
Supplementary material

A Trickle discussion and algorithms

A.1 First-timestamp estimator

We repeat Theorem 3.1 for ease of reading:

Theorem A.1 Consider a message that propagates according to trickle spreading over a d-regular

tree of servers, where each node additionally has ✓ connections to an eavesdropping adversary.

The first-timestamp estimator’s probability of detection at time t = 1 satisfies P(MFT(⌧ , G) =
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exponential integral.

We can approximate the asymptotic behavior of this theorem for large d by using the exponential
integral’s Taylor expansion. First, we note that when d is large, Ei(2d log ⇢) ⇡ 0, so we have
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where � ⇡ 0.577 is the Euler-Mascheroni constant [33], and (3) comes from substituting the
exponential integral by its Taylor expansion for real arguments [5]. Line (4) holds because as d!1,
⇢ ⇡ 1

1+✓/d

, and (5) holds because as d!1, log(1 + ✓

d

) ⇡ ✓

d

.

A.2 Maximum-likelihood estimator: timestamp rumor centrality

As described in Section 3.2, timestamp rumor centrality is a message-passing algorithm. Leaves of
the candidate infected subgraph pass partial orderings of the nodes’ infection times back to the root
(i.e., the candidate source). In practice, we do not pass the entire partial ordering; we can instead
store the number of distinct partial orderings for the subtree rooted at each child, indexed by each
feasible time of receipt for the child (there are O(d) feasible times of receipt). This reduces the
overall computational complexity to O((2d)d|V |): each node passes a message of size O(d) to its
parent, and each parent takes a Cartesian product of its children’s messages. The whole procedure is
run for each candidate source, of which there are O(2

d

), since the true source has a timestamp of at
most d+ 1. The full protocol is given in Figure 9. Figure 9 assumes that the adversary has only one
link per honest server, so ✓ = 1. This is easily extended to general ✓.

In practice, timestamp rumor centrality seems to achieve a fundamental upper bound on probability
of detection. Figure 8 shows the probability of detection of timestamp rumor centrality, as a function
of d, for ✓ = 1. The estimator is run at time t = d+1. Even at such small timestamps, the probability
of detection is empirically close to the upper bound in (1).

A.2.1 Ball centrality

The full protocol for ball centrality is included in Protocol 1 below.
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Protocol 1 BALL CENTRALITY. Returns a source estimate whose location is consistent with
timestamps ⌧ on tree G. h(v, w) denotes the hop distance between v and w.

Input: Timestamps ⌧ , graph G(V,E)

Output: Source estimate v̂ 2 V
1: W  V
2: for v 2 V do . Find the intersection of feasible balls
3: W  W \ {w 2 V : h(w, v)  ⌧

w

� 1}
4: v̂ ⇠ Unif(W )

B Diffusion discussion and algorithms

We wish to highlight the connection between reporting centrality and rumor centrality [30]. Rumor
centrality is an ML estimator for determining the source of a diffusion process under a snapshot
adversary. Recall that a snapshot adversary gets to see which nodes are infected at estimation time
t, but it does not see any timestamps. Rumor centrality counts the number of feasible orderings
for each candidate source that could have generated the observed snapshot. Since [30] considers a
continuous-time system with exponential delays, rumor centrality does need to account for concurrent
events.

Rumor centrality exhibits a key property on trees: a node v is a rumor center of a tree-structured
infected subgraph G

t

if and only if each of the d adjacent subtrees adjacent has no more than N(t)/2
nodes in it [30]:

max

u2N (v)

N
T

v

u

(t)  N(t)

2

.

Moreover, there exists at least one and at most two rumor centers in a tree, and the true source has
a strictly positive probability of being a rumor center on regular trees and geometric random trees
[30]. In our case, we cannot use rumor centrality directly because the true infected nodes are not
all observed at any point in time t. We construct the reporting centrality estimator by applying a
condition like the one for rumor centrality to the reporting nodes, rather than the infected nodes.

The techniques used to analyze diffusion under an eavesdropper adversary can also be used to study
the spy-based adversary. The ML probability of detection for the spy-based adversary on regular
trees has evaded exact analysis [11], though several heuristics have been found to work well [25, 34].
A simple lower bound on the ML probability of detection comes from analyzing the first-timestamp
estimator for the spy-based adversary [11]. This gives

lim inf

t!1
P(M

FT

(⌧ , G) = v⇤) � p, (6)
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Figure 8: Timestamp rumor centrality (ML estimator) accuracy on d-regular trees when the adversary
has one link per server (✓ = 1). The estimator is run at time t = d+ 1.
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Figure 9: TIMESTAMP RUMOR CENTRALITY. Returns the timestamp rumor centrality of candidate
source v, given timestamps ⌧ on tree G. �(w) denotes the children of node w on a tree T rooted at v.
@T denotes the leaves of tree T .

Input: Timestamps ⌧ , graph G, candidate
source v, estimation time t � d+ 1

Output: Number feasible orderings from source
v, f

v

1: [d+ 1] , {1, . . . , d+ 1}
2: m

vv

 {0}
3: . Two global variables, T and C:
4: T  balanced tree of radius t, center v, over

graph G
5: C  dictionary of number of feasible partial

orderings for each feasible (w, ˆX
w

) pair
6: c =PASSTOLEAVES(v, v, {0}, T )
7: return c . Timestamp rumor centrality for v
8:
9: function PASSTOLEAVES(z, w,m, T ) .

Each node learns its possible receipt times,
recursively

10: m(w) m \ {t 2 m : t � ⌧
w

} .
Remove late times

11: Node w saves m(w) outside function
scope

12: if w 2 @T then
13: for t0 2 m do
14: C[w][t0] 1 . Number of partial

orderings with w infected at time t0

15: else
16: m0  [

i2m(w)

{i+ j : j 2 [d+ 1]}
17: m0  m0 \ {⌧

w

}
18: for y 2 �(w) do
19: PASSTOLEAVES(w, y,m0

)

20: AGGREGATEMESSAGES(w,�(w))

21: if z = w = v⇤ then
22: return C[v⇤][0]
23:
24: function AGGREGATEMESSAGES(z,�(z), T )

. Counts the number of valid orderings by
passing messages that represent the set of
feasible orderings

25: N  [z,�(z)] . Ordered list of parent
and children

26: M  
Q

u2�(z)

m(u)

27: .
Q

denotes Cartesian set product,
where A⇥B , {(a, b) : a 2 A, b 2 B}

28: M  m(w)⇥M .
Prepends the current node’s feasible receipt
times to the Cartesian product

29: M  {m 2 M :

[(m
1

, . . . ,m
d

) distinct]^ [|m
i

�m
j

| d+1

for all i, j] ^[m
1

< m
i

for all i > 1]}
30: . Removes

ordered tuples where neighbors receive the
message at the same time, are too far apart
to be feasible, or parent gets message after
children. m

i

denotes ith element of ordered
tuple m

31: for m 2M do
32: q  

Q
d

i=2

C[N
i

][m
i

] . Compute
the number of permutations by multiplying
counts from each child node

33: C[z][m
1

] C[z][m
1

] + q

34: return

since with probability p, the first node to receive the message is a spy. Although reporting centrality
is a suboptimal source estimator for the eavesdropper adversary, it is straightforward to analyze and
can be used to obtain lower bounds on the probability of detection for the spy-based adversary.

Using reporting centrality and similar proof techniques to Theorem 4.2, we can lower-bound the
spy-based adversary’s ML probability of detection as time t!1.

Corollary B.1 Consider a diffusion process of rate � = 1 over a d-regular tree. Suppose this process

is observed by an spy-based adversary, which sees the exact timestamp of each node independently

with probability p > 0 (otherwise it sees nothing). Then the reporting centrality estimator has a

probability of detection P(MRC(⌧ , G) = v⇤) that satisfies

lim inf

t!1
P(MRC(⌧ , G) = v⇤) � C

d

> 0, (7)

where C
d

= 1� d
⇣
1� I

1/2

⇣
1

d�2

, 1 + 1

d�2

⌘⌘
. (Proof in Section C.6)

The key point to notice about Corollary B.1 is that (7) remains positive for a fixed d even as p! 0;
this is in contrast with the previously-known equation (6). Keep in mind that we are first taking the
limit as t ! 1 for a fixed p, then taking p ! 0. It is not possible to exchange the order of these
limits; doing so drives the probability of detection to zero. The reason is that for a finite t (and hence a
finite number of infected nodes), as p! 0, the number of spies in the infected subgraph also tends to
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zero. Without any observations, it is impossible to detect the source. However, for any fixed positive
p > 0, as t!1, eventually the number of spies in each subtree concentrates, so reporting centrality
has a nonzero probability of detection. Indeed, our analysis makes critical use of the fact that as
t!1, for a fixed positive p, the classical Pòlya urn we use to represent the underlying diffusion
process concentrates.

Although the lower bound in (7) does not depend on p, the convergence rate does; understanding this
convergence rate is of theoretical interest. More broadly, a deeper understanding of the similarities
between the eavesdropper adversary and other canonical adversarial models is needed.

C Proofs

C.1 Proof of theorem 3.1

We can write this lower bound explicitly. Recall that the system is discrete-time, and each node has d
honest neighbors and ✓ connections to the adversary. ⌧

i

denotes the first time node i reports to the
adversary.

P(⌧
0

< ⌧
m

) =

d+✓X

i=1

P(⌧
0

= i)P(⌧
m

> i|⌧
0

= i) (8)

Since the source has only d honest connections, for any i > (d+ 1), it holds that P(⌧
0

= i) = 0, and
if i = d+ 1, then ⌧

m

 i. So we can simplify this summation to

P(⌧
0

< ⌧
m

) =

dX

i=1

P(⌧
0

= i)P(⌧
m

> i|⌧
0

= i). (9)

This means we only need to consider the first d time steps of the message spread in order to lower-
bound the first-timestamp adversary’s probability of detection. Let a

j

, P(⌧
m

= j|⌧
0

� j) =

P(⌧
m

= j|⌧
0

= i for any i � j). Then P(⌧
m

> i|⌧
0

= i) = 1�
P

i

j=1

a
j

, so

P(⌧
0

< ⌧
m

) =

dX

i=1

P(⌧
0

= i)�
dX

i=1

P(⌧
0

= i)

iX

j=1

a
j

= 1� P(⌧
0

= d+ 1)�
dX

i=1

P(⌧
0

= i)

iX

j=1

a
j

. (10)

Letting b
k

, P(⌧
m

> k | ⌧
0

� k, ⌧
m

> (k � 1)) gives

a
j

= (1� b
j

)

j�1Y

k=1

b
k

. (11)

We can write b
k

explicitly by noting that as long as no infected nodes have reported the message to
the adversary, one can deterministically compute the number of infected nodes at each time step with
a given number of infected (resp. uninfected) neighbors. This is because the underlying graph is a
regular tree (see Lemma 3.2 for proof). Let N (k, t) denote the set of nodes with k infected, honest
neighbors at time t. Then for a fixed time t, we can compute the probability that every infected node
chooses to infect an honest node in the next time step, by indexing over the value of k:

b
j

=

j�1Y

k=1

✓
|{v 2 V : u

v,h

(j) = k}|
|{v 2 V : u

v

(j) = k}|

◆|N (k,j)|

=

j�1Y

k=1

✓
d� k

d� k + ✓

◆
2

j�1�k

where j > 1, and b
1

= 1. Here, the quantity u
v

(j) (resp. u
v,h

(j)) denotes the uninfected degree
(resp. uninfected honest degree) of node v at time j—that is, the number of total (resp. honest),
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uninfected neighbors of a node. So the ratio in the definition of b
j

is comparing the number of nodes
with honest uninfected degree k to the number of nodes with uninfected degree k.

Substituting this quantity into Equation (11), we get

a
j

= (1� b
j

)

j�2Y

k=1

kY

m=1

✓
d�m

d�m+ ✓

◆
2

k�m

= (1� b
j

)

j�2Y

m=1

✓
d�m

d�m+ ✓

◆P
j�m�2
`=0 2

`

= (1� b
j

)
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✓
d�m
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◆
2

j�m�1�1

| {z }
M

j

(12)

Rearranging, we get

M
j

=

Q
j�1

m=1

⇣
d�m

d�m+✓

⌘
2

j�1�m Q
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⇣
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j
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d� j + 1

◆
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| {z }
W

j

Writing out the terms of W
j

explicitly, we get that

W
j

=

(d� 1 + ✓)(d� 2 + ✓) . . . (d� 1) . . . (d� j + 2 + ✓)

(d� 1) . . . (d� j + 2 + ✓) . . . (d� j + 2)

=

✓�1Y

m=0

d+m

d+m� j + 2

.

Substituting all of this into Equation (12), we get that

a
j

= (1� b
j

)b
j

✓
d� j + 1 + ✓

d� j + 1

◆
✓�1Y

m=0

d+m

d+m� j + 2

.

This expression for a
j

can be used to rewrite (10):

P(⌧
0

< ⌧
m

) = 1� P(⌧
0

= d+ 1)| {z }
P

A

�
dX

i=1

P(⌧
0

= i)

iX

j=1

a
j

.
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A

�
dX

i=1

P(⌧
0
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iX
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j
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j

⇥
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d+m
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. (13)

Setting

q
j

, d� j + 1 + ✓

d� j + 1

✓�1Y

m=0

d+m

d+m� j + 2

,

we get that

P(⌧
0

< ⌧
m
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A

�
dX
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P(⌧
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iX

j=1
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j
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j

q
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A

�
dX

i=1

P(⌧
0

= i)

0

@
iX

j=2

b
j

q
j

�
iX

j=2

b2
j

q
j

1

A (14)
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where the change of summation bounds in (14) occurs because b
1

= 1. We define �
k

,
⇣

d�k

d�k+✓

⌘
2

�k

, which means that

b
j

=

j�1Y

k=1

�2

j�1

k

. (15)

Using this notation, we write out the two final summations in (14) explicitly:

iX

j=2

b
j

q
j

= q
2

�2

1

+ q
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1

�4
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4
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· · · �2

i�1

i�1

(16)

iX

j=2

b2
j

q
j

= q
2

�4

1

+ q
3

�8

1

�8

2

+ q
4

�16

1

�16

2

�16

3

+ . . .+ q
i

�2

i

1

· · · �2

i

i�1

(17)

Subtracting (16)-(17) and collecting terms gives
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j
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3
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i�1
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i

1

· · · �2

i

i�1
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2

�2

1

� q
i

�2

i

1

· · · �2

i

i�1

+

iX

`=3

�2

`�1

1

· · · �2

`�1

`�2

(q
`

�2

`�1

`�1

� q
`�1

). (18)

First, we show that the summation (last term) in (18) is equal to 0 by writing out (q
`

�2

`�1

`�1

� q
`�1

):

q
`

�2

`�1

`�1

� q
`�1

= q
`�1

✓
d� `+ 1 + ✓

d� `+ 1

�2

`�1

`�1

� 1

◆

= q
`�1

✓
d� `+ 1 + ✓

d� `+ 1

· d� `+ 1

d� `+ 1 + ✓
� 1

◆
= 0.

Next, we show that the first term in (18) equals 1 by writing q
2

�2

1

explicitly:

q
2

�2

1

=

d� 2 + 1 + ✓

d� 2 + 1

 
✓�1Y

m=0

d+m

d+m� 2 + 2

!
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d� 1 + ✓
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iX
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q
j

(b
j
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j
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i

�2

i

1

· · · �2

i

i�1
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i

. (19)

Now, we can substitute (19) into (14), getting

P(⌧
0

< ⌧
m

) = 1� P
A

�
dX

i=2

P(⌧
0

= i)(1� q
i

�2

i

1

· · · �2

i

i�1

)

=

✓

✓ + d
+

dX

i=2

P(⌧
0

= i)q
i

�2

i

1

· · · �2

i

i�1
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where (20) is because

dX

i=2

P(⌧
0

= i) = 1� P(⌧
0

= d+ 1)� P(⌧
0

= 1)

= 1� P
A

� ✓

✓ + d
.
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Note that P (⌧
0

= i) =
(

N�i

✓�1)

(

N

✓

)

, where N , d+ ✓. We can also rewrite q
i

as

q
i

=

d� i+ 1 + ✓

d� i+ 1

✓�1Y

m=0

d+m

d+m� i+ 2

=

d� i+ 1 + ✓

d� i+ 1

· (d+ ✓ � 1)!

(d� 1)!

· (d� i+ 1)!

(d+ ✓ + 1� i)!
· ✓!
✓!

=

�
N�1

✓

�
�
N�i

✓

� .

Thus, the product of these terms is

P (⌧
0

= i)q
i

=

✓

N � i� ✓ + 1

· N � ✓

N

=

✓

d� i+ 1

· d

✓ + d
,

and the desired probability in (20) simplifies to

P(⌧
0

< ⌧
m

) =

✓

✓ + d
+

dX

i=2

d

d� i+ 1

· ✓

✓ + d
b2
i

=

✓

✓ + d

"
1 + d

dX

i=2

b2
i

d� i+ 1

#

� ✓

✓ + d

"
1 +

dX

i=2

b2
i

#
(21)

� ✓

✓ + d

"
1 +

d�1X

i=1

�
P

i

k=1 2

k

1

#
(22)

=

✓

✓ + d

"
1 +

d�1X

i=1

�2

i+1�2

1

#

� ✓

d

d�1X

i=0

�2

i+1

1

(23)

where (21) comes from replacing d � i + 1 with d, (22) comes from replacing �
k

with �
1

since
�
k

� �
1

, and (23) holds because �2

1

 d

d+✓

. We lower-bound the doubly exponential sum in (23) by
integrating. Letting ⇢ = �2

1

, we have

✓

d

d�1X

i=0

(�2

1

)

2

i

� ✓

d

Z
d

0

⇢2
x

dx

=

✓

d log 2

�
Ei(2d log ⇢2)� Ei(log ⇢2)

�

where Ei(·) denotes the exponential integral. This gives the desired result.

C.2 Proof of proposition 3.2

The proposition can be seen through a simple counting argument. Let A
t

denote the set of active

nodes at time t, or the set of all infected, honest nodes with at least one uninfected neighbor (honest
or adversarial). We also define the uninfected degree of a node u

v

(t) as the number of uninfected
neighbors of node v at time t. We define A

t

(i) = |{v 2 V : u
v

(t) = i}|, i > 0, as the number of
active nodes at time t with uninfected degree i.

We claim that for a given regular tree G and set of observed timestamps ⌧ , and for any set of feasible
orderings, the number of nodes with uninfected degree i (i.e., A

t

(i)) for a given i > 0 does not

17



depend on the underlying ordering. This holds because the graph is regular; we can show it formally
by induction. At time t = 1, there are two options: either the source reports directly to the adversary,
or it spreads the message to an honest neighbor. It if reports to the adversary, then in every feasible
ordering, the source must report to the adversary at t = 1. Therefore at the end of time step t = 1,
we have

A
t

(i) =

⇢
1 if i = d+ ✓ � 1

0 otherwise.
If the source instead passes the message to an honest neighbor (it doesn’t matter which one, and the
identity of the neighbor could vary across feasible orderings), then

A
t

(i) =

⇢
2 if i = d+ ✓ � 1

0 otherwise,
because now we have two active nodes, each of which has d+ ✓ � 1 uninfected neighbors.

Now take t > 1, and assume that at time t� 1, A
t

(i) was the same across all feasible orderings, for
each i > 0. We want to show that the same is true at time t. Every time an active node v infects a
neighbor node w, v’s own uninfected degree decreases by one. If w is an honest node, it joins the set
of active nodes with uninfected degree u

w

(t) = d� 1 + ✓. If w belongs to the eavesdropper, then
it does not join the active nodes. Suppose ⌧ indicates that in time t, exactly m nodes will report to
the adversary. Since there were |A

t�1

| active nodes at time t, we know that |A
t�1

|�m new active
nodes will be infected, each with degree d� 1+ ✓, so A

t

(d� 1+ ✓) = |A
t�1

|�m. Moreover, for all
0 < i < (d� 1 + ✓), we have A

t

(i) = A
t�1

(i+ 1), since each previously-active node decrements
its uninfected degree by one. None of this depends on the ordering, which proves that A

t

(i) takes the
same value for any feasible ordering.

We write out the likelihood L(o) of a feasible ordering o:

L(o) =

t�1Y

j=1

Y

v2A

j

1

u
v

(j)
,

since each active node infects exactly one uninfected neighbor uniformly at random in each time
step. By the previous argument, this likelihood can equivalently be grouped by nodes with the same
uninfected degree u:

L(o) =

tY

j=1

Y

u2{1,...,d�1+✓}

✓
1

u

◆
A

j

(u)

.

Nothing in this expression depends on the ordering o (since A
j

(u) is independent of o), so the
likelihood must be equal for all feasible orderings.

C.3 Proof of theorem 3.3

We begin by showing that (1) is an upper bound on any estimator’s probability of detection, and then
show that ball centrality achieves the lower bound in (1).

(1): Notice that with probability ✓/(✓ + d), the true source reports the message to the adversary
in the first time slot. If this happens, then the conditional probability of detection is 1; since the
adversary is assumed to know the starting time of the trickle process, it can deduce that the true
source is the only possible source. However, if the source does not report to the adversary in the first
time slot, then the source must instead pass the message to one of its honest neighbors. In that case,
at t = 1, exactly two nodes are infected, both of which are honest. Thereafter, the spread from each
of these nodes is completely symmetric: both the true source and the first neighbor are connected
to identical graph structures (i.e., two infinite trees rooted at each of the infected nodes), and the
message spreading dynamics from each of these two nodes is identically-distributed. As such, no
estimator can distinguish between the true source and the first neighbor, meaning the probability
of detection is upper bounded by 1/2 in this case. Therefore, a simple upper bound for the ML
probability of detection is

P(M
ML

(⌧ , G) = v⇤)  ✓

✓ + d
(1) +

d

✓ + d

✓
1

2

◆

= 1� d

2(✓ + d)
.
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(2): Next, we demonstrate that ball centrality has a probability of detection that is lower bounded by
(1). Once again, if the source immediately passes the message to the adversary, then the adversary
identifies a ball of size 1, so the source gets caught with probability 1. This happens with probability
✓

✓+d

. Thus we need to compute the probability of detection conditioned on the source passing the
message to an honest neighbor at t = 1. Suppose source v⇤ passes the message to its neighbor w at
t = 1. Without loss of generality, let us think of w and v⇤ as the left and right respective endpoints of
a path. In each subsequent time step, each of the endpoints of this path will forward the message
either to another honest node or to the adversary. If the left (resp. right) endpoint q forwards the
message to another honest node z, then z becomes the left (resp. right) endpoint in the following time
step; if q forwards the message to the adversary, then the path terminates at q. This path continues to
grow until both ends have terminated.

We first show that the probability of the path terminating is lower bounded by 1� 2

(1+✓/d)

t�1 , then
we show that conditioned on path termination, the probability of detection is lower bounded by
1/2. To analyze the probability of termination at time t, note that each end of the path terminates
after a geometrically-distributed number of hops. This holds because each endpoint independently
terminates with probability ✓

✓+d�1

in each time step. Therefore, the probability of both endpoints
terminating by time t can be expressed as

P(B  t)2 =

 
1�

✓
1� ✓

✓ + d� 1

◆
t�1

!
2

,

�
 
1�

✓
d

✓ + d

◆
t�1

!
2

� 1� 2

✓
d

✓ + d

◆
t�1

(24)

where B is a geometric random variable of rate ✓

✓+d�1

.

Now, we show that conditioned on termination, the probability of detection is lower-bounded by 1

2

.
We call x and y left and right terminating endpoints, respectively (Fig. 10).

! "# $ ∗ ……
Figure 10: Arrangement of nodes from the proof of Thm. 3.3.

Now, we show that the balls centered at nodes x and y have an intersection of at most two nodes.
The ball centered at node x has a radius of ⌧

x

� 1, and the ball centered at y a radius of ⌧
y

� 1.
By construction, we know that the hop distance between v⇤ and x is h(v⇤, x) = ⌧

x

� 1  ⌧
x

� 1

and h(v⇤, y) = ⌧
y

� 2  ⌧
y

� 1, so v⇤ must lie in the intersection of the two balls. Similarly,
h(w, x) = ⌧

x

� 2  ⌧
x

� 1 and h(w, y) = ⌧
y

� 1  ⌧
y

� 1, so w must lie in the intersection of
the two balls. Let us assume by contradiction that there exists a third node z in the intersection
of these two balls. This implies that h(z, x)  ⌧

x

� 1 and h(z, y)  ⌧
y

� 1. Either z lies on the
shortest path between x and y, which we denote P (x, y), or it does not. If z 2 P (x, y), then it either
lies to the left of w or to the right of v⇤. In either case, z is excluded from the ball centered at y
or x, respectively. Thus it cannot lie on P (x, y). If z does not lie on P (x, y), then there exists an
alternative path P 0

(x, y) 6= P (x, y) between x and y of distance at most ⌧
x

+ ⌧
y

� 2 that contains
node z; this path is allowed to traverse the same node or edge multiple times. By construction, the
hop distance between x and y is h(x, y) = ⌧

x

+ ⌧
y

� 3, so P 0
(x, y) must have at least this many

hops. Moreover, since G is a tree, every path between x and y must traverse each node in P (x, y).
Since P (x, y) already contains ⌧

x

+ ⌧
y

� 3 edges, P 0
(x, y) should be no longer than ⌧

x

+ ⌧
y

� 2,
and it should also touch an additional node z, P 0

(x, y) must have exactly one more hop than P (x, y).
This eliminates all paths that move from node r 2 P (x, y) to node z /2 P (x, y), then back to r again.
But this implies that there exist two distinct paths between x and y in which no edge or vertex is
traversed twice, which is a contradiction since G is a tree. Hence there can be at most two nodes in
the intersection of balls, so the probability of detection is at least 1/2 in this case.
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Figure 11: Probability of detection of the first-timestamp estimator, where d is the node degree. d
0

denotes the degree of the source, which we eventually set to d
0

= d� 1 for symmetry. We condition
on the source’s reporting time ⌧

0

= t
0

. R
i

denotes the delay of infection times between i’s parent
and i.

Combining this with the lower bound in (24), we have

P(M
BC

(⌧ , G) = v⇤)

� ✓

d+ ✓
(1) +

1

d+ ✓
· 1
2

·
 
1� 2

✓
d

d+ ✓

◆
t�1

!

= 1� d

2(✓ + d)
�
✓

d

d+ ✓

◆
t

.

Since the ML estimator performs at least as well as the ball centrality estimator, the claim follows.

C.4 Proof of theorem 4.1

To analyze the probability of detection under the first-timestamp estimator, we consider probability
of the true source reporting before any other node, or P(⌧

0

< ⌧
m

). We use R
i

to denote the random
time delay between the infection times of i’s parent and i; by “parent", we mean with respect to the
infected subtree G

t

, which is rooted at node v⇤ = 0. Moreover, we let the source have a different
degree d

0

than the rest of tree for simplicity of calculation. We write the probability of detection
explicitly in Figure 11. The expression starts by conditioning on the reporting time of the true source,
⌧
0

, then conditions on the times at which other nodes receive the message. Recall that node i receives
the message at time X

i

, and reports the message to the adversary at time ⌧
i

.

Expression (25) can be written recursively. Define

g(a) , e�a(�2+d�2)

Z
a

0

eu(�2+d�2)

[1 + g(a� u)]d�1du.

(26)
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Letting s = a� u, we get

g(a) =

Z
a

0

e�s(�2+d�2)

[1 + g(s)]d�1ds.

Substituting g(a) into Equation (25) gives

P(⌧
0

< ⌧
m

) =

Z 1

0

�
2

e�t0(�2+d0)
[1 + g(t

0

)]

d0dt
0

, (27)

where d
0

is the degree of the source. To make this expression symmetric with respect to the recursive
function g(·), we assume that the source has degree d � 2, and all other nodes have degree d, so
d
0

= d� 2. We subsequently compute the probability of detection by solving for g(t
0

), which can
be written as a differential equation:

g0(a) = e�a(�2+d�2)

[1 + g(a)]d�1,

with initial condition g(0) = 0. This separable, nonlinear differential equation can be solved exactly,
giving

g(a) =

✓
(d� 2)e�a(�2+d�2)

+ �
2

�
2

+ d� 2

◆� 1
d�2

� 1.

Substituting into (27), we obtain the exact probability of detection:

P(⌧
0

< ⌧
m

) =

�
2

(log(�
2

+ d� 2)� log(�
2

))

d� 2

.

Letting �
2

= ✓, we get

P(⌧
0

< ⌧
m

) =

✓

d� 2

log

✓
d+ ✓ � 2

✓

◆
, (28)

which is the final expression.

C.5 Proof of theorem 4.2

To prove this claim, we analyze the (suboptimal) reporting centrality estimator, which achieves the
condition in Theorem 4.2. Our goal is to show that under an eavesdropper adversary, reporting
centrality has a strictly positive probability of detection as d!1.

Let R
t

= {v 2 V
t

|R
v

(t) = 1} denote the set of reporting centers at time t. We compute the
probability of detection by conditioning on the event v⇤ 2 R

t

. For brevity of notation, we use v̂ to
denote the reporting centrality source estimate in this proof. For any fixed time t, we have

P(M
RC

(⌧ , G) =v⇤) = P(v⇤ 2 R
t

)| {z }
(a)

⇥

P(M
RC

(⌧ , G) = v⇤|v⇤ 2 R
t

)

| {z }
(b)

. (29)

Note that the probability of detection is defined for a fixed t. Our goal is to lower-bound this quantity
as t!1. The proof consists of three steps:

(a) Show that lim inf

t!1 P(v⇤ 2 R
t

) � C
d

> 0.

(b) Show that P(M
RC

(⌧ , G) = v⇤|v⇤ 2 R
t

) = 1.

(c) Combine parts (a) and (b) to give the claim.

For readability, we abbreviate our notation in this proof. The number of nodes in the subtree T v

⇤

w

will be denoted N
w

(t) instead of N
T

v

⇤
w

(t), and the number of reporting nodes in this subtree will
be denoted Y

w

(t) instead of Y
T

v

⇤
w

(t). Thus N
1

(t) denotes the number of infected nodes in the first
subtree of v⇤, and Y

1

(t) denotes the number of reporting nodes in the first subtree of v⇤.

Part (a): Show that lim inf

t!1 P(v⇤ 2 R
t

) � C
d

.
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We demonstrate this by conditioning on the event that v⇤ is the unique rumor center in G
t

. This
happens if and only if 8w 2 N (v⇤), N

w

(t) < N(t)/2 [31], where N (v⇤) denotes the neighbors of
v⇤. We let C

t

= {v 2 V
t

| v = rumor center of G
t

}, which gives

P(v⇤ 2 R
t

) � P(v⇤ 2 C
t

, |C
t

|= 1)| {z }
(a1)

P(v⇤ 2 R
t

|v⇤ 2 C
t

, |C
t

|= 1)| {z }
(a2)

Part (a
1

) is studied in Theorem 3.1 of [31], which shows that

lim inf

t!1
P(v⇤ 2 C

t

, |C
t

|= 1)

= 1� d
⇣
1� I

1/2

⇣
1

d�2

, 1 + 1

d�2

⌘⌘
, (30)

where I
1/2

(a, b) is the regularized incomplete Beta function, or the probability that a Beta random
variable with parameters a and b takes a value in [0, 1/2).

For part (a
2

), we show that lim
t!1 P(v⇤ 2 R

t

|v⇤ 2 C
t

, |C
t

|= 1) = 1. Our approach is to first
show that the fraction of reporting nodes in each tree converges almost surely to a constant as t!1.
We subsequently show that if v⇤ is a unique rumor center, it is almost surely a reporting center as
t!1.

Lemma C.1 For all i 2 [d], the following condition holds as t!1:

Y
i

(t)

N
i

(t)

a.s.��! ↵
d,✓

=

✓

d+ ✓ � 2

. (31)

(Proof in Section C.5.1)

This lemma states that the ratio of reporting to infected nodes in each subtree converges almost surely
to a constant. The proof proceeds by describing the evolution of each subtree and the adversary’s
observations as a generalized Pólya urn process with negative coefficients. The ratio of balls in this
urn process can be shown to converge almost surely, which implies the claim. Now we use Lemma
C.1 to show that v⇤ is a reporting center.

Since v⇤ is a unique rumor center, 8i 2 [d] (where [d] = {1, 2, . . . , d}), N
i

(t) < N(t)/2 [30].
Because of this conditioning and the fact that the infected subtree sizes (normalized by the total
number of infected nodes) converge almost surely [31], for any outcome ! of the underlying diffusion
process, it holds that N

i

(t,!)/N(t,!)
t!1���! (1/2 � �

i

(!)), for some �
i

(!) > 0. Here N
i

(t,!)
denotes the number of infected nodes in subtree i at time t under outcome !. We wish to show that
for any given, feasible set of offsets �

i

(!), i 2 [d], v⇤ eventually becomes a reporting center w.p. 1.

Since Y
i

(t)/N
i

(t)
a.s.��! ↵

d,✓

, for a given outcome ! of the underlying process, we can write
Y
i

(t,!) = N
i

(t,!)(↵
d,✓

+ ✏
i

(t,!)), where ✏
i

(t,!) 2 R. Note that ✏
i

(t,!)
t!1���! 0. We write the

condition for being a reporting center as

Y
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<
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2

=) N
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1
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� �
j

(!))

1

A

=) ✏
i

(t,!)�
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Note that ↵
d,✓

and �
i

(!) are both strictly positive, and

lim

t!1
✏
i

(t,!)�
P

j

✏
j

(t,!)( 1
2

� �
j

(!))

1� �

i

(!)

2

= 0.

Therefore, for every outcome !, there exists a time T
!

such that for all t > T
!

, condition (32) is
satisfied, so lim

t!1 P(v⇤ 2 R
t

|v⇤ 2 C
t

, |C
t

|= 1) = 1.

Putting together parts (a
1

) and (a
2

), we get

lim inf

t!1
P(v⇤ 2 R

t

)

� 1� d

✓
1� I

1/2

✓
1

d� 2

, 1 +
1

d� 2

◆◆
.

Part (b): Show that P(M
RC

(⌧ , G) = v⇤|v⇤ 2 R
t

) = 1.

We show this by demonstrating that if v⇤ is a reporting center, no other reporting centers exist.

We show that there can be at most one reporting center by contradiction. Suppose there are two nodes,
v⇤ and w, both of which are reporting centers. Consider the d subtrees adjacent to v⇤. Suppose the
neighbors of v⇤ are labelled w

1

, . . . , w
d

. Each of these neighbors is the root of an infected subtree
T v

⇤

w

i

. Since v⇤ is a reporting center, we have two properties:

Y
w

i

(t) <
Y (t)

2

8i 2 [d] (33)

Y
v

⇤
(t) +

X

i2[d]

Y
w

i

(t) = Y (t). (34)

Now suppose another node u 6= v⇤ is also a reporting center. We label the neighbors of u as
z
1

, . . . , z
d

. We will use This implies that

Y
T

u

z

i

(t) <
Y (t)

2

8i 2 [d] (35)

Y
u

(t) +
X

i2[d]

Y
T

u

z

i

(t) = Y (t). (36)

Suppose without loss of generality that z
1

, w
1

2 P (u, v⇤). In order to satisfy condition (35), it must
hold that Y

v

⇤
(t) +

P
d

i=2

Y
w

i

(t) < Y (t)

2

. Substituting this condition into (34), and using condition
(33) implies that Y

w1(t) >
Y (t)

2

. This is a contradiction because v⇤ is assumed to be an element of
R

t

, which implies that Y
w1(t) < Y (t)/2. Therefore, there can be no more than one reporting center,

so P(M
RC

(⌧ , G) = v⇤|v⇤ 2 R
t

) = 1.

Part (c): Combine parts (a) and (b) to give the final claim.

We wish to lower bound lim inf

t!1 P(M
RC

(⌧ , G) = v⇤). Recall from (29) that
P(M

RC

(⌧ , G) = v⇤) � P(v⇤ 2 R
t

)P(M
RC

(⌧ , G) = v⇤|v⇤ 2 R
t

). We have bounds for each term:

lim inf
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✓
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1
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P(M
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(⌧ , G) = v⇤|v⇤ 2 R
t

) = 1,

which gives

lim inf

t!1
P(v̂ = v⇤) � 1� d

✓
1� I
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✓
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1

d� 2
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,

thereby proving the claim.
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C.5.1 Proof of lemma C.1

The evolution of the (partially unobserved) infected subgraph on regular trees can be described by a
Pólya urn process with d colors of balls. Each ball represents one active edge between an infected and
an uninfected node, and all active edges in the same source-adjacent subtree have the same color. At
t = 0, we have one ball of each color, since there are d active edges extending from the true source.

Because of the memorylessness of spreading, each of the active edges in G
t

is equally likely to
spread the infection next. The urn evolves as follows: pick a ball uniformly at random; the subtree
corresponding to the drawn color spreads the message over one of its active edges, infecting a
neighbor w. Once w is infected, one active edge is removed from the subtree (i.e., the edge that just
spread the message), and d� 1 new active edges are added (from w to its uninfected neighbors). In
our urn, this corresponds to replacing the drawn ball and adding d� 2 balls of the same color. The
replacement matrix for this urn can therefore be written as A = (d � 2)I

d

, where I
d

denotes the
d⇥ d identity matrix.

This Pólya urn is well-studied, and in the limit, the fraction of balls of each color is known to converge
to a Dirichlet distribution [18]. In order to model the eavesdropper’s observations, we generalize the
urn model by additionally giving each ball a pattern: striped or solid. Each solid ball corresponds
to an active edge in the underlying diffusion process, whereas each striped ball represents an active
edge from an infected node to the adversary. When such an edge fires, the adversary observes the
timestamp of the sending node.

We adapt the previous urn dynamics in two key ways. First, when a solid ball is drawn, we still add
d � 2 solid balls of the same color, but now we also add ✓ striped balls of the same color. These
represent the ✓ independent connections between the node and the adversary. Second, when a striped
ball is draw, we remove ✓ striped balls of the same color from the urn (i.e., the adversary only uses
the first timestamp it receives). Thus, the replacement matrix for a single subtree looks like

A =

✓ solid stripe

solid d� 2 0

stripe ✓ �✓

◆
. (37)

Let s
n

and r
n

denote the number of solid and striped balls, respectively, at the nth draw of the urn.
The following condition holds as n!1:

r
n

s
n

a.s.��! ✓

d+ ✓ � 2

. (38)

To show this, we use the following result from [13], simplified for clarity:

Theorem 3.21 from [13] Consider a Pólya urn with replacement matrix A. Assume the following

conditions:

1. For i, j 2 [d], A
ii

� �1, and A
ij

� 0 for i 6= j.

2. A
ij

<1 for all i, j 2 [d].

3. The largest real eigenvalue �
A

of A is positive, �
A

> 0.

4. The largest real eigenvalue �
A

of A is simple.

5. The urn starts with at least one ball of a dominating type. A dominating type is a type of

ball that, when drawn, produces balls of every other type.

6. �
A

belongs to the dominating type.

7. The urn does not go extinct.

Then n�1

[s
n

r
n

]

| a.s.��! �
A

v, where | denotes the transpose of a vector, �
A

is the largest eigenvalue

of replacement matrix A, and v is the corresponding right eigenvector.

Conditions 1 and 2 are satisfied by examination of A. The eigenvalues of A are (d� 2) and �✓, so
conditions 3 and 4 are satisfied. Conditions 5 and 6 are met because �

A

belongs to the class of solid
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balls (i.e., a dominating type), and the urn starts with a solid ball by construction. Condition 7 is met
because solid balls are never removed, and we start with one solid ball. Thus, Theorem 3.21 from
[13] applies, which implies that r

n

s

n

a.s.��! v2
v1

=

✓

d+✓�2

, since the eigenvector for �
A

= (d � 2) is
v = [d+ ✓ � 2, ✓].

There is a one-to-one mapping between the evolution of such an urn and the spreading of the
message. Without loss of generality, we consider the evolution of the first subtree, N

1

(t). Let
�
n

denote the time at which the nth ball is drawn. We define s(t) = max{n:�
n

t,�

n+1>t} sn and
r(t) = max{n:�

n

t,�

n+1>t} rn. We can now map the number of reporting and infected nodes to the
evolution of the Pólya urn:

s(t) = 1 + (d� 2)N
1

(t)

r(t) = N
1

(t)� Y
1

(t).

Solving for Y
1

(t) and N
1

(t) and taking the limit gives
lim

t!1
Y1(t)

N1(t)
= 1� d�2

✓

lim

t!1
r(t)

s(t)�1

=

✓

d+✓�2

with probability 1, since both s(t) and r(t) tend
to infinity as t!1.

C.6 Proof of corollary B.1

The outline of this proof is similar to that of Theorem 4.2. One difference is that in the spy-based
adversary, the true source v⇤ never reports to the adversary, so Y

v

⇤
(t) = 0. This does not change the

proof in any significant way. We again condition on the event that the true source v⇤ is a reporting
center, which gives.

P(M
RC

(⌧ , G) =v⇤) = P(v⇤ 2 R
t

)| {z }
(a)

⇥

P(M
RC

(⌧ , G) = v⇤|v⇤ 2 R
t

)

| {z }
(b)

. (39)

Recall that R
t

is the set of reporting centers at time t. For part (b), if v⇤ is a reporting center, then it
is a unique reporting center (from Proof C.5), so the probability of detection is 1. Thus, the key is to
characterize (a), P(v⇤ 2 R

t

), as t!1.

As before, we lower bound this quantity by conditioning on the event that v⇤ is the unique rumor

center in G
t

. We let C
t

= {v 2 V
t

| v = rumor center of G
t

}, which gives

P(v⇤ 2 R
t

) � P(v⇤ 2 C
t

, |C
t

|= 1)| {z }
(a1)

P(v⇤ 2 R
t

|v⇤ 2 C
t

, |C
t

|= 1)| {z }
(a2)

We know from Proof C.5 that part (a
1

) gives

lim inf

t!1
P(v⇤ 2 C

t

, |C
t

|= 1)

= 1� d
⇣
1� I

1/2

⇣
1

d�2

, 1 + 1

d�2

⌘⌘
, (40)

where I
1/2

(a, b) is the regularized incomplete Beta function, or the probability that a Beta random
variable with parameters a and b takes a value in [0, 1/2).

For part (a
2

), we show that lim
t!1 P(v⇤ 2 R

t

|v⇤ 2 C
t

, |C
t

|= 1) = 1. This portion is the only real
difference in proof between the present corollary and Theorem 4.2. Again, we show that the fraction
of reporting nodes (or spies) in each tree converges almost surely to a constant as t!1. However,
unlike the eavesdropper adversary, the spy-based adversary does not require Pòlya urns to make this
case.

Claim C.2 For all i 2 [d], the following condition holds as t!1:

Y
i

(t)

N
i

(t)

a.s.��! p. (41)
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This claim follows easily from the central limit theorem, since the number of spy nodes (or reporting
nodes) in the ith subtree is simply a Binomial(N

i

(t), p) random variable. Recall that N
i

(t) denotes
the number of infected nodes in the ith subtree adjacent to v⇤. Therefore, by the same argument as
Proof C.5, if v⇤ is a unique rumor center, it is almost surely also a reporting center as t!1.

This, in turn, implies the overall result:

lim inf

t!1
P(M

RC

(⌧ , G) = v⇤) � C
d

> 0.

where
C

d

= 1� d

✓
1� I

1/2

✓
1

d� 2

, 1 +
1

d� 2

◆◆
.

26


	Introduction
	Model and related work
	Analysis of trickle (pre-2015)
	First-timestamp estimator
	Maximum-likelihood estimator

	Analysis of diffusion (post-2015)
	First-timestamp estimator
	Centrality-based estimators

	Discussion
	Trickle discussion and algorithms
	First-timestamp estimator
	Maximum-likelihood estimator: timestamp rumor centrality
	Ball centrality


	Diffusion discussion and algorithms
	Proofs
	Proof of theorem 3.1
	Proof of proposition 3.2
	Proof of theorem 3.3
	Proof of theorem 4.1
	Proof of theorem 4.2
	Proof of lemma C.1

	Proof of corollary B.1


