
Appendix: Using Options and Covariance Testing for Long
Horizon Off-Policy Policy Evaluation

A Proof of Theorem 1

Because PDIS is an unbiased estimator of an evaluation policy’s performance, its MSE is equal to its variance.
To prove the theorem statement, we provide an existence proof by constructing a sample MDP where, given
a particular behavior policy, there is an evaluation policy whose estimate under PDIS will have a variance
that scales exponentially with the horizon H.

Consider a discrete state and action Markov decision process. The horizon is H and the MDP has 2H + 1
states and 2 actions. The states form two chains: the top chain has length H + 1 and the bottom chain has
length H. Label the states of the top chain as x1, . . . , xH+1, and the states of the bottom chain be y1, . . . , yH .
The start state is x1. An episode halts after H steps. The two actions are a1, a2. Taking action a1 in the top
chain deterministically transitions to the next state in the top chain i.e. from xi to xi+1. Taking action a2 in
the top chain deterministically transitions to the corresponding state in the bottom chain i.e. from xi to
yi. The reward is zero everywhere except a reward of 1 is received for executing action a1 at state xH . The
optimal policy is to always take action a1.

Let the behavior policy πb be uniformly random i.e. there is always a probability of 1/2 of picking either
action. The evaluation policy is the optimal policy, πe(s) = a1 for all states.

Since the only nonzero reward is the single reward of 1 at xH for action a1, and it is only possible to reach
that state by taking action a1 for H steps, PDIS reduces to a sum only over trajectories consisting solely of H
steps of action a1, whose weights are ρ =

∏H
u=1

πe(a1|s(i)u )

πb(a1|s(i)u )
= 2H . The PDIS estimate of the evaluation policy

is a scaled Binomial distribution where with probability p = 1
2H

a trajectory’s weighted return is 2H and zero
otherwise. Thus the variance of the PDIS estimate of πe is 1

n (2H − 1) for n trajectories, which is Ω(2H) .

B Proof of Theorem 2

We prove the above statement by constructing a MDP and selecting a behavior and target policy which will
result in the stated MSE dependence on the horizon. We consider the same MDP, πb, and πe as used in the
proof above. For this particular MDP, the only weight that matters is the weight associated with the single
final reward of the correct trajectory, so per-decision importance sampling and ordinary importance sampling
are equivalent.

If the optimal trajectory does not appear in the historical data, then WIS is undefined. This is because the
weight of any nonoptimal trajectory is 0, so dividing by the sum of the weights is undefined. However if we
change πe from deterministically picking a1 to picking a1 with arbitrarily high probability, then the weights of
nonoptimal trajectories will be arbitrarily close to zero, resulting in a WIS estimate of 0. Thus we define WIS
to estimate a value of 0 when the optimal trajectory does not appear in the data. Any optimal trajectory
that appears in your data will have a weight of 2H . Then because the weights of nonoptimal trajectories are
0, the WIS estimate will be exactly 1. Thus as soon as WIS sees at least one correct trajectory it will have
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the perfect estimate, otherwise the estimate will be 0. The WIS estimate is a Bernoulli distribution where
the probability of 1 is the probability of at least one optimal trajectory appearing in the data.

Since the WIS estimate is Bernoulli, its variance is bounded by a constant. Furthermore the variance is
small. Thus we take a closer look at the bias, since MSE is the sum of the variance and bias squared. First
we compute the probability the WIS returns 1. This is the probability of at least one optimal trajectory
appearing, which is equivalent to one minus the probability of no optimal trajectory appearing: 1−

(
1− 1

2H

)n.
Thus the expected value of the WIS estimate is 1−

(
1− 1

2H

)n. Then the bias is
(
1− 1

2H

)n. Let the bias be
B. We will compute how much data is needed to compensate for the increase in the bias when H increases.
Rearranging and solving for n (using a taylor approximation) we get n = logB

log(1− 1

2H
)
≈ logB
− 1

2H
≈ Ω(2H). Thus

we need an exponential number of trajectories to compensate for the increase in bias when the horizon H is
increased. Since MSE consists partly of biased squared, we would need even more data to compensate for a
squared increase in bias, but for simplicity we still use an exponential bound.

C Proof of Theorem 4

Let t∗ be the timestep when o1 terminates. Then

Eµe
(J(τ)) (1)

= Eµe
(J(τ1) + J(τ2)) (2)

= Eµe
(J(τ1)) + Eµe

(J(τ2)) (3)
= Eµe

(J(τ1)) + Eµe
(Eµe

(J(τ2)|st∗ = s)) (4)

= Eµe
(J(τ1)) +

∑
s∈S

Pr(st∗ = s|µe) (Eµe
(J(τ2)|st∗ = s)) (5)

= Eµb
(PDIS(τ1)) +

∑
s∈S

Pr(st∗ = s|µe) (Eµb
(PDIS(τ2)|st∗ = s)) (6)

= Eµb
(PDIS(τ1)) +

∑
s∈S

Pr(st∗ = s|µb) (Eµb
(PDIS(τ2)|st∗ = s)) (7)

= Eµb
(PDIS(τ1)) + Eµb

(Eµb
(PDIS(τ2)|st∗ = s)) (8)

= Eµb
(PDIS(τ1)) + Eµb

(PDIS(τ2)) (9)

where eqn 4 follows from the law of total expectation, eqn 6 follows from using PDIS with a fixed initial state
distribution st∗ = s, eqn 7 follows because st∗ is the terminating state for option o1 whose terminating state
distribution stayed the same between µb and µe, and eqn 9 follows from the law of total expectation.

D Strong Consistency of INCRIS

Given strongly consistent estimators for covariance and variance (e.g. sample covariance and sample variance),
we show that INCRIS is consistent by showing that

∑H
t=1 r̂t

a.s.−→ Eπe

(∑H
t=1 rt

)
, i.e. the total expected value

under the evaluation policy. Since we have a finite sum, it is sufficient to show that for all t, r̂t
a.s.−→ Eπe

(rt).

For any k, because we have strongly consistent covariance and variance estimators, as n → ∞ we have
that V̂k

a.s.−→ Var(Bkrt) and since Var(Bkrt) converges to zero, we also have that V̂k
a.s.−→ 0. Similarly,

Ĉk
a.s.−→ Cov(Ak, Bkrt). Therefore M̂SEk

a.s.−→ (Cov(Ak, Bkrt))
2.

By eqn. ?? we have that Cov(Ak, Bkrt) = E(AkBkrt)− E(Bkrt), which is the bias of E(Akrt).

Let K∗ = {k|Cov(Ak, Bkrt) = 0}. Notice that t ∈ K∗ since r̂t = 1
n

∑n
i=1

∏t
j=1 ρ

(i)
j rt is the ordinary

importance sampling estimator, which is unbiased.
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We want to show that as n→∞, the algorithm eventually picks k′ ∈ K∗ and so r̂t is an unbiased estimate.
To do so, let (Ω,Σ, p) be the probability space. Since for all k, M̂SEk

a.s.−→ (Cov(Ak, Bkrt))
2, then p(G) = 1

where G = {ω ∈ Ω|∀k limn→∞ M̂SEk = (Cov(Ak, Bkrt))
2}.

Now we can restrict our focus to only events ω ∈ G. First, let

εgap = min
k|Cov(Ak,Bkrt)>0

(Cov(Ak, Bkrt))
2

which is the smallest nonzero MSE. Since limn→∞ M̂SEk = (Cov(Ak, Bkrt))
2, by definition of limit, we have

that there exists n0 such that for all n ≥ n0, |M̂SEk − (Cov(Ak, Bkrt))
2 | < εgap

3 . By the definition of εgap,
for n ≥ n0, k′ ∈ K∗.

We have shown that the algorithm eventually picks k′ ∈ K∗. Next we will show that this implies r̂t
a.s.−→ Eπe

(rt).

By the strong law of large numbers, for any k,
(

1
n

∑n
i=1B

(i)
k rt

)
a.s.−→ E(Bkrt). Then we know that p(G′) = 1

where G′ = {ω ∈ Ω| limn→∞

(
1
n

∑n
i=1B

(i)
k rt

)
= E(Bkrt)}. Then p(G∩G′) = 1, and we can restrict our focus

to ω ∈ (G ∩G′). We have already shown that when ω ∈ (G ∩G′), there exists n0 such that for all n ≥ n0,
k′ ∈ K∗. But we also know that when ω ∈ (G ∩G′), limn→∞

(
1
n

∑n
i=1B

(i)
k′ rt

)
= E(Bk′rt) for any k′, so for

k′ ∈ K∗, limn→∞

(
1
n

∑n
i=1B

(i)
k′ rt

)
= E(Bk′rt) = E(Btrt) = Eπe

(rt). Therefore, for all ε > 0, we will always
be able to find some n0 large enough such that for all n ≥ n0, when ω ∈ (G ∩ G′), we have k′ ∈ K∗ and
r̂t =

(
1
n

∑n
i=1B

(i)
k′ rt

)
and therefore |r̂t − E(Btrt)| < ε.

Thus we have shown r̂t
a.s.−→ Eπe

(rt), and so INCRIS is strongly consistent.
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