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A The Computation of d-KG and its Gradient: Additional Details

In this section, we show additional details in Sect. 3.3 of the main document: how to provide unbiased
estimators of d-KG(z(1:q), θ) and its gradient. It is well-known that if µ̃(n) and K̃(n) are the mean
and the kernel function respectively of the posterior of (f(x),∇f(x))T after evaluating n points,
then (f(x), θT∇f(x)))T follows a bivariate Gaussian process with the mean function µ̂(n) and the
kernel function K̂(n) as follows

µ̂(n)(x) =

(
1 01×d
0 θT

)
µ̃(n)(x) and K̂(n)(x1, x2) =

(
1 01×d
0 θT

)
K̃(n)(x1, x2)

(
1 01×d
0 θT

)T
.

Analogously, the (y(x), θT∇y(x))T is also subject to noise,(
y(x), θT∇y(x)

)T ∣∣∣ f(x), θT∇f(x) ∼ N
((
f(x), θT∇f(x)

)T
,diag(σ̂2(x))

)
,

where σ̂2(x) =

(
1 01×d
0 (θT )2

)
σ2(x). Following Wu and Frazier [44], we express µ̂(n+q)(x) as

µ̂(n+q)(x) = µ̂(n)(x) + K̂(n)(x, z(1:q))
(
K̂(n)(z(1:q), z(1:q))

+diag{σ̂2(z(1)), · · · , σ̂2(z(q))}
)−1 (

(y, θT∇y)(z(1:q))− µ̂(n)(z(1:q))
)
.

Conditioning on z(1:q) and the knowledge after n evaluations, we have (y, θT∇y)(z(1:q))

is normally distributed with mean µ̂(n)(z(1:q)) and covariance matrix K̂(n)(z(1:q), z(1:q)) +
diag{σ̂2(z(1)), · · · , σ̂2(z(q))} where the function (y, θT∇y) : Rd → R2 maps the sample to its
function and the directional derivative observation at direction θ. Thus, we can rewrite µ̂(n+q)(x) as

µ̂(n+q)(x) = µ̂(n)(x) + σ̂(n)(x, θ, z(1:q))Z2q, (A.1)
where Z2q is a 2q-dimensional standard normal vector and

σ̂(n)(x, θ, z(1:q)) = K̂(n)(x, z(1:q))
(
D̂(n)(z(1:q))T

)−1

. (A.2)

Here D̂(n)(z(1:q)) is the Cholesky factor of the covariance matrix K̂(n)(z(1:q), z(1:q)) +
diag{σ̂2(z(1)), · · · , σ̂2(z(q))}. Now we can follow Sect. 3.3 of the main document to esti-
mate d-KG(z(1:q), θ) and its gradient.

B Proof of Proposition 1 and Proposition 2

Proof of Proposition 1. Recall that we start with the same posterior µ̃(n). Then

d-KG(z(1:q)) = min
x∈A

µ̃
(n)
1 (x)− En

[
min
x∈A

En
[
y(x)|y(z(1:q)),∇y(z(1:q))

] ∣∣∣ z(1:q)

]
,

= min
x∈A

µ̃
(n)
1 (x)− En

[
En
[
min
x∈A

En
[
y(x)|y(z(1:q)),∇y(z(1:q))

] ∣∣y(z(1:q))

] ∣∣∣ z(1:q)

]
,

≥ min
x∈A

µ̃
(n)
1 (x)− En

[
min
x∈A

En
[
En
[
y(x)|y(z(1:q)),∇y(z(1:q))

] ∣∣y(z(1:q))
] ∣∣∣ z(1:q)

]
,

= min
x∈A

µ̃
(n)
1 (x)− En

[
min
x∈A

En
[
y(x)|y(z(1:q))

] ∣∣∣ z(1:q)

]
,

= KG(z(1:q)), (B.1)
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where recall that y(x) is the observed function value at x, and∇y(x) are the d derivative observations
at x. The inequality above holds due to Jensen’s inequality.

Now we will show that the inequality is strict when x∗(y(z(1:q)),∇y(z(1:q))) depends on∇y(z(1:q)),
where x∗(y(z(1:q)),∇y(z(1:q))) ∈ arg minx∈A En

[
y(x)|y(z(1:q)),∇y(z(1:q))

]
. Equality holds only

if there exists a set S1 such that: (1) P(y(z(1:q)) ∈ S1) = 1; (2) for any given y(z(1:q)) ∈ S1,
minx∈A En

[
y(x)|y(z(1:q)),∇y(z(1:q))

]
is a linear function of∇y(z(1:q)) for all ∇y(z(1:q)) in a set

S2 (allowed to depend on y(z(1:q))) such that P(∇y(z(1:q)) ∈ S2 | y(z(1:q))) = 1.

By (3.3), we can express µ̃(n+q)(x) as

En
[
y(x)|y(z(1:q)),∇y(z(1:q))

]
= µ̃(n+q)(x)

= µ̃(x) + K̃(x, x(1:n) ∪ z(1:q))
(
K̃(x(1:n) ∪ z(1:q), x(1:n) ∪ z(1:q))

+diag{σ2(x(1:n) ∪ z(1:q))}
)−1 (

(y,∇y)(x(1:n) ∪ z(1:q))− µ̃(x(1:n) ∪ z(1:q))
)
.

Then condition (2) holds only if K̃
(
x∗(y(z(1:q)),∇y(z(1:q))), x(1:n) ∪ z(1:q)

)
is constant for all

∇y(z(1:q)) (in a conditionally almost sure set S2 allowed to depend on y(z(1:q))), which holds only
if x∗(y(z(1:q)),∇y(z(1:q))) are the same for all ∇y(z(1:q)) ∈ S2. Thus, the inequality is strict in
settings where∇y(z(1:q)) affects x∗(y(z(1:q)),∇y(z(1:q))).

Next we analyze the Bayesian optimization problem under a dynamic programming (DP) framework
and show that d-KG is one-step Bayes-optimal.

Proof of Proposition 2. Suppose that we are given a budget of N samples, i.e. we may run the
algorithm for N iterations. Our goal is to choose sampling decisions ({zi, 1 ≤ i ≤ Nq} and the
implementation decision zNq+1 that minimizes f(zNq+1). We assume that (f(x),∇f(x)) is drawn
from the prior GP(µ̃, K̃), then (f(x),∇f(x)) follows the posterior process GP(µ̃(Nq), K̃(Nq)) after
N iterations, so we have ENq(f(zNq+1)) = µ̃

(Nq)
1 (zNq+1). Thus, letting Π be the set of feasible

policies π, we can formulate our problem as follows

inf
π∈Π

Eπ
[
min
x∈A

µ̃
(Nq)
1 (x)

]
.

We analyze this problem under the DP framework. We define our state space as Sn := (µ̃(nq), K̃(nq))
after iteration n as it completely characterizes our belief on f . Under the DP framework, we will
define the value function V n as follows

V n(s) := inf
π∈Π

Eπ
[
min
x∈A

µ̃
(Nq)
1 (x)

∣∣Sn = s

]
(B.2)

for every s = (µ,K). The Bellman equation tells us that the value function can be written recursively
as

V n(s) = min
z∈Aq

Qn(s, z)

where
Qn(s, z) = E

[
V n+1(Sn+1)|Sn = s, z((nq+1):(n+1)q) = z

]
At the same time, we also know that any policy π∗ whose decisions satisfy

Zπ
∗,n(s) ∈ argminz∈AqQn(s, z) (B.3)

is optimal. If we were to stop at iteration n+ 1, then V n+1(Sn+1) = minx∈A µ̃
((n+1)q)
1 (x) and (B.3)

reduces to

Zπ
∗,n(s) ∈ argminz∈AqE

[
min
x∈A

µ̃
((n+1)q)
1 (x)

∣∣ Sn = s, z((nq+1):(n+1)q) = z

]
= argmaxz∈Aq

{
min
x∈A

µ̃
(nq)
1 (x)− E

[
min
x∈A

µ̃
((n+1)q)
1 (x)

∣∣∣ Sn = s, z((nq+1):(n+1)q) = z

]}
,

which is exactly the d-KG algorithm. This proves that d-KG is one-step Bayes-optimal.
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C Proof of Theorem 1

Recall that we define the value function in Eq. (B.2). Similarly, we can define the value function for a
specific policy π as

V π,n(s) := Eπ
[
min
x∈A

µ̃
(Nq)
1 (x)|Sn = s

]
. (C.1)

Since we are varying the number of iterations N , we define V 0(s;N) as the optimal value function
when the size of the iteration budget is N . Additionally, we define V (s;∞) := limN→∞ V 0(s;N).
Similarly, we define V 0,π(s;N) and V π(s;∞) for a specific policy π.

Next we will state two lemmas concerning the benefits of additional samples, which will be useful in
the latter proofs. First we have the following result for any stationary policy π. A policy is called
stationary if the decision of the policy only depends on the current state Sn := (µ̃(n), K̃(n)) (not on
the iteration n). d-KG is stationary.
Lemma 1. For any stationary policy π and state s, V π,n(s) ≤ V π,n+1(s).

This lemma states that for any stationary policy, one additional iteration helps on average.

Proof of Lemma 1. We prove by induction on n. When n = N − 1, by Jensen’s inequality,

V π,N−1(s) = Eπ
[
min
x
µ̃

(Nq)
1 (x)

∣∣ SN−1 = s
]

≤ min
x

Eπ
[
µ̃

(Nq)
1 (x)

∣∣ SN−1 = s
]

= V π,N (s).

Then by the induction hypothesis,

V π,n(s) = Eπ
[
V π,n+1(Sn+1)|Sn = s

]
≤ Eπ

[
V π,n+2(Sn+1)|Sn = s

]
= V π,n+1(s),

where line 2 above is due to the induction hypothesis and line 3 is due to the stationarity of the policy
and the transition kernel of {Sn : n ≥ 0}. We conclude the proof.

The following lemma is related to the optimal policy. It says that if allowed an extra fixed batch of
samples, the optimal policy performs better on average than if no extra samples allowed.
Lemma 2. For any state s and z ∈ A, Qn(s, x) ≤ V n+1(s).

As a direct corollary, we have V n(s) ≤ V n+1(s) for any state s.

Proof of Lemma 2. The proof of Lemma 2 is quite similar to that of Lemma 1. We omit the details
here.

Recall that V (s;∞) := limN→∞ V 0(s;N).The lemma below shows that V (s;∞) is well defined
and bounded below.
Lemma 3. For any state s, V (s;∞) exists and

V (s;∞) ≥ U(s) := E
[
min
x∈A

f(x)|S0 = s

]
. (C.2)

Proof of Lemma 3. We will show that V 0(s;N) is non-increasing in N and bounded below from
U(s). This will imply that V 0(s;∞) exists and is bounded below from U(s). To prove that V 0(s;N)
is non-increasing of N , we note that

V 0(s;N)− V 0(s;N − 1)

= V 0(s;N)− V 1(s;N)

≤ 0,
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by the corollary of Lemma 2. To show that V 0(s;N) is bounded below by U(s), for every N ≥ 1
and policy π,

Eπ
[
min
x
µ̃

(Nq)
1 (x)|S0 = s

]
= Eπ

[
min
x

EπN [f(x)] |S0 = s
]

≥ Eπ
[
EπN

[
min
x
f(x)

]
|S0 = s

]
= Eπ

[
min
x
f(x)|S0 = s

]
= E

[
min
x
f(x)|S0 = s

]
= U(s).

Thus we have V 0(s;N) ≥ U(s). Taking the limit N →∞, we have V (s,∞) ≥ U(s).

Similarly, we can show that V π,0(s;N) is non-increasing inN and bounded below from U(s) for any
stationary policy π by exploiting Lemma 1. This implies that V π(S0;∞) exists for each stationary
policy.

For a policy π, V π(s,∞) = U(s) means that the policy π can successfully find the minimum of the
function if the function is sampled from a GP with the mean and the kernel given by s. The following
lemma is the key to prove asymptotic consistency. Recall that in Theorem 1, we assume that A is
finite. When A is finite, we have

Lemma 4. If a stationary policy π measures every alternative x ∈ A infinitely often almost surely in
the noisy case or π measures every alternative x ∈ A at least once in the noise-free case, then π is
asymptotically consistent and has value U(s).

Proof of Lemma 4. We assume that the measurement noise is of finite variance, it implies that the
posterior sequence µ̃(Nq)

1 converges to the true surface f by the vector-version strong law of large
numbers if we sample every alternative infinitely often in the noisy case or at least once in the
noise-free case. Thus, limN→∞ µ(Nq) = f a.s., and limN→∞minx∈A µ̃

(Nq)
1 (x) = minx∈A f(x) in

probability. Next we will show that minx∈A µ̃
(Nq)
1 (x) is uniformly integrable in N , which implies

that minx∈A µ̃
(Nq)
1 (x) converges in L1. For any fixed K ≥ 0, we have

E
[∣∣∣∣min

x∈A
µ̃

(Nq)
1 (x)

∣∣∣∣1{|minx∈A µ̃
(Nq)
1 (x)|≥K}

]
≤ E

[
max
x∈A

∣∣∣∣µ̃(Nq)
1 (x)

∣∣∣∣1{maxx∈A |µ̃(Nq)
1 (x)|≥K}

]
= E

[
max
x∈A
|ENq(f(x))|1{maxx∈A |ENq(f(x))|≥K}

]
≤ E

[
max
x∈A

ENq(|f(x)|)1{maxx∈A ENq(|f(x)|)≥K}

]
≤ E

[
ENq(max

x∈A
|f(x)|)1{ENq(maxx∈A |f(x)|)≥K}

]
= E

[
ENq

(
max
x∈A
|f(x)|1{ENq(maxx∈A |f(x)|)≥K}

)]
= E

[
max
x∈A
|f(x)|1{E(maxx∈A |f(x)|)≥K}

]
.

Since maxx∈A |f(x)| is integrable and P(maxx∈A |f(x)|) ≥ K) ≤ E(maxx |f(x)|)/K is bounded
uniformly in N and goes to zero as K increases to infinity, Given that minx∈A µ̃

(Nq)
1 (x) converges
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in L1, we have

V π(s;∞) = lim
N→∞

Eπ[min
x∈A

µ̃
(Nq)
1 (x)

∣∣S0 = s]

= Eπ[ lim
N→∞

min
x∈A

µ̃
(Nq)
1 (x)

∣∣S0 = s]

= Eπ[min
x∈A

f(x)
∣∣S0 = s]

= U(s).

By Lemma 3 above, we conclude that V π(s;∞) = V (s;∞) = U(s).

Then we will show that d-KG measures every alternative x ∈ A infinitely often in the noisy case or
d-KG measures every alternative x ∈ A at least once when N goes to infinity, which leads to the
proof of Theorem 1.

Proof of Theorem 1. We focus on the noisy case for clarity. One can provide an identical proof for
the noise-free case by replacing sampling infinitely often with sampling at least once.

By a similar proof with Lemma A.5 in Frazier et al. [9], we can show that Sn converges to a random
variable S∞ := (µ̃∞, K̃∞) as n increases. By definition,

V N (S∞)−QN−1(S∞; z(1:q))

= min
x
µ̃∞1 (x)− E

[
min
x

(
µ̃∞1 (x) + eT1 σ̃

∞(x, z(1:q))Zq(d+1)

)]
≥ min

x
µ̃∞1 (x)− E

[
min

x∈z(1:q)

(
µ̃∞1 (x) + eT1 σ̃

∞(x, z(1:q))Zq(d+1)

)]
If we have measured z(1), · · · , z(q) infinitely often in the noisy case, there will be no uncer-
tainty around f(z(1:q)) in S∞, then V N (S∞) = QN−1(S∞; z(1:q)). Otherwise V N (S∞) >
QN−1(S∞; z(1:q)), i.e. there are benefits measuring z(1:q). We define E = {x ∈ A :
the number of times measuring x <∞}, then for any x ∈ E and y(1:q) ⊂ Ec, we have
QN−1(S∞; z(1:(q−1)) ∪ x) < V N (S∞) = QN−1(S∞; y(1:q)). By the definition of d-KG, it will
measure some x ∈ E, i.e. at least one of x in E is measured infinitely often, a contradiction.
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