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Abstract

Kernel methods have recently attracted resurgent interest, showing performance
competitive with deep neural networks in tasks such as speech recognition. The
random Fourier features map is a technique commonly used to scale up kernel
machines, but employing the randomized feature map means that O(ε−2) samples
are required to achieve an approximation error of at most ε. We investigate some
alternative schemes for constructing feature maps that are deterministic, rather
than random, by approximating the kernel in the frequency domain using Gaussian
quadrature. We show that deterministic feature maps can be constructed, for any
γ > 0, to achieve error ε with O(ee

γ

+ ε−1/γ) samples as ε goes to 0. Our method
works particularly well with sparse ANOVA kernels, which are inspired by the
convolutional layer of CNNs. We validate our methods on datasets in different
domains, such as MNIST and TIMIT, showing that deterministic features are faster
to generate and achieve accuracy comparable to the state-of-the-art kernel methods
based on random Fourier features.

1 Introduction

Kernel machines are frequently used to solve a wide variety of problems in machine learning [26].
They have gained resurgent interest and have recently been shown [13, 18, 21, 19, 22] to be competi-
tive with deep neural networks in some tasks such as speech recognition on large datasets. A kernel
machine is one that handles input x1, . . . , xn, represented as vectors in Rd, only in terms of some
kernel function k : Rd × Rd → R of pairs of data points k(xi, xj). This representation is attractive
for classification problems because one can learn non-linear decision boundaries directly on the input
without having to extract features before training a linear classifier.

One well-known downside of kernel machines is the fact that they scale poorly to large datasets.
Naive kernel methods, which operate on the Gram matrixGi,j = k(xi, xj) of the data, can take a very
long time to run because the Gram matrix itself requires O(n2) space and many operations on it (e.g.,
the singular value decomposition) take up to O(n3) time. Rahimi and Recht [23] proposed a solution
to this problem: approximating the kernel with an inner product in a higher-dimensional space.
Specifically, they suggest constructing a feature map z : Rd → RD such that k(x, y) ≈ 〈z(x), z(y)〉.
This approximation enables kernel machines to use scalable linear methods for solving classification
problems and to avoid the pitfalls of naive kernel methods by not materializing the Gram matrix.
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In the case of shift-invariant kernels, one technique that was proposed for constructing the function z
is random Fourier features [23]. This data-independent method approximates the Fourier transform
integral (1) of the kernel by averaging Monte-Carlo samples, which allows for arbitrarily-good
estimates of the kernel function k. Rahimi and Recht [23] proved that if the feature map has
dimension D = Ω̃

(
d
ε2

)
then, with constant probability, the approximation 〈z(x), z(y)〉 is uniformly

ε-close to the true kernel on a bounded set. While the random Fourier features method has proven
to be effective in solving practical problems, it comes with some caveats. Most importantly, the
accuracy guarantees are only probabilistic and there is no way to easily compute, for a particular
random sample, whether the desired accuracy is achieved.

Our aim is to understand to what extent randomness is necessary to approximate a kernel. We
thus propose a fundamentally different scheme for constructing the feature map z. While still
approximating the kernel’s Fourier transform integral (1) with a discrete sum, we select the sample
points and weights deterministically. This gets around the issue of probabilistic-only guarantees
by removing the randomness from the algorithm. For small dimension, deterministic maps yield
significantly lower error. As the dimension increases, some random sampling may become necessary,
and our theoretical insights provide a new approach to sampling. Moreover, for a particular class
of kernels called sparse ANOVA kernels (also known as convolutional kernels as they are similar
to the convolutional layer in CNNs) which have shown state-of-the-art performance in speech
recognition [22], deterministic maps require fewer samples than random Fourier features, both in
terms of the desired error and the kernel size. We make the following contributions:

• In Section 3, we describe how to deterministically construct a feature map z for the class of
subgaussian kernels (which can approximate any kernel well) that has exponentially small
(in D) approximation error.
• In Section 4, for sparse ANOVA kernels, we show that our method produces good estimates

using only O(d) samples, whereas random Fourier features requires O(d3) samples.
• In Section 5, we validate our results experimentally. We demonstrate that, for real clas-

sification problems on MNIST and TIMIT datasets, our method combined with random
sampling yields up to 3 times lower kernel approximation error. With sparse ANOVA ker-
nels, our method slightly improves classification accuracy compared to the state-of-the-art
kernel methods based on random Fourier features (which are already shown to match the
performance of deep neural networks), all while speeding up the feature generation process.

2 Related Work

Much work has been done on extracting features for kernel methods. The random Fourier features
method has been analyzed in the context of several learning algorithms, and its generalization error
has been characterized and compared to that of other kernel-based algorithms [24]. It has also been
compared to the Nyström method [35], which is data-dependent and thus can sometimes outperform
random Fourier features. Other recent work has analyzed the generalization performance of the
random Fourier features algorithm [17], and improved the bounds on its maximum error [29, 31].

While we focus here on deterministic approximations to the Fourier transform integral and compare
them to Monte Carlo estimates, these are not the only two methods available to us. A possible
middle-ground method is quasi-Monte Carlo estimation, in which low-discrepancy sequences, rather
than the fully-random samples of Monte Carlo estimation, are used to approximate the integral.
This approach was analyzed in Yang et al. [34] and shown to achieves an asymptotic error of
ε = O

(
D−1 (log(D))

d
)

. While this is asymptotically better than the random Fourier features
method, the complexity of the quasi-Monte Carlo method coupled with its larger constant factors
prevents it from being strictly better than its predecessor. Our method still requires asymptotically
fewer samples as ε goes to 0.

Our deterministic approach here takes advantage of a long line of work on numerical quadrature
for estimating integrals. Bach [1] analyzed in detail the connection between quadrature and random
feature expansions, thus deriving bounds for the number of samples required to achieve a given
average approximation error (though they did not present complexity results regarding maximum error
nor suggested new feature maps). This connection allows us to leverage longstanding deterministic
numerical integration methods such as Gaussian quadrature [6, 33] and sparse grids [2].
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Unlike many other kernels used in machine learning, such as the Gaussian kernel, the sparse ANOVA
kernel allows us to encode prior information about the relationships among the input variables into
the kernel itself. Sparse ANOVA kernels have been shown [30] to work well for many classification
tasks, especially in structural modeling problems that benefit from both the good generalization of a
kernel machine and the representational advantage of a sparse model [9].

3 Kernels and Quadrature

We start with a brief overview of kernels. A kernel function k : Rd × Rd → R encodes the similarity
between pairs of examples. In this paper, we focus on shift invariant kernels (those which satisfy
k(x, y) = k(x− y), where we overload the definition of k to also refer to a function k : Rd → R)
that are positive definite and properly scaled. A kernel is positive definite if its Gram matrix is always
positive definite for all non-trivial inputs, and it is properly-scaled if k(x, x) = 1 for all x. In this
setting, our results make use of a theorem [25] that also provides the “key insight” behind the random
Fourier features method.
Theorem 1 (Bochner’s theorem). A continuous shift-invariant properly-scaled kernel k : Rd×Rd →
R is positive definite if and only if k is the Fourier transform of a proper probability distribution.

We can then write k in terms of its Fourier transform Λ (which is a proper probability distribution):

k(x− y) =

∫
Rd

Λ(ω) exp(jω>(x− y)) dω. (1)

For ω distributed according to Λ, this is equivalent to writing

k(x− y) = E
[
exp(jω>(x− y))

]
= E

[
〈exp(jω>x), exp(jω>y)〉

]
,

where we use the usual Hermitian inner product 〈x, y〉 =
∑
i xiyi. The random Fourier features

method proceeds by estimating this expected value using Monte Carlo sampling averaged across D
random selections of ω. Equivalently, we can think of this as approximating (1) with a discrete sum
at randomly selected sample points.

Our objective is to choose some points ωi and weights ai to uniformly approximate the integral (1)
with k̃(x − y) =

∑D
i=1 ai exp(jω>j (x − y)). To obtain a feature map z : Rd → CD where

k̃(x− y) =
∑D
i=1 aizi(x)zi(y), we can define

z(x) =
[√
a1 exp(jω>1 x) . . .

√
aD exp(jω>Dx)

]>
.

We aim to bound the maximum error for x, y in a regionM with diameter M = supx,y∈M ‖x− y‖:

ε = sup
(x,y)∈M

∣∣∣k(x− y)− k̃(x− y)
∣∣∣ = sup

‖u‖≤M

∣∣∣∣∣
∫
Rd

Λ(ω)ejω
>u dω −

D∑
i=1

aie
jω>i u

∣∣∣∣∣ . (2)

A quadrature rule is a choice of ωi and ai to minimize this maximum error. To evaluate a quadrature
rule, we are concerned with the sample complexity (for a fixed diameter M ).
Definition 1. For any ε > 0, a quadrature rule has sample complexity DSC(ε) = D, where D is the
smallest value such that the rule, when instantiated with D samples, has maximum error at most ε.

We will now examine ways to construct deterministic quadrature rules and their sample complexities.

3.1 Gaussian Quadrature

Gaussian quadrature is one of the most popular techniques in one-dimensional numerical integration.
The main idea is to approximate integrals of the form

∫
Λ(ω)f(ω) dω ≈

∑D
i=1 aif(ωi) such that

the approximation is exact for all polynomials below a certain degree; D points are sufficient for
polynomials of degree up to 2D − 1. While the points and weights used by Gaussian quadrature
depend both on the distribution Λ and the parameter D, they can be computed efficiently using
orthogonal polynomials [10, 32]. Gaussian quadrature produces accurate results when integrating
functions that are well-approximated by polynomials, which include all subgaussian densities.
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Figure 1: Error comparison (empirical maximum over 106 uniformly-distributed samples) of different
quadrature schemes and the random Fourier features method.

Definition 2 (Subgaussian Distribution). We say that a distribution Λ : Rd → R is subgaussian with
parameter b if for X ∼ Λ and for all t ∈ Rd, E [exp(〈t,X〉)] ≤ exp

(
1
2b

2 ‖t‖2
)

.

We subsequently assume that the distribution Λ is subgaussian, which is a technical restriction
compared to random Fourier features. Many of the kernels encountered in practice have subgaussian
spectra, including the ubiquitous Gaussian kernel. More importantly, we can approximate any kernel
by convolving it with the Gaussian kernel, resulting in a subgaussian kernel. The approximation error
can be made much smaller than the inherent noise in the data generation process.

3.2 Polynomially-Exact Rules

Since Gaussian quadrature is so successful in one dimension, as commonly done in the numerical
analysis literature [14], we might consider using quadrature rules that are multidimensional analogues
of Gaussian quadrature — rules that are accurate for all polynomials up to a certain degree R. In
higher dimensions, this is equivalent to saying that our quadrature rule satisfies∫

Rd
Λ(ω)

d∏
l=1

(e>l ω)rl dω =

D∑
i=1

ai

d∏
l=1

(e>l ωi)
rl for all r ∈ Nd such that

∑
l

rl ≤ R, (3)

where el are the standard basis vectors.

To test the accuracy of polynomially-exact quadrature, we constructed a feature map for a Gaussian
kernel, Λ(ω) = (2π)−

d
2 exp

(
− 1

2 ‖ω‖
2
)

, in d = 25 dimensions with D = 1000 and accurate for
all polynomials up to degree R = 2. In Figure 1a, we compared this to a random Fourier features
rule with the same number of samples, over a range of region diameters M that captures most
of the data points in practice (as the kernel is properly scaled). For small regions in particular, a
polynomially-exact scheme can have a significantly lower error than a random Fourier feature map.

This experiment motivates us to investigate theoretical bounds on the behavior of this method. For
subgaussian kernels, it is straightforward to bound the maximum error of a polynomially-exact feature
map using the Taylor series approximation of the exponential function in (2).

Theorem 2. Let k be a kernel with b-subgaussian spectrum, and let k̃ be its estimation under some
quadrature rule with non-negative weights that is exact up to some even degree R. LetM ⊂ Rd
be some region of diameter M . Then, for all x, y ∈ M, the error of the quadrature features
approximation is bounded by∣∣∣k(x− y)− k̃(x− y)

∣∣∣ ≤ 3

(
eb2M2

R

)R
2

.

All the proofs are found in the Appendix.

To bound the sample complexity of polynomially-exact quadrature, we need to determine how many
quadrature samples we will need to satisfy the conditions of Theorem 2. There are

(
d+R
d

)
constraints

in (3), so a series of polynomially-exact quadrature rules that use only about this many sample points
can yield a bound on the sample complexity of this quadrature rule.
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Corollary 1. Assume that we are given a class of feature maps that satisfy the conditions of Theorem 2,
and that all have a number of samples D ≤ β

(
d+R
d

)
for some fixed constant β. Then, for any γ > 0,

the sample complexity of features maps in this class can be bounded by

D(ε) ≤ β2d max

(
exp

(
e2γ+1b2M2

)
,

(
3

ε

) 1
γ

)
.

In particular, for a fixed dimension d, this means that for any γ, D(ε) = O
(
ε−

1
γ

)
.

The result of this corollary implies that, in terms of the desired error ε, the sample complexity
increases asymptotically slower than any negative power of ε. Compared to the result for random
Fourier features which had D(ε) = O(ε−2), this has a much weaker dependence on ε. While this
weaker dependence does come at the cost of an additional factor of 2d, it is a constant cost of operating
in dimension d, and is not dependent on the error ε.

The more pressing issue, when comparing polynomially-exact features to random Fourier features, is
the fact that we have no way of efficiently constructing quadrature rules that satisfy the conditions
of Theorem 2. One possible construction involves selecting random sample points ωi, and then
solving (3) for the values of ai using a non-negative least squares (NNLS) algorithm. While this
construction works in low dimensions — it is the method we used for the experiment in Figure 1a —
it rapidly becomes infeasible to solve for higher values of d and R.

We will now show how to overcome this issue by introducing quadrature rules that can be rapidly
constructed using grid-based quadrature rules. These rules are constructed directly from products of a
one-dimensional quadrature rule, such as Gaussian quadrature, and so avoid the construction-difficulty
problems encountered in this section. Although grid-based quadrature rules can be constructed for any
kernel function [2], they are easier to conceptualize when the kernel k factors along the dimensions,
as k(u) =

∏d
i=1 ki(ui). For simplicity we will focus on this factorizable case.

3.3 Dense Grid Quadrature

The simplest way to do this is with a dense grid (also known as tensor product) con-
struction. A dense grid construction starts by factoring the integral (1) into k(u) =∏d
i=1

(∫∞
−∞ Λi(ω) exp(jωe>i u) dω

)
, where ei are the standard basis vectors. Since each of the

factors is an integral over a single dimension, we can approximate them all with a one-dimensional
quadrature rule. In this paper, we focus on Gaussian quadrature, although we could also use other
methods such as Clenshaw-Curtis [3]. Taking tensor products of the points and weights results in the
dense grid quadrature. The detailed construction is given in Appendix A.

The individual Gaussian quadrature rules are exact for all polynomials up to degree 2L− 1, so the
dense grid is also accurate for all such polynomials. Theorem 2 then yields a bound on its sample
complexity.
Corollary 2. Let k be a kernel with a spectrum that is subgaussian with parameter b. Then, for any
γ > 0, the sample complexity of dense grid features can be bounded by

D(ε) ≤ max

(
exp

(
deγd

eb2M2

2

)
,

(
3

ε

) 1
γ

)
.

In particular, as was the case with polynomially-exact features, for a fixed d, D(ε) = O
(
ε−

1
γ

)
.

Unfortunately, this scheme suffers heavily from the curse of dimensionality, since the sample
complexity is doubly-exponential in d. This means that, even though they are easy to compute, the
dense grid method does not represent a useful solution to the issue posed in Section 3.2.

3.4 Sparse Grid Quadrature

The curse of dimensionality for quadrature in high dimensions has been studied in the numerical
integration setting for decades. One of the more popular existing techniques for getting around
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the curse is called sparse grid or Smolyak quadrature [28], originally developed to solve partial
differential equations. Instead of taking the tensor product of the one-dimensional quadrature rule,
we only include points up to some fixed total level A, thus constructing a linear combination of dense
grid quadrature rules that achieves a similar error with exponentially fewer points than a single larger
quadrature rule. The detailed construction is given in Appendix B. Compared to polynomially-exact
rules, sparse grid quadrature can be computed quickly and easily (see Algorithm 4.1 from Holtz [12]).

To measure the performance of sparse grid quadrature, we constructed a feature map for the same
Gaussian kernel analyzed in the previous section, with d = 25 dimensions and up to level A = 2. We
compared this to a random Fourier features rule with the same number of samples, D = 1351, and
plot the results in Figure 1b. As was the case with polynomially-exact quadrature, this sparse grid
scheme has tiny error for small-diameter regions, but this error unfortunately increases to be even
larger than that of random Fourier features as the region diameter increases.

The sparse grid construction yields a bound on the sample count: D ≤ 3A
(
d+A
A

)
, where A is the

bound on the total level. By extending known bounds on the error of Gaussian quadrature, we can
similarly bound the error of the sparse grid feature method.
Theorem 3. Let k be a kernel with a spectrum that is subgaussian with parameter b, and let k̃ be
its estimation under the sparse grid quadrature rule up to level A. LetM⊂ Rd be some region of
diameter M , and assume that A ≥ 24eb2M2. Then, for all x, y ∈ M, the error of the quadrature
features approximation is bounded by∣∣∣k(x− y)− k̃(x− y)

∣∣∣ ≤ 2d
(

12eb2M2

A

)A
.

This, along with our above upper bound on the sample count, yields a bound on the sample complexity.
Corollary 3. Let k be a kernel with a spectrum that is subgaussian with parameter b. Then, for any
γ > 0, the sample complexity of sparse grid features can be bounded by

D(ε) ≤ 2d max
(

exp
(
24e2γ+1b2M2

)
, 2

d
γ ε−

1
γ

)
.

As was the case with all our previous deterministic features maps, for a fixed d, D(ε) = O
(
ε−

1
γ

)
.

Subsampled grids One of the downsides of the dense/sparse grids analyzed above is the difficulty
of tuning the number of samples extracted in the feature map. As the only parameter we can typically
set is the degree of polynomial exactness, even a small change in this (e.g., from 2 to 4) can produce
a significant increase in the number of features. However, we can always subsample the grid points
according to the distribution determined by their weights to both tame the curse of dimensionality and
to have fine-grained control over the number of samples. For simplicity, we focus on subsampling
the dense grid. In Figure 1c, we compare the empirical errors of subsampled dense grid and random
Fourier features, noting that they are essentially the same across all diameters.

3.5 Reweighted Grid Quadrature

Both random Fourier features and dense/sparse grid quadratures are data-independent. We now
describe a data-adaptive method to choose a quadrature for a pre-specified number of samples:
reweighting the grid points to minimize the difference between the approximate and the exact kernel
on a small subset of data. Adjusting the grid to the data distribution yields better kernel approximation.

We approximate the kernel k(x− y) with

k̃(x− y) =

D∑
i=1

ai exp(jω>i (x− y)) =

D∑
i=1

ai cos(ω>i (x− y)),

where ai ≥ 0, as k is real-valued. We first choose the set of potential grid points ω1, . . . , ωD by
sampling from a dense grid of Gaussian quadrature points. To solve for the weights a1, . . . , aD, we
independently sample n pairs (x1, y1), . . . , (xn, yn) from the dataset, then minimize the empirical
mean squared error (with variable a1, . . . , aD):

minimize
1

n

n∑
l=1

(
k(xl − yl)− k̃(xl − yl)

)2

subject to ai ≥ 0, for i = 1, . . . , D.
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For appropriately defined matrix M and vector b, this is an NNLS problem of minimizing
1
n ‖Ma− b‖2 subject to a ≥ 0, with variable a ∈ RD. The solution is often sparse, due to
the active elementwise constraints a ≥ 0. Hence we can pick a larger set of potential grid points
ω1, . . . , ωD′ (with D′ > D) and solve the above problem to obtain a smaller set of grid points (those
with aj > 0). To get even sparser solution, we add an `1-penalty term with parameter λ ≥ 0:

minimize 1
n ‖Ma− b‖2 + λ1> a

subject to ai ≥ 0, for i = 1, . . . , D′.

Bisecting on λ yields the desired number of grid points.

As this is a data-dependent quadrature, we empirically evaluate its performance on the TIMIT dataset,
which we will describe in more details in Section 5. In Figure 2b, we compare the estimated root
mean squared error on the dev set of different feature generation schemes against the number of
features D (mean and standard deviation over 10 runs). Random Fourier features, Quasi-Monte Carlo
(QMC) with Halton sequence, and subsampled dense grid have very similar approximation error,
while reweighted quadrature has much lower approximation error. Reweighted quadrature achieves
2–3 times lower error for the same number of features and requiring 3–5 times fewer features for a
fixed threshold of approximation error compared to random Fourier features. Moreover, reweighted
features have extremely low variance, even though the weights are adjusted based only on a very
small fraction of the dataset (500 samples out of 1 million data points).

Faster feature generation Not only does grid-based quadrature yield better statistical performance
to random Fourier features, it also has some notable systems benefits. Generating quadrature features
requires a much smaller number of multiplies, as the grid points only take on a finite set of values for
all dimensions (assuming an isotropic kernel). For example, a Gaussian quadrature that is exact up to
polynomials of degree 21 only requires 11 grid points for each dimension. To generate the features, we
multiply the input with these 11 numbers before adding the results to form the deterministic features.
The save in multiples may be particularly significant in architectures such as application-specific
integrated circuits (ASICs). In our experiment on the TIMIT dataset in Section 5, this specialized
matrix multiplication procedure (on CPU) reduces the feature generation time in half.

4 Sparse ANOVA Kernels

One type of kernel that is commonly used in machine learning, for example in structural modeling, is
the sparse ANOVA kernels [11, 8]. They are also called convolutional kernels, as they operate similarly
to the convolutional layer in CNNs. These kernels have achieved state-of-the-art performance on
large real-world datasets [18, 22], as we will see in Section 5. A kernel of this type can be written as

k(x, y) =
∑
S∈S

∏
i∈S

k1(xi − yi),

where S is a set of subsets of the variables in {1, . . . , d}, and k1 is a one-dimensional kernel.
(Straightforward extensions, which we will not discuss here, include using different one-dimensional
kernels for each element of the products, and weighting the sum.) Sparse ANOVA kernels are
used to encode sparse dependencies among the variables: two variables are related if they appear
together in some S ∈ S. These sparse dependencies are typically problem-specific: each S could
correspond to a factor in the graph if we are analyzing a distribution modeled with a factor graph.
Equivalently, we can think of the set S as a hypergraph, where each S ∈ S corresponds to a hyperedge.
Using this notion, we define the rank of an ANOVA kernel to be r = maxS∈S |S|, the degree as
∆ = maxi∈{1,...,d} |{S ∈ S|i ∈ S}|, and the size of the kernel to be the number of hyperedges
m = |S|. For sparse models, it is common for both the rank and the degree to be small, even as the
number of dimensions d becomes large, so m = O(d). This is the case we focus on in this section.

It is straightforward to apply the random Fourier features method to construct feature maps for
ANOVA kernels: construct feature maps for each of the (at most r-dimensional) sub-kernels kS(x−
y) =

∏
i∈S k1(xi − yi) individually, and then combine the results. To achieve overall error ε, it

suffices for each of the sub-kernel feature maps to have error ε/m; this can be achieved by random
Fourier features using DS = Ω̃

(
r(εm−1)−2

)
= Ω̃

(
rm2ε−2

)
samples each, where the notation

Ω̃ hides the log 1/ε factor. Summed across all the m sub-kernels, this means that the random
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Fourier features map can achieve error ε with constant probability with a sample complexity of
D(ε) = Ω̃

(
rm3ε−2

)
samples. While it is nice to be able to tackle this problem using random

features, the cubic dependence on m in this expression is undesirable: it is significantly larger than
the D = Ω̃(dε−2) we get in the non-ANOVA case.

Can we construct a deterministic feature map that has a better error bound? It turns out that we can.

Theorem 4. Assume that we use polynomially-exact quadrature to construct features for each of
the sub-kernels kS , under the conditions of Theorem 2, and then combine the resulting feature maps
to produce a feature map for the full ANOVA kernel. For any γ > 0, the sample complexity of this
method is

D(ε) ≤ βm2r max
(

exp
(
e2γ+1b2M2

)
, (3∆)

1
γ ε−

1
γ

)
.

Compared to the random Fourier features, this rate depends only linearly on m. For fixed parameters
β, b, M , ∆, r, and for any γ > 0, we can bound the sample complexity D(ε) = O(mε−

1
γ ), which is

better than random Fourier features both in terms of the kernel size m and the desired error ε.

5 Experiments

To evaluate the performance of deterministic feature maps, we analyzed the accuracy of a sparse
ANOVA kernel on the MNIST digit classification task [16] and the TIMIT speech recognition task [5].

Digit classification on MNIST This task consists of 70, 000 examples (60, 000 in the training
dataset and 10, 000 in the test dataset) of hand-written digits which need to be classified. Each
example is a 28× 28 gray-scale image. Clever kernel-based SVM techniques are known to achieve
very low error rates (e.g., 0.79%) on this problem [20]. We do not attempt to compare ourselves with
these rates; rather, we compare random Fourier features and subsampled dense grid features that
both approximate the same ANOVA kernel. The ANOVA kernel we construct is designed to have
a similar structure to the first layer of a convolutional neural network [27]. Just as a filter is run on
each 5× 5 square of the image, for our ANOVA kernel, each of the sub-kernels is chosen to run on a
5 × 5 square of the original image (note that there are many, (28 − 5 + 1)2 = 576, such squares).
We choose the simple Gaussian kernel as our one-dimensional kernel.

Figure 2a compares the dense grid subsampling method to random Fourier features across a range of
feature counts. The deterministic feature map with subsampling performs better than the random
Fourier feature map across most large feature counts, although its performance degrades for very
small feature counts. The deterministic feature map is also somewhat faster to compute, taking—for
the 28800-features—320 seconds vs. 384 seconds for the random Fourier features, a savings of 17%.

Speech recognition on TIMIT This task requires producing accurate transcripts from raw audio
recordings of conversations in English, involving 630 speakers, for a total of 5.4 hours of speech.
We use the kernel features in the acoustic modeling step of speech recognition. Each data point
corresponds to a frame (10ms) of audio data, preprocessed using the standard feature space Maximum
Likelihood Linear Regression (fMMLR) [4]. The input x has dimension 40. After generating kernel
features z(x) from this input, we model the corresponding phonemes y by a multinomial logistic
regression model. Again, we use a sparse ANOVA kernel, which is a sum of 50 sub-kernels of the
form exp(−γ ‖xS − yS‖2), each acting on a subset S of 5 indices. These subsets are randomly
chosen a priori. To reweight the quadrature features, we sample 500 data points out of 1 million.

We plot the phone error rates (PER) of a speech recognizer trained based on different feature
generation schemes against the number of features D in Figure 2c (mean and standard deviation
over 10 runs). Again, subsampled dense grid performs similarly to random Fourier features, QMC
yields slightly higher error, while reweighted features achieve slightly lower phone error rates. All
four methods have relatively high variability in their phone error rates due to the stochastic nature of
the training and decoding steps in the speech recognition pipeline. The quadrature-based features
(subsampled dense grids and reweighted quadrature) are about twice as fast to generate, compared to
random Fourier features, due to the small number of multiplies required. We use the same setup as
May et al. [22], and the performance here matches both that of random Fourier features and deep
neural networks in May et al. [22].
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Figure 2: Performance of different feature generation schemes on MNIST and TIMIT.

6 Conclusion

We presented deterministic feature maps for kernel machines. We showed that we can achieve better
scaling in the desired accuracy ε compared to the state-of-the-art method, random Fourier features.
We described several ways to construct these feature maps, including polynomially-exact quadrature,
dense grid construction, sparse grid construction, and reweighted grid construction. Our results apply
well to the case of sparse ANOVA kernels, achieving significant improvements (in the dependency on
the dimension d) over random Fourier features. Finally, we evaluated our results experimentally, and
showed that ANOVA kernels with deterministic feature maps can produce comparable accuracy to
the state-of-the-art methods based on random Fourier features on real datasets.

ANOVA kernels are an example of how structure can be used to define better kernels. Resembling
the convolutional layers of convolutional neural networks, they induce the necessary inductive bias in
the learning process. Given CNNs’ recent success in other domains beside images, such as sentence
classification [15] and machine translation [7], we hope that our work on deterministic feature maps
will enable kernel methods such as ANOVA kernels to find new areas of application.
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A Dense grid construction

If we let
∫∞
−∞ Λi(ω)f(ω) dω ≈

∑Li
l=1 ai,lf(ωi,l) be the Gaussian quadrature rule for each integral,

then we can approximate k with

k̃(u) =

d∏
i=1

Lk∑
l=1

ai,l exp(jωi,le
>
i u).

If we define al =
∏d
i=1 ai,li and ωl =

∑d
i=1 ωi,liei then we are left with the tensor product

quadrature rule
k̃(u) =

∑
l∈

∏d
i=1{1...Li}

al exp
(
jω>l u

)
(4)

over D =
∏
Li points — we can simplify this to Ld in the case where every Li = L.

B Sparse grid construction

Here, we briefly describe the sparse grid construction. We start by letting let GLi (ui) be the approxi-
mation of ki(ui) that results from applying the one-dimensional Gaussian quadrature rule with L
points: for the appropriate sample points and weights,

GLi (ui) =

L∑
l=1

al exp(juiωl).

One of the properties of Gaussian quadrature is that it is exact in the limit of large L. In particular,
this limit means that we can decompose ki(ui) as the infinite sum

ki(ui) = G1
i (ui) +

∞∑
m=1

(
G2m

i (ui)−G2m−1

i (ui)
)

=

∞∑
m=0

∆i,m(ui),

where ∆i,m(ui) = G2m

i (ui)−G2m−1

i (ui). To represent k(u), it suffices to use the product

k(u) =
∑

m∈Nd

d∏
i=1

∆i,mi(ui) =
∑

m∈Nd
∆m(u)

where ∆m(u) =
∏d
i=1 ∆i,mi(ui). We can think of these ∆m forming a “grid” of terms in Nd. We

plot this grid for d = 2 in Figure 3. The dense grid approximation is equivalent to summing up a
hypercube of these terms, which we illustrate as a square in the figure.

...
...

...
...

...
...

· · ·

· · ·

· · ·

· · ·

. .
.

dense grid
sparse grid

Figure 3: Grid of approximation terms ∆m.
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Smolyak’s sparse grid approximation approximates this sum by using only those ∆m that can be
computed with a “small” number of samples. Specifically, the sparse grid up to level A is defined as,

k̃(u) =
∑

m∈Nd, 1>m≤A

∆m(u).

In Figure 3, this is illustrated by the blue triangle — the efficiency of sparse grids comes from the
fact that in higher dimensions, the simplex of terms used by the sparse grid contains exponentially (in
d) fewer quadrature points than the hypercube of terms used by a dense grid.

Now, for any u, each ∆m(u) can be computed using the tensor product quadrature rule from (4); the
number of samples required is no greater than 31

>m. Combining this with the previous equation
gives us a rough upper bound on the sample count of the sparse grid construction

D ≤
∑

m∈Nd, 1>m≤A

31
>m ≤ 3A

(
d+A

A

)
.

C Proofs

C.1 Proof of Theorem 2

In order to prove this theorem, we will need a couple of lemmas.

Lemma 1 (Stirling’s Approximation). For any positive integer n,(
n+

1

2

)
log n− n+

1

2
log(2π) +

1

12n+ 1
≤ log n! ≤

(
n+

1

2

)
log n− n+

1

2
log(2π) +

1

12n
.

Lemma 2 (Subgaussian Moment Bound). If a random variable X is b-subgaussian, then its p-th
moment is bounded by

E [‖X‖p] ≤ p2
p
2 bpΓ

(p
2

)
.

We now prove the theorem.

Proof of Theorem 2. For any x, define ε(x), the error function, as

ε(x) =

∣∣∣∣∣k(x)−
D∑
i=1

ai exp(jx>ωi)

∣∣∣∣∣ .
By Taylor’s theorem, there exists a function β(z) such that

exp(jz) =

R−1∑
k=0

(jz)k

k!
+

(jz)R

R!
exp(jβ(z)).

This is the mean value theorem form for the Taylor series remainder. Therefore we can write ε(x) as∣∣∣∣∣k(x) −
D∑
i=1

ai exp(jx>ωi)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Λ(ω) exp(jx>ω)dω −
D∑
i=1

ai exp(jx>ωi)

∣∣∣∣∣
=

∣∣∣∣∣
∫

Λ(ω)

(
R−1∑
l=0

(jx>ω)l

l!
+

(jx>ω)R

R!
ejβ(x

>ω)

)
dω −

D∑
i=1

ai

(
R−1∑
l=0

(jx>ωi)
l

l!
+

(jx>ωi)
R

R!
ejβ(x

>ωi)

)∣∣∣∣∣
=

∣∣∣∣∣
R−1∑
l=0

jl

l!

(∫
Λ(ω)(x>ω)ldω −

D∑
i=1

ai(x
>ωi)

l

)
+

jR

R!

(∫
Λ(ω)(x>ω)Rejβ(x

>ω)dω −
D∑
i=1

ai(x
>ωi)

Rejβ(x
>ωi)

)∣∣∣∣∣ .
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Now, since our quadrature is exact up to degree R, by the condition from (3), the first term is zero:

ε(x) =

∣∣∣∣∣jRR!

(∫
Λ(ω)(x>ω)R exp(jβ(x>ω))dω −

D∑
i=1

ai(x
>ωi)

R exp(jβ(x>ωi))

)∣∣∣∣∣
≤ 1

R!

(∫ ∣∣Λ(ω)(x>ω)R exp(jβ(x>ω))
∣∣ dω +

D∑
i=1

∣∣ai(x>ωi)R exp(jβ(x>ωi))
∣∣)

≤ 1

R!

(∫ ∣∣Λ(ω)(x>ω)R
∣∣ dω +

D∑
i=1

∣∣ai(x>ωi)R∣∣) .
Since R is even, ai ≥ 0, and Λ(ω) ≥ 0,

ε(x) ≤ 1

R!

(∫
Λ(ω)(x>ω)Rdω +

D∑
i=1

ai(x
>ωi)

R

)
.

Again applying our condition from (3),

ε(x) ≤ 2

R!

∫
Λ(ω)(x>ω)Rdω.

Finally, by Cauchy-Schwarz,

ε(x) ≤ 2 ‖x‖R

R!

∫
Λ(ω) ‖ω‖R dω ≤ 2 ‖x‖R

R!
EΛ

[
‖ω‖R

]
.

Now, since we assumed that Λ was b-subgaussian, we can apply Lemma 2 to bound this expected
value with

ε(x) ≤ 2 ‖x‖R

R!

∫
Λ(ω) ‖ω‖R dω ≤ 2 ‖x‖R

R!
R2

R
2 bRΓ

(
R

2

)
= 4bR ‖x‖R 2R/2(R/2)!

R!
.

Now we need to bound 2R/2(R/2)!
R! using Stirling’s approximation (Lemma 1):

− log(R!) +
R

2
log 2 + log ((R/2)!)

≤−
((

R+
1

2

)
logR−R+

1

2
log(2π) +

1

12R+ 1

)
+
R

2
log 2 +

(
R

2
+

1

2

)
log

(
R

2

)
− R

2
+

1

2
log(2π) +

1

6R

=−R logR− 1

2
logR+

R

2
− 1

12R+ 1
+
R

2
log 2 +

R

2
logR+

1

2
logR− R

2
log 2− 1

2
log 2 +

1

6R

=
R

2
− 1

2
log 2− R

2
logR+

1

6R
− 1

12R+ 1

≤ − 1

2
log 2 +

1

12
− 1

25
+
R

2
(1− logR) ,

where we have used the fact that R ≥ 2 since R is even. Taking the exponential results in

ε(x) ≤ 4bR ‖x‖R e
1/12−1/25

√
2

( e
R

)R/2
≤ 3

(
eb2 ‖x‖2

R

)R
2

.

Therefore, for any x, y ∈M,∣∣∣k(x− y)− k̃(x− y)
∣∣∣ =

∣∣∣∣∣k(x− y)−
D∑
i=1

ai exp(j(x− y)>ωi)

∣∣∣∣∣
= ε(x− y)

≤ 3

(
eb2 ‖x− y‖2

R

)R
2

.
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Finally, sinceM has diameter M , we know that ‖x− y‖ ≤M , so we can conclude that∣∣∣k(x, y)− k̃(x− y)
∣∣∣ ≤ 3

(
eb2M2

R

)R
2

,

which is the desired expression.

Using this, we can directly prove Corollary 1.

Proof of Corollary 1. By assumption, the number of samples required is

D ≤ β
(
d+R

d

)
≤ β2d · 2R ≤ β2d exp(R).

In order to ensure
sup
‖u‖≤M

∣∣∣k(u)− k̃(u)
∣∣∣ ≤ ε,

it suffices by the result of Theorem 2 to have R large enough that

3

(
eb2M2

R

)R/2
≤ ε and

eb2M2

R
< 1.

Suppose that we set R such that
eb2M2

R
≤ exp(−2γ).

If γ > 0, then the second condition will be trivially satisfied. The first condition will also be satisfied
when we set R large enough that

3 exp(−γR) ≤ ε.
This occurs when

exp(R) ≥
(

3

ε

)1/γ

.

For this condition to hold, as D ≤ β2d exp(R), it suffices to have

D ≥ β2d
(

3

ε

)1/γ

samples. On the other hand, for R to satisfy our original condition, we also need

R ≥ eb2M2 exp(2γ).

This can be achieved when
D ≥ β2d exp(e2γ+1b2M2).

Combining these two conditions using a maximum proves the corollary.

We can similarly prove Corollary 2.

Proof of Corollary 2. For the quadrature rule to be exact for polynomials of degrees up to (even) R,
it suffices for each one-dimensional rule to have L = R/2 + 1 points. The total number of points
used is then D = Ld = exp(d log(R/2 + 1)). Since R ≥ 2 as it is even, log(R/2 + 1) ≤ R/2, so
D ≤ exp(Rd/2).

As in the proof of Corollary 1, to ensure sup‖u‖≤M

∣∣∣k(u)− k̃(u)
∣∣∣ ≤ ε, it suffices by the result of

Theorem 2 to have R large enough that

3

(
eb2M2

R

)R/2
≤ ε and

eb2M2

R
< 1.
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Suppose that we set R such that
eb2M2

R
≤ exp(−dγ).

If γ > 0, then the second condition will be trivially satisfied. The first condition will also be satisfied
when we set R large enough that

3 exp(−γRd/2) ≤ ε.

This occurs when

exp(Rd/2) ≥
(

3

ε

)1/γ

.

For this condition to hold, as D ≤ exp(Rd/2), it suffices to have

D ≥
(

3

ε

)1/γ

samples. On the other hand, for R to satisfy our original condition, we also need

R ≥ eb2M2 exp(dγ).

This can be achieved when
D ≥ exp(dedγeb2M2/2).

Combining these two conditions using a maximum proves the corollary.

C.2 Proof of Theorem 3

Proof of Theorem 3. Based on the construction of the sparse grid in Section B, k and k̃ differ in the
terms

∑
m∈Nd,1>m>A ∆m(u). Thus we need to bound the error

sup
‖u‖≤M

∣∣∣k(u)− k̃(u)
∣∣∣ = sup

‖u‖≤M

∣∣∣∣∣∣
∑

m∈Nd,1>m>A

∆m(u)

∣∣∣∣∣∣ ≤
∑

m∈Nd,1>m>A

sup
‖u‖≤M

|∆m(u)| .

But ∆m(u) is just a product of one-dimensional rules, and we can apply Theorem 2 for each
dimension. Indeed, the Gaussian quadrature rule with L points GLi is exact for polynomials of

degree up to 2L− 1, so the bound from Theorem 2 with R = 2(L− 1) becomes 3
(
eb2u2

i

2(L−1)

)L−1

≤

3
(
eb2u2

i

L

)L−1

(since 2(L− 1) ≥ L). As ∆i,mi(ui) = G
2mi
i (ui)−G2mi−1

i (ui), we have

|∆i,mi(ui)| =
∣∣∣G2mi

i (ui)−G2mi−1

i (ui)
∣∣∣

≤
∣∣∣G2mi

i (ui)− ki(ui)
∣∣∣+
∣∣∣ki(ui)−G2mi−1

i (ui)
∣∣∣

≤ 3
(
eb2u2

i

)2mi−1
2−mi(2

mi−1) + 3
(
eb2u2

i

)2mi−1−1
2−(mi−1)(2mi−1−1)

≤ 6
(
eb2u2

i

)2mi−1
2−(mi−1)(2mi−1−1)

= 6(
√
ebui)

2mi 2−(mi−1)2mi−1

2mi−1.

If we let ci = 2mi−1 (and ci = 0 if mi = 0), then we can rewrite this as

|∆i,mi(ui)| ≤
6(
√
eb)2cici
ccii

u2ci
i .

Thus

|∆m(u)| ≤
∏

i∈{1...d},mi>0

6(
√
eb)2cici
ccii

u2ci
i .
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As 6ci ≤ 6ci , we have |∆m(u)| ≤
∏
i∈{1...d},mi>0

(
√

6eb)2ci

c
ci
i

u2ci
i . Next, applying Lemma 3 gives

|∆m(u)| ≤

 ∏
i∈{1...d},mi>0

(
√

6eb)2ci

ccii

M2‖c‖1 ‖c‖−‖c‖11

∏
i∈{1...d},mi>0

ccii


= (
√

6eb)2‖c‖1M2‖c‖1 ‖c‖−‖c‖11

= (6eb2M2)‖c‖1 ‖c‖−‖c‖11 .

Since ‖c‖1 ≥ ‖m‖1 ≥ A, we can bound the error term with

sup
‖u‖≤M

∣∣∣k(u)− k̃(u)
∣∣∣ ≤ ∑

m∈Nd,1>m>A

sup
‖u‖≤M

|∆m(u)|

≤
∑

m:‖m‖1>A

(6eb2M2)‖c‖1 ‖c‖−‖c‖11

≤
∑

m:‖m‖1>A

(
6eb2M2

A

)‖c‖1
.

Now, since by assumption A ≥ 24eb2M2 and ‖c‖1 ≥ ‖m‖1, it follows that 6eb2M2/A ≤ 1 and so
we can upper-bound this sum with

sup
‖u‖≤M

∣∣∣k(u)− k̃(u)
∣∣∣ ≤ ∑

m:‖m‖1>A

(
6eb2M2

A

)‖m‖1

=

∞∑
l=A+1

∑
m:‖m‖1=l

(
6eb2M2

A

)l

=

∞∑
l=A+1

(
d+ l − 1

l

)(
6eb2M2

A

)l

≤
∞∑

l=A+1

2d+l−1

(
6eb2M2

A

)l

= 2d−1
∞∑

l=A+1

(
12eb2M2

A

)l
.

Summing this geometric series results in

sup
‖u‖≤M

∣∣∣k(u)− k̃(u)
∣∣∣ ≤ 2d−1

(
12eb2M2

A

)A+1(
1− 12eb2M2

A

)−1

≤ 2d−1

(
12eb2M2

A

)A(
1− 1

2

)−1

= 2d
(

12eb2M2

A

)A
.

This is what we wanted to show.

Using this, we can directly prove Corollary 3.

Proof of Corollary 3. Recall that the number of samples required for a sparse grid rule up to order A
is

D ≤ 3A
(
d+A

A

)
≤ 2d · 6A ≤ 2d exp(2A).
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In order to ensure
sup
‖u‖≤M

∣∣∣k(u)− k̃(u)
∣∣∣ ≤ ε,

it suffices by the result of Theorem 3 to have A large enough that

2d
(

12eb2M2

A

)A
≤ ε

and
12eb2M2

A
< 1.

Suppose that we set A such that
12eb2M2

A
≤ exp(−2γ).

If γ > 0, then the second condition will be trivially satisfied. The first condition will also be satisfied
when we set A large enough that

2d exp(−2γA) ≤ ε.
This occurs when

exp(2A) ≥ 2d/γ · ε−1/γ .

For this condition to hold, as D ≤ 2d exp(2A), it suffices to have

D ≥ 2d · 2d/γ · ε−1/γ

samples. On the other hand, for A to satisfy our original condition, we also need
A ≥ 12eb2M2 exp(2γ).

This can be achieved when
D ≥ 2d exp(24eb2M2 exp(2γ)).

Combining these two conditions using a maximum proves the corollary.

We now prove the technical lemma that we have used.
Lemma 3. For any u ∈ Rd that satisfies ‖u‖ ≤M , and any c ∈ Rd with ci > 0,

d∏
i=1

u2ci
i ≤M2‖c‖1 ‖c‖−‖c‖11

d∏
i=1

ccii .

Proof. We produce this result by optimizing over ui. First, we let xi = u2
i , and note that an upper

bound is ∏
u2ci
i ≤ max∑

xi=M2

d∏
i=1

xcii .

Taking the logarithm and using the method of Lagrange multipliers to handle the constraint, we get
Lagrangian

J(x, u) =

d∑
i=1

ci log(xi) + u

(
M2 −

d∑
i=1

xi

)
.

Differentiating to minimize gets us, for all i,

0 =
ci
xi
− u.

which results in
xi =

ci
u
.

In order to satisfy the constraint, we must set u such that

xi =
ciM

2∑d
j=1 ci

=
ciM

2

‖c‖1
.

With this assignment, we have ∏
u2ci
i ≤

d∏
i=1

(
ciM

2

‖c‖1

)ci
,

and simplification produces the desired result.
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C.3 Proof of Theorem 4

Proof. We first bound the approximation error of each sub-kernel acting on a subset S of indices.
Let xS , yS be the vector x, y restricted to these indices and let kS(xS − yS) be the sub-kernel acting
on indices in S. As shown at the end of the proof of Theorem 2,

∣∣∣kS(xS − yS)− k̃S(xS − yS)
∣∣∣ ≤ 3

(
eb2 ‖xS − yS‖2

R

)R
2

= 3

(
eb2

R

)R
2

‖xS − yS‖R .

As M has diameter M , ‖xS − yS‖ ≤ M . Noting that R ≥ 2 since it is even, we can bound
‖xS − yS‖R ≤ ‖xS−yS‖

2

M2 MR, and so∣∣∣kS(xS − yS)− k̃S(xS − yS)
∣∣∣ ≤ 3

‖xS − yS‖2

M2

(
eb2M2

R

)R
2

.

Summing over all m sub-kernels, noting that each index only appears in at most ∆ sets S, we have
that

∑
S∈S ‖xS − yS‖

2 ≤ ∆ ‖x− y‖2 ≤ ∆M2. Therefore

ε =
∣∣∣k(x− y)− k̃(x− y)

∣∣∣ ≤ 3∆

(
eb2M2

R

)R/2
.

The number of points we will use in total is D ≤ mβ
(
r+R
r

)
. By a similar argument as in Corollary 1,

for any γ > 0, we obtain

D(ε) ≤ βm2r max
(

exp(e2γ+1b2M2), (3∆)1/γε−1/γ
)
.

D Details of experiments

For the MNIST dataset, we use a 60k/10k split of train and test set. We use linear SVM on top of the
features generated by random Fourier features or subsampled dense grid. The kernel bandwidth and
the SVM hyper-parameters are chosen by cross validation.

For the task of acoustic modeling on the TIMIT dataset, the input features correspond to a frame
of 10ms of speech, preprocessed using the standard feature pace Maximum Likelihood Linear
Regression (fMMLR). The input dimension is 40. We use multinomial logistic regression on top
of the features generated by random Fourier features, QMC, subsampled dense grid, or reweighted
dense grid. The output of the multinomial logistic regressions is a probability distribution over 1917
groups of tri-phonemes. We constrain the weight matrix of the logistic regression to have rank at
most 500, similar to [22]. The kernel bandwidth is chosen by performance on the validation set.
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