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Abstract

We provide more details regarding the main experiments presented in the main
paper. We also present additional results on the large scale semi-synthetic data
and finally present results of a short ablation study on a separate protocol for the
IARPA IJB-A Janus dataset. Note that throughout this supplementary and the main
paper we always test on completely unseen subjects. On the theoretical side, we
provide proofs of the analytical results in the main paper.

1 Main Experiments: Detailed notes supplementing the main paper.

A. MMIF on a large-scale semi-synthetic mugshot database (Raw-pixels and deep features).

MMIF template set TG and X . We utilize a large-scale semi-synthetic face dataset to generate
the sets TG and X for MMIF. The face textures are sampled from real-faces although the poses are
rendered using 3D model fit to each face independently, hence the dataset is semi-synthetic. This
semi-synthetic dataset helps us to evaluate our algorithm in a clean setting, where there exists only
one challenging nuisance transformation (pose variation). Therefore G models pose variation in faces.
We utilize the same pose variation dataset generation procedure as described in [4] in order for a fair
comparison. The poses were rendered varying from −40◦ to 40◦ (yaw) and −20◦ to 20◦ (pitch) in
steps of 5◦ using 3D-GEM [6]. The total number of images we generate is 153× 1000 = 153, 000
images. We align all faces by the two eye-center locations in a 168× 128 crop.

Protocol. Our first experiment is a direct comparison with approaches similar in spirit to ours, namely
`∞-DIKF and `1-DIKF [4] and NDP-`∞ and NDP-`1 [3, 1]. We train on 250 subjects (38,250 images)
and test each method on the remaining 750 subjects (114,750 images), matching all pose-varied
images of a subject to each other. DIKF follows the same protocol as in [4]. For MMIF, we utilize
the first 125× 153 images (125 subjects with 153 poses each) as TG and the next 125× 153 images
as X . A total of 500 SVMs were trained on subsets of X (10 randomly chosen subjects per SVM
with all images of 3 of those 10 subjects, again randomly chosen, being +1 and the rest being −1).
Note that although X in this case contains pose variation, we do not integrate over them to generate
invariance. All explicit invariance properties are generated through integration over TG . For testing,
we compare all 153 images of the remaining unseen 750 subjects against each other (114,750 images).
The algorithms are therefore tested on about 13 billion pair wise comparisons. Results are reported as
ROC curves along with VR at 0.1% FAR. For this experiment, we report results working on 1) raw
pixels directly and 2) 4096 dimensional features from the pre-trained VGG-Face network [5]. As a
baseline, we also report results on using the VGG-Face features directly.

Results. Fig.3(a) shows the ROC curves for this experiment. We find that MMIF features out-perform
both DIKF and NDP approaches thereby demonstrating superior discriminability while being able to
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effectively capture pose-invariance from the transformed template set TG . We find that VGG-Face
features suffer a handicap due to the images being grayscale. Nonetheless, MMIF is able to transfer
pose-invariance from TG onto the VGG features. This significantly boosts performance owing to the
fact that the main nuisance transformation is pose. MMIF being explicitly pose invariant along with
solving the Unlabeled Transformation Problem is able to help VGG features while preserving the
discriminability of the VGG features. In fact, the max-margin SVMs further add discriminability.
This illustrates in a clean setting (dataset only contains synthetically generated pose variation as
nuisance transformation), that MMIF is able to work well in conjunction with deep learning features,
thereby rendering itself immediately usable in more realistic settings. Our next set of experiments
focus on this exact aspect.

B. MMIF on LFW (deep features).

Unseen subject protocol. LFW [2] has received a lot of attention in the recent years, and algorithms
have approached near human accuracy on the original testing protocol. In order to be able to
effectively train under the scenario of general transformations and to challenge our algorithms, we
define a new much harder protocol on LFW. Instead of evaluating on about 6000 pair wise matches,
we pair wise match on all images of subjects not seen in training. We have no way of modelling these
subjects whatsoever, making this a difficult task. We utilize 500 subjects and all their images for
training and test on the remaining 5249 subjects and all of their images. To use maximum amount of
data for training, we pick the top 500 subjects with the most number of images available (about 6,300
images). The test data thus contains about 7000 images. The number of test pairwise matches is
about 49 million, four orders of magnitude larger than the 6000 matches that the original LFW testing
protocol defined. The evaluation metric is defined to be the standard ROC curve with verification rate
reported at 0.1% false accept rate.

MMIF template set TG and X . We split the 500 subjects data into two parts of 250 subjects each.
We use the 250 subjects with the most number of images as transformed template set TG and use the
rest of the 250 subjects as X . Note that in this experiment, the transformations considered are very
generic and highly non-linear making it a difficult experiment. We do not use any alignment for this
experiment, and the faces were cropped according to [7].

Protocol. For MMIF, we process the kernel features from the transformed template set T G exactly
as in the previous experiment A. Similarly, we learn a total of 500 SVMs on subsets of X following
the same protocol as the previous experiment.

Results. Fig.3(b) shows the results of this experiment. We see that MMIF on VGG features
significantly outperforms raw VGG on this protocol, boosting the VR at 0.1% FAR from 0.56 to
0.71. This suggests, that MMIF can be used in conjunction with pre-trained deep features. In
this experiment, MMIF capitalizes on the non-linear transformations that exist in LFW, whereas
in the previous experiment on the semi0synthetic dataset (Experiment A), the transformation was
well-defined to be pose variation. This demonstrates that MMIF is able to generate invariance for
highly non-linear transformations that are not well-defined rendering it useful in real-world scenarios
where transformations are unknown but observable.

2 Additional Experiments

2.1 Large-scale Semi Synthetic Mugshot Data

Motivation: In the main paper, the transformations were observed only through unlabeled TG while
X is only meant to provide labeled untransformed data. However, during our expeirments in the main
paper, even though we do not explicitly pool over the transformationsX , we utilize all transformations
for training the SVMs. In order to be closer to our theoretical setting, we now run MMIF on raw
pixels and VGG-Face features [5] while constraining the number of images the SVMs train on to 30
random images for each subject.

MMIF Template set TG and X : We utilize a large scale semi-synthetic face dataset to generate
the template set TG for MMIF. The face textures are sampled from real faces and the poses are
rendered using a 3D model fit to each face independently, making the dataset semi-synthetic. This
semi-synthetic dataset helps us evaluate our algorithm in a clean setting, where there exists only one
challenging nuisance transformation (pose variation). Therefore G models pose variation in faces.
We utilize the same pose variation dataset generation procedure as described in [4] in order for a fair
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comparison. The poses were rendered varying from −40◦ to 40◦ (yaw) and −20◦ to 20◦ (pitch) in
steps of 5◦ using 3D-GEM [15]. The total number of images we generate is 153 x 1000 = 153,000
images. We align all faces by the two eye-center locations in a 168×128 crop. Unlike our experiment
presented in the main paper on this dataset, the template set X is constrained to include only 30
randomly selected poses that TG contained . This is done to better simulate a real-world setting where
through X we would only observe faces at a few random poses.
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Figure 1: Pose-invariant face recognition results on the
semi-synthetic large-scale mugshot database (testing on
114,750 images). Operating on deep features: MMIF-
cons-VGG trained on VGG-Face features [5] produces a
significant improvement in performance over pure VGG
features even though it utilizes a constrained X set. Inter-
estingly, MMIF-cons-VGG almost matches performance
of MMIF-VGG while using less data. The numbers in
the brackets represent VR at 0.1% FAR. MMIF-cons
was trained on the entire TG but only 30 random trans-
formations per subject in the X .

Protocol: This experiment is a direct compar-
ison with approaches similar in spirit to ours,
namely l∞-DIKF and l1-DIKF [4] and NDP-
l∞ and NDP-l1 [3, 1]. We call this setting for
MMIF as MMIF-cons (constrained) for refer-
ence. We train on 250 subjects (38,250 images)
and test each method on the remaining 750 sub-
jects (114,750 images), matching all pose-varied
images of a subject to each other. DIKF follows
the same protocol as in [4].

For MMIF, we utilize the first 125 x 153 images
(125 subjects with 153 poses each) as the tem-
plate set TG . Thus, TG remains exactly the same
as the protocol in the main paper. The template
set X is generated by choosing 30 random poses
(for every subject) of the next 125 subjects. A
total of 500 SVMs are trained on X with a ran-
dom subset of 5 subjects being labeled +1 and
the rest labeled -1. It’s important to note that
since X does not contain transformations that
are observed in its entirety, all explicit invariance
properties are generated through integration over
TG .

For testing, we follow the same protocol as in
the main paper. We compare all 153 images
of the remaining unseen 750 subjects against
each other (114,750 images). The algorithms
are therefore tested on about 13 billion pair wise comparisons. Results are reported as ROC curves
along with the VR at 0.1% FAR. For this experiment, we report results working on 1) raw pixels
directly and 2) 4096 dimensional features from the pre-trained VGG-Face network [5]. As a baseline,
we also report results on using the VGG-Face features directly.

Results: Fig. 1 shows the ROC curves for this experiment. We find that even though we train SVMs
for MMIF-cons-VGG on a constrained version of X , it outperforms raw VGG features. Although,
we do observe that MMIF-cons-raw outperforms NDP methods thereby demonstrating superior
discriminability, it fails to match the original MMIF-raw method performance. Interestingly however,
MMIF-cons-VGG matches MMIF-VGG features in performance despite being trained on much lesser
data (30 instead of 153 images per subject). Thus, we find that MMIF when trained on a good feature
extractor can provide added benefits of discrimination despite having lesser labeled samples to train
on.

2.2 IARPA IJB-A Janus

In this experiment, we explore how the number of SVMs influences the recognition performance on a
large scale real-world dataset, namely the IARPA Janus Benchmark A (IJB-A) dataset.

Data: We work on the verification protocol (1:1 matching) of the original dataset IJB-A Janus.
This subset consists of 5547 image templates that map to 492 distinct subjects with each template
containing (possibly) multiple images. The images are cropped with respect to bounding boxes that
are specified by the dataset for all labeled images. The cropped images are then re-sized to 244 x 244
pixels in accordance with the requirements of the VGG face model. Explicit pose invariance (MMIF)
is then applied to these general face descriptors.
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MMIF Template set TG and X : In order to effectively train under the scenario of general transfor-
mations, we define a new protocol the Janus dataset similar to the LFW protocol defined in the main
paper. This protocol is suited for MMIF since we explicitly generate invariance to transformations
that exist in Janus data. We utilize the first 100 subjects and all the templates that map to these
subjects (23723 images) for training MMIF and test on the remaining 392 subjects (27363 images).
To make use of the maximum amount of data for training, we pick the top 100 subjects with the
most number of images, the rest are all utilized for testing. Our training dataset is further split into
templates TG and X similar to our LFW protocol in the main paper. We use the first 50 subjects
(of the top 100 subjects) as TG and the rest as X in order to maximize the transformations that we
generate invariance towards. To showcase the ability of MMIF to be used in conjunction with deep
learning techniques, similar to our LFW experiment in the main paper, we train and test on VGG-Face
features [5] on the Janus data.
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Figure 2: Results of MMIF trained on VGG-Face fea-
tures on the IARPA IJB-A Janus dataset for 100, 250
and 500 SVMs. The number in the bracket denotes VR
at 0.1% FAR.

Protocol: As in our LFW experiment, we split
the training data into two templates - TG and X .
Similarly to all MMIF protocols in this paper,
we train a total of 100, 250 and 500 SVM’s on
subsets of X following the same protocol. We
perform pairwise comparisons for the entirety
of the test data (∼ 750 million image compar-
isons) which far exceeds the number of com-
parisons defined in the original testing proto-
col (∼ 110, 000 template comparisons) thereby
making this protocol much larger and harder.
Recall that throughout this supplementary and
the main paper we always test on completely
unseen subjects. The evaluation metric is de-
fined to be the standard ROC curve using cosine
distance.

Results: Fig. 2 shows the ROC curves for this
experiment with new much larger and harder
protocol. We find that even with just 100 SVMs
or 100 max-margin feature extractors, the perfor-
mance is close to that of 500 feature extractors.
This suggests, that though the SVMs provide enough discrimination, the invariant kernel provides
bulk of the recognition performance by explicitly being invariant to the transformations in the TG .
Hence, our proposed invariant kernel is effective at learning invariance towards transformations
present in a unlabeled dataset. We provide these curves as baselines for future work focusing on the
problem on learning unlabeled transformations from a given dataset.

3 Proofs of theoretical results

3.1 Proof of Lemma 2.1

Proof. We have,

g′
∫
G
gω dg =

∫
G
g′gω dg =

∫
G
g′′ω dg′′ =

∫
G
gω dg

Since the normalized Haar measure is invariant, i.e. dg = dg′. Intuitively, g′ simply rearranges the
group integral owing to elementary group properties.

3.2 Proof of Lemma 2.2

Proof. We have,

ΨT = (

∫
G
g dg)T =

∫
G
gT dg =

∫
G
g−1 dg−1 = Ψ

Using the fact g ∈ G ⇒ g−1 ∈ G and dg = dg−1.
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3.3 Proof Lemma 2.3

Proof. We have,

ΨΨ =

∫
G

∫
G
gh dg dh (1)

=

∫
G

∫
G
g′dg′dh (2)

=

∫
G
dh

∫
G
g′dg′ (3)

= Ψ (4)

Since the Haar measure is normalized (
∫
G dg = 1), and invariant. Also for any ω, ω′ ∈ Rd, we have

〈ω,Ψω′〉 =
∫
G〈ω, gω

′〉dg =
∫
G〈g
−1ω, ω′〉dg−1 = 〈Ψω, ω′〉

3.4 Proof of Theorem 2.4

Proof. We have 〈φ(gx), φ(gy)〉 = 〈φ(x), φ(y)〉 = 〈gHφ(x), gHφ(y)〉, since the kernel k is unitary.
Here we define gHφ(x) as the action of gH on φ(x). Thus, the mapping gH preserves the dot-product
in H while reciprocating the action of g. This is one of the requirements of a unitary operator,
however gH needs to be linear. We note that linearity of gH can be derived from the linearity of the
inner product and its preservation under gH inH. Specifically for an arbitrary vector p and a scalar
α, we have

||αgHp− gH(αp)||2 (5)
= 〈αgHp− gH(αp), αgHp− gH(αp)〉 (6)

= ||αgHp||2 + ||gH(αp)||2 − 2〈αgHp, gH(αp)〉 (7)

= |α|||p||2 + ||αp||2 − 2α2〈p, p〉 = 0 (8)

Similarly for vectors p, q, we have ||gH(p+ q)− (gHp+ gHq)||2 = 0

We now prove that the set GH is a group. We start with proving the closure property. We have for any
fixed gH, g′H ∈ GH

gHg
′
Hφ(x) = gHφ(g′x) = φ(gg′x) = φ(g′′x) = g′′Hφ(x)

Since g′′ ∈ G therefore g′′H ∈ GH by definition. Also, gHg′H = g′′H and thus closure is established.
Associativity, identity and inverse properties can be proved similarly. The set GH = {gH | gH :
φ(x)→ φ(gx) ∀g ∈ G} is therefore a unitary-group inH.

3.5 Proof of Theorem 2.5

Proof. Since ΨHω
∗ is a perfect separator for {ΨHφ(X )}, ∃ρ′ > 0, s.t.

mini yi(ΨHφ(xi))
T (ΨHω

∗) ≥ ρ′ ∀{xi, yi} ∈ X .

Using Lemma 2.4 and Theorem 2.5, we have for any fixed g′H ∈ GH,

(ΨHφ(xi))
T (ΨHω

∗) = (g′Hφ(xi))
T (ΨHω

∗)

Hence,

min
i
yi(g

′
Hφ(xi))

T (ΨHω
∗) (9)

= min
i
yi(ΨHφ(xi))

T (ΨHω
∗) ≥ ρ′ ∀(g′H ⇒ g) ∈ G (10)

Thus, ΨHω
∗ is perfect separator for {φ(XG)} with a margin of at-least ρ′. It also implies that a

max-margin separator of {ΨHφ(X )} is also a max-margin separator of {φ(XG)}.
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3.6 Proof of Lemma 2.6

Proof. We have 〈Ψx′,Ψω′〉 = 〈
∫
g
gx′,Ψω′〉dg = 〈

∫
g
g′x′,Ψω′〉dg = 〈g′x′,Ψω′)

∫
g
dg =

〈g′x′,Ψω′〉
In the second equality, we fix any group element g′ ∈ G since the inner-product is invariant using
the argument 〈ω,Ψω′〉 = 〈g′ω,Ψω′〉. This is true using Lemma 2.1 and the fact that G is unitary.
Further, the final equality utilizes the fact that the Haar measure dg is normalized.

3.7 Proof of Theorem 3.1

Proof. Given TG and X , the MMIF feature is defined as MMIF(x′) ∈ RK for any test x′ with
each dimension k being computed as 〈l(x′), ωk〉 for ωk =

∑
j yjαj l(xj) ∀xj ∈ X . Further,

l(x′) ∈ RM ∀x with each dimension i being l(x′)i = 〈φ(x′),ΨHφ(ti)〉. Here, ΨH =
∫
GH gHdgH

where gH in the RKHS corresponds to the group action of g ∈ G acting in the space of X .

We therefore have for the ith dimension of l(x′),

l(x′)i = 〈φ(x′),ΨHφ(ti)〉 (11)

= 〈φ(x′),

∫
GH

gHφ(ti)dgH〉 (12)

= 〈φ(x′),

∫
GH

g′−1H gHφ(ti)dgH〉 (13)

= 〈φ(x′), g′−1H

∫
GH

gHφ(ti)dgH〉 (14)

= 〈g′Hφ(x′),

∫
GH

gHφ(ti)dgH〉 (15)

= 〈φ(g′x′),ΨHφ(ti)〉 (16)

= l(g′x′)i ∀g′ ∈ G (17)

Here, in line 13 we utilize the closure property of a group (since gH forms a group according to
Theorem 2.4). Line 15 utilizes the fact that gH is unitary, and finally line 16 uses Theorem 2.4. Hence
we find that every element of l(x′) is invariant to G observed only through TG , and thus trivially,
MMIF(x′) = MMIF(g′x′) for any g′ ∈ G observed only through TG .
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