≤ k‖L∆‖2. Hence, we have

ζj‖∆‖1 = ζj‖∆|S∗‖1 + ζj‖∆|S∗c‖1
≤ 2ζj‖∆|S∗‖1 + γj − ‖L∆j‖2

≤ 2ζj‖∆|S∗‖1 + γj − φ20‖∆|S∗‖21/k
≤ kζ2j /φ20 + γj ≤ 3kζ2j /φ

2
0 + 3γj ,

where the first, second, and third inequalities come from (27), the compatibility condition, and
completing the square.

Case (ii) γj > ζj‖∆|S∗‖1:
From (27) and γj ≤ ζj‖∆|S∗‖1, we have

ζj‖∆‖1 = ζj‖∆|S∗‖1 + ζj‖∆|S∗c‖1 ≤ 2ζj‖∆|S∗‖1 + γj ≤ 3γj .

From the argument on cases (i) and (ii), we have ζj∆ = ζj‖wj −w∗‖1 ≤ 3kζ2j /φ
2
0 + 3γj . Taking

the sum over j = 1, 2, . . . , t, we have
t∑

j=1

ζj‖wj −w∗‖1 ≤
3k

φ20

s∑
j=1

ζ2j + 3

s∑
j=1

γj .

Here, from Lemma 10, for all δ > 0, the value
∑s
j=1 γj can be bounded as

s∑
j=1

γj =

s∑
j=1

(‖L(wj −w∗)‖2 + ζj(‖wj‖1 − ‖w∗‖1))

≤
s∑
j=1

(ĝ>j (wj −w∗) + ζj(‖wj‖1 − ‖w∗‖1)) + 3δ

with probability at least 1−3 exp
(
−δ2
Cs

)
. Further, from Lemma 9 the right-most side can be bounded

as
s∑
j=1

(ĝ>j (wj −w∗) + ζj(‖wj‖1 − ‖w∗‖1)) + 3δ

≤
s∑
j=1

1

λj
‖ĝj‖2 +

1λs+1

2
+ 3δ ≤

s∑
j=1

16

λj
+

1λs+1

2
+ 3δ

20

with probability one. Summarizing the above argument, it holds that

ηs‖w̄s −w∗‖ ≤ 3k

φ20

s∑
j=1

ζ2j + 3

s∑
j=1

16

λj
+

3λs+1

2
+ 9δ

with probability at least 1 − 3 exp
(
−δ2
Cs

)
. By assigning λj = 2G

√
j and ζj = φ0

√
G/kj−

1
4 , we

obtain Lemma 14.

Regret bound of Algorithm 3 We prove that Algorithm 3 achieves O(
√
dT) regret assuming the

compatibility condition. Recall that St is the set of the k largest features with respect to w̄s, From
Lemma 14, St contains S∗ with high probability as follows.
Lemma 15. Let G and C be constants defined as in Section B. Let {λj} and {ζj} be sequences

defined as in Lemma 14. For any i ∈ S∗ and t = ts, . . . , ts+1−1, if δ := 1
27 (4φ0(s

3
4−1)|w∗i |

√
4
Ck−

144
C

√
s+ 1) > 0, then we have Prob[i /∈ St] ≤ 3 exp(−C

2δ2

128s).

Proof. If a feature i satisfies i ∈ S∗ \St, it holds that ‖w̄s−w∗‖1 ≥ |w∗i |, which can be confirmed
as follows. Since |S∗| = |St|, i ∈ S∗ \St means that there exist j ∈ St \S∗ such that |w̄sj | > |w̄si|,
which implies that ‖w̄s−w∗‖1 ≥ |w̄si−w∗i |+|w̄sj−w∗j | = |w̄si−w∗i |+|w̄sj | ≥ |w̄si−w∗i |+|w̄si| ≥
|w∗i |, where the first equality comes from j /∈ S∗, the second inequality comes from |w̄sj | > |w̄si|,
and the third is the triangle inequality. Hence, we have

Prob[i /∈ St] ≤ Prob[‖w̄s −w∗‖1 ≥ |w∗i |].

From Lemma 14, if δ := 1
27 (4φ0(s

3
4 − 1)

√
G/k|w∗i | − 36G

√
s+ 1) ≥ 0, we have

Prob[‖w̄s −w∗‖1 ≥ |w∗i |] ≤ 3 exp(
−δ2

Cs
)

for i ∈ S∗. The above two inequalities yield Lemma 15.

Proof of Theorem 7

Proof. The outline of the proof is similar to that of Theorem 6. From Lemma 13, we obtain

E[RT (w∗)] ≤ 4

T∑
t=1

∑
i∈S∗
|w∗i |Prob[i /∈ St] + 8

√
T + 1, (28)

in a similar way to the proof of Theorem 6.

Next, we give a upper bound on
∑T
t=1 Prob[i /∈ St] for i ∈ S∗ by using Lemma 15. Define γ(s) =

2|w∗i |φ0
√
G/k − 4|w∗i |φ0

√
G/ks−

3
4 − 36Gs−

3
4

√
s+ 1. If s is large enough so that γ(s) ≥ 0,

from Lemma 12, we have Prob[i ∈ St] ≤ 3 exp(− 4
√
s|w∗i |

2φ2
0G

272Ck). Note that if s ≥ 4·364G2k2

w∗4i φ
4
0

=: κi,

it holds that γ(s) > 0, from the definition of γ(s). Further, since s ≥
√
t − 1 in each step t, if

√
t − 1 ≥ κi, we have Prob[i ∈ St] ≤ 3 exp(− 4

√√
t−1|w∗i |

2φ2
0G

272Ck). From this property of St, by a
similar argument to the proof of Theorem 6, we have

T∑
t=1

Prob[i /∈ St] ≤ 2
√
T + (κi + 1)2 + 3T exp(−4

√
T

1
4 − 1|w∗i |2φ20G

272Ck
).

By combining this inequality with (28), we obtain

E[RT (w∗)] ≤ 8
∑
i∈S∗
|w∗i |
√
T + 8

√
T + 1

+
∑
i∈S∗
|w∗i |((κi + 1)2 + 3T exp(−4

√
T

1
4 − 1|w∗i |2φ20G

272Ck
)).

The first term of the right-hand side can be bounded as 4
∑
i∈S∗ |w∗i |

√
T = ‖w∗‖14T ≤√

d8
√
T + 1 because ‖w∗‖ ≤ 1. Further, substituting κi = 4·364G2k2

w∗4i φ
4
0

, we obtain Theorem 6.

21

F More Experiments

In this section, we provide supplementary descriptions of our experiments.

Experimental environment. The experiments were performed on a server with Intel Xeon E5-
2680 v3 CPUs. All algorithms are implemented in Python.

The generation procedure of synthetic datasets. We first create the ground-truth weight vector
wtrue by choosing a set Sk of k features from [d] uniformly at random, and setting wtrue,i ∈ [−1, 1]
for i ∈ Sk and wtrue,i = 0 otherwise. For each t ∈ T , we generate xt by sampling xt,i (i ∈ [d])
from N (0, 1) and set yt = w>truext + 0.5z, where z is sampled from N (0, 1).

Preprocessing of CT-slice datasets. We deal with features that are outside of an image as those
having a value of zero. The sequence of the dataset is randomly shuffled to avoid the effects of
biased sequences of images. The maximum number of positive features in one image is 165, the
minimum is 9, and the average is 73. Thus, we set k to be 60, 70, or 90 in this paper.

Results on synthetic datasets. Figures 4, 5 show typical results for some instance with
(d, k, k′) = (20, 5, 7). We remark that Figure 1 in the main body plots the regrets for only the
first 5000 iterations. We observe that our algorithms achieve small regrets at the end of iterations.
Figure 5 indicates that the increase in the regrets of our algorithms is smaller than baseline algo-
rithms for large T . We remark that FKK is executed for 5000 iterations because the run time is
too expensive compared with the others. However, Figure 1, which plots regrets for the first 5000
iterations, shows that the increase in the regrets for FKK is similar to greedy and uniform-random.
Thus, we can expect that our algorithms perform much better than all baseline algorithms.

0 1000 2000 3000 4000 5000
T

0

1000

2000

3000

4000

5000

6000

7000

R T

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR
FKK

Figure 4: The regrets for a synthetic instance
with (d, k, k′) = (20, 5, 7).

100 101 102 103 104

T

101

102

103

104

R T

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR
FKK
C ⋅ ȂT

Figure 5: The log-log plots of the regrets for a
synthetic instance with (d, k, k′) = (20, 5, 7).

We compute the averages of final regrets and execution times for each combination of d ∈
{10, 20, 50, 100}, k ∈ {2, 5, 10}, and k′ ∈ {k + 2, k + 5, k + 10}. For each combination of
(d, k, k′), we executed all algorithms on five instances with T = 5000. Tables 4 and 5 summarize
the average regrets and execution times. In the tables, “T” denotes that we do not execute FKK due
to the expensive run time. We observe that Algorithm 1 performs best for almost all cases. Our algo-
rithms, greedy, and uniform-random can all process each round about three times as fast as AELR.
Thus, we can say that our algorithms outperform the others in terms of both regrets and execution
times.

Results on CT-slice datasets. We present results with (k, k′) = {(60, 70), (70, 80), (90, 95)} in
Figures 6, 7, and 8, respectively. We observe that Algorithms 2 and 3 perform best. The increases
in the regrets of our algorithms are much smaller than those of uniform-random and AELR. Greedy
performs well at the beginning, but the performance degrades at the end.

22

Table 4: Average regrets RT /102 (A1 = Algorithm 1, A2 = Algorithm 2, A3 = Algorithm 3, G =
greedy, U = uniform random).

(d, k, k′) A1 A2 A3 G U AELR FKK
(10,2,4) 1.53 2.38 3.60 33.28 25.73 60.76 24.05
(10,2,7) 1.45 4.73 1.84 39.62 16.45 66.60 5.92
(10,5,7) 3.35 46.18 16.74 79.38 44.46 145.87 57.89
(20,2,4) 6.03 7.31 13.63 16.52 14.89 37.15 14.90
(20,2,7) 1.03 5.99 5.03 8.13 6.07 17.16 6.65
(20,2,12) 0.81 3.11 3.13 8.18 4.47 16.49 6.46
(20,5,7) 15.45 83.53 49.58 49.37 80.55 138.05 83.50
(20,5,10) 6.10 43.15 17.20 16.18 65.08 140.03 T
(20,5,15) 4.00 9.81 8.40 7.93 34.23 140.12 T

(20,10,12) 15.00 40.86 24.76 21.38 104.63 254.52 T
(20,10,15) 6.79 5.14 9.97 10.08 71.74 283.76 T
(100,2,7) 41.09 42.13 49.67 49.78 47.42 83.70 T

(100,2,12) 25.90 51.34 50.13 50.66 46.82 84.11 T
(100,5,7) 133.54 118.23 119.17 119.51 113.17 214.84 T

(100,5,10) 74.06 118.95 106.78 120.12 112.51 217.52 T
(100,5,15) 62.45 104.57 84.52 122.71 111.60 211.22 T

(100,10,12) 295.95 225.06 203.04 227.81 214.09 366.71 T
(100,10,15) 159.95 213.20 159.35 198.82 212.39 423.73 T
(100,10,20) 85.89 225.77 199.80 193.25 207.16 372.67 T

Table 5: Average run time [s] (A1 = Algorithm 1, A2 = Algorithm 2, A3 = Algorithm 3, G = greedy,
U = uniform random).

(d, k, k′) A1 A2 A3 G U AELR FKK
(10,2,4) 0.54 0.48 0.49 0.49 0.57 4.90 3.30
(10,2,7) 0.81 0.50 0.51 0.63 0.89 5.03 3.50
(10,5,7) 0.69 0.50 0.51 0.62 0.87 5.09 18.97
(20,2,4) 0.60 0.53 0.52 0.55 0.64 6.19 13.11
(20,2,7) 0.87 0.54 0.59 0.66 0.93 6.20 13.01

(20,2,12) 1.63 0.57 0.66 1.10 1.76 6.31 14.03
(20,5,7) 0.71 0.48 0.47 0.61 0.87 5.46 1021.51

(20,5,10) 1.08 0.52 0.52 0.81 1.31 5.93 T
(20,5,15) 2.01 0.56 0.56 1.26 2.37 6.04 T
(20,10,12) 1.13 0.56 0.54 1.00 1.73 6.36 T
(20,10,15) 1.73 0.61 0.63 1.34 2.51 6.83 T
(100,2,4) 1.09 0.83 0.82 0.88 1.10 11.59 T
(100,2,7) 1.36 0.92 0.89 1.06 1.46 12.37 T
(100,2,12) 2.12 0.95 0.90 1.35 2.21 12.06 T
(100,5,7) 1.21 0.86 0.84 1.00 1.37 11.52 T
(100,5,10) 1.58 0.88 0.86 1.18 1.80 11.62 T
(100,5,15) 2.46 0.94 0.90 1.59 2.81 11.52 T

(100,10,12) 1.61 0.89 0.88 1.33 2.16 11.98 T
(100,10,15) 2.13 0.93 0.94 1.61 2.81 12.39 T
(100,10,20) 3.29 1.00 1.00 2.16 4.24 12.66 T

23

0 10000 20000 30000 40000 50000
T

0.00

0.25

0.50

0.75

1.00

1.25

1.50

T ∑ t=
0(

̂ y t
−
y t
)2

1e8

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR

Figure 6: The square loss for CT-slice datasets
(k = 60, k′ = 70).

0 10000 20000 30000 40000 50000
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T ∑ t=
0(

̂ y t
−
y t
)2

1e8

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR

Figure 7: The square loss for CT-slice datasets
(k = 70, k′ = 80).

0 10000 20000 30000 40000 50000
T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T ∑ t=
0(

̂ y t
−
y t
)2

1e8

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR

Figure 8: The square loss for CT-slice datasets (k = 90, k′ = 95).

24

	Introduction
	Problem setting
	Extra assumptions on features of examples
	Algorithm with extra observations and linear independence of features
	Algorithms without extra observations
	Algorithm 2: Assuming (a) the linear independence of features
	Algorithm 3: Assuming (b) the compatibility condition

	Experiments
	Proof of Theorem 1
	Preliminary lemmas
	Proofs of the lemmas in Section 4
	Proof of Lemma 4
	Proof of Lemma 5

	Details of Algorithm 2
	Details of Algorithm 3
	More Experiments

