
A Additional Related Work

Active Learning. The recent decades have seen much success in both theory and practice of active
learning; see the excellent surveys by [54, 37, 25]. On the theory side, many label-efficient active
learning algorithms have been proposed and analyzed [21, 31, 24, 11, 34, 10, 27, 14, 16, 35, 46,
40, 15, 58, 36, 2, 60, 41]. Most algorithms are disagreement-based algorithms [37], and are not
label-optimal due to the conservativeness of their label query policy. In addition, most of these
algorithms require either explicit enumeration of classifiers in the hypothesis classes, or solving
empirical 0-1 loss minimization problems on sets of examples. The former approach is easily seen to
be computationally infeasible, while the latter is proven to be computationally hard as well [5]. The
only exception in this family we are aware of is [38]. [38] considers active learning by sequential
convex surrogate loss minimization. However, it assumes that the expected convex loss minimizer
over all possible functions lies in a pre-specified real-valued function class, which is unlikely to hold
in the bounded noise and the adversarial noise settings.

Some recent works [60, 41, 10, 9, 59] provide noise-tolerant active learning algorithms with improved
label complexity over disagreement-based approaches. However, they are still computationally
inefficient: [60] relies on solving a series of linear program with an exponential number of constraints,
which are computationally intractable; [41, 10, 9, 59] relies on solving a series of empirical 0-1 loss
minimization problems, which are also computationally hard in the presence of noise [5].

Efficient Learning of Halfspaces. A series of papers have shown the hardness of learning halfs-
paces with agnostic noise [5, 30, 33, 44, 23]. These results indicate that, to have nontrivial guarantees
on learning halfspaces with noise in polynomial time, one has to make additional assumptions on the
data distribution over instances and labels.

Many noise models, other than the bounded noise model and the adversarial noise model, has been
studied in the literature. A line of work [19, 52, 28, 1] considers parameterized noise models. For
instance, [28] gives an efficient algorithm for the setting that E[Y |X = x] = u · x where u is the
optimal classifier. [1] studies a generalization of the above linear noise model, where Y is a multiclass
label, and there is a link function Φ such that E[Y |X = x] = ∇Φ(u · x). Their analyses depend
heavily on the noise models and it is unknown whether their algorithms can work with more general
noise settings. [61] analyzes the problem of learning halfspaces under a new noise condition (as an
application of their general analysis of stochastic gradient Langevin dynamics). They assume that the
label flipping probability on every x is bounded by 1

2 − c|u · x|, for some c ∈ (0, 1
2 ]. It can be seen

that the bounded noise condition implies the noise condition of [61], and it is an interesting open
question whether it is possible to extend our algorithm and analysis to their setting.

Under the random classification noise condition [3], [17] gives the first efficient passive learning
algorithm of learning halfspaces, by using a modification of Perceptron update (similar to Equa-
tion (1)) together with a boosting-type aggregation. [12] proposes an active statistical query algorithm
for learning halfspaces. The algorithm proceeds by estimating the distance between the current
halfspace and the optimal halfspace. However, it requires a suboptimal number of Õ( d2

(1−2η)2 ) labels.
In addition, both results above rely on the uniformity over the random classification noise, and it is
shown in [7] that this type of statistical query algorithms will fail in the heterogeneous noise setting
(in particular the bounded noise setting and the adversarial noise setting).

In the adversarial noise model, we assume that there is a halfspace u with error at most ν over data.
The goal is to design an efficient algorithm that outputting a classifier that disagrees with u with
probability at most �. [42] proposes an elegant averaging-based algorithm that tolerates an error of at
most ν = Ω( �

ln 1
�

) assuming that the unlabeled distribution is uniform. However it has a suboptimal

label complexity of Õ(d
2

�2 ). Under the assumption that the unlabeled distribution is log-concave or
s-concave, the state of the art results [6, 13] give efficient margin-based algorithms that tolerates a
noise of ν = Ω̃(�). As discussed in the main text, such algorithms require a hinge loss minimization
procedure that has a running time polynomial in d with an unspecified degree. Finally, [23] gives a

PTAS that outputs a classifier with error (1 + µ)ν + �, in time O(poly(dÕ( 1
µ2 )

, 1
� )). Observe that in

the case of ν = O(�), the running time is an unspecified high order polynomial in terms of d and 1
� .
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B Implications to Passive Learning

In this section, we formally describe PASSIVE-PERCEPTRON (Algorithm 3), a passive learning
version of Algorithm 1. The algorithmic framework is similar to Algorithm 1, except that it calls
Algorithm 4 rather than Algorithm 2.

Algorithm 3 PASSIVE-PERCEPTRON

Input: Initial halfspace v0, target error �, confidence δ, sample schedule {mk}, band width {bk}.
Output: learned halfspace v̂.

1: Let k0 = �log2 1
� �.

2: for k = 1, 2, . . . , k0 do
3: vk ← PASSIVE-MODIFIED-PERCEPTRON(O, vk−1,

π
2k
, δ
k(k+1) ,mk, bk).

4: end for
5: return vk0

.

Algorithm 4 is similar to Algorithm 2, except that it draws labeled examples from D directly, as
opposed to performing label queries on unlabeled examples drawn.

Algorithm 4 PASSIVE-MODIFIED-PERCEPTRON

Input: Initial halfspace w0, angle upper bound θ, confidence δ, number of iterations m, band width
b.

Output: Improved halfspace wm.
1: for t = 0, 1, 2, . . . ,m− 1 do
2: Define region Ct =

�
(x, y) ∈ Sd−1 × {−1,+1} : b

2 ≤ wt · x ≤ b
�

.
3: Rejection sample (xt, yt) ∼ D|Ct . In other words, repeat drawing example (xt, yt) ∼ D until

it is in Ct.
4: wt+1 ← wt − 21 {ytwt · xt < 0} · (wt · xt) · xt.
5: end for
6: return wm.

It can be seen that with the same input as ACTIVE-PERCEPTRON, PASSIVE-PERCEPTRON has
exactly the same running time, and the number of labeled examples drawn in PASSIVE-PERCEPTRON
is exactly the same as the number of unlabeled examples drawn in ACTIVE-PERCEPTRON. Therefore,
Corollaries 1 and 2 are immediate consequences of Theorems 2 and 3.

C Proofs of Theorems 2 and 3

In this section, we give straightforward proofs that show Theorem 2 (resp. Theorem 3) are direct
consequences of Lemma 2 (resp. Lemma 3). We defer the proofs of Lemmas 2 and 3 to Appendix D.
Theorem 4 (Theorem 2 Restated). Suppose Algorithm 1 has inputs labeling oracle O that sat-
isfies η-bounded noise condition with respect to underlying halfspace u, initial halfspace v0
such that θ(v0, u) ≤ π

2 , target error �, confidence δ, sample schedule {mk} where mk =

� (3200π)3d
(1−2η)2 (ln (3200π)3d

(1−2η)2 + ln k(k+1)
δ )�, band width {bk} where bk = 1

2(600π)2 ln
m2

k
k(k+1)

δ

2−kπ(1−2η)√
d

.

Then with probability at least 1− δ:

1. The output halfspace v is such that P[sign(v ·X) �= sign(u ·X)] ≤ �.

2. The number of label queries is O
�

d
(1−2η)2 · ln 1

� ·
�
ln d

(1−2η)2 + ln 1
δ + ln ln 1

�

��
.

3. The number of unlabeled examples drawn is O
�

d
(1−2η)3 ·

�
ln d

(1−2η)2 + ln 1
δ + ln ln 1

�

�2

· 1
� ln

1
�

�
.

4. The algorithm runs in time O

�
d2

(1−2η)3 ·
�
ln d

(1−2η)2 + ln 1
δ + ln ln 1

�

�2

· 1
� ln

1
�

�
.
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Proof of Theorem 4. From Lemma 2, we know that for every k, there is an event Ek such that
P(Ek) ≥ 1− δ

k(k+1) , and on event Ek, items 1 to 4 of Lemma 2 hold for input w0 = vk−1, output
wm = vk, θ = π

2k
, δ = δ

k(k+1) .

Define event E = ∪k0

k=1Ek. By union bound, P(E) ≥ 1− δ. We henceforth condition on event E
happening.

1. By induction, the final output v = vk0 is such that θ(v, u) ≤ 2−k0π ≤ �π, implying that
P[sign(v ·X) �= sign(u ·X)] ≤ �.

2. Define the number of label queries to oracle O at iteration k as mk. On event Ek, mk is at

most O
�

d
(1−2η)2

�
ln d

(1−2η)2 + ln k
δ

��
. Thus, the total number of label queries to oracle

O is
�k0

k=1 mk, which is at most

k0 ·mk0
= O

�
k0 ·

d

(1− 2η)2

�
ln

d

(1− 2η)2
+ ln

k0
δ

��
.

Item 2 is proved by noting that k0 ≤ log 1
� + 1.

3. Define the number of unlabeled examples drawn iteration k as nk. On event Ek, nk is at most

O

�
d

(1−2η)3 ·
�
ln d

(1−2η)2 + ln k
δ

�2

· 1
�

�
. Thus, the total number of unlabeled examples

drawn is
�k0

k=1 nk, which is at most

k0nk0
= O

�
k0 ·

d

(1− 2η)3
·
�
ln

d

(1− 2η)2
+ ln

k0
δ

�2

· 1
�

�
.

Item 3 is proved by noting that k0 ≤ log 1
� + 1.

4. Item 4 is immediate from Item 3 and the fact that the time for processing each example is at
most O(d).

Theorem 5 (Theorem 3 Restated). Suppose Algorithm 1 has inputs labeling oracle O that sat-
isfies ν-adversarial noise condition with respect to underlying halfspace u, initial halfspace v0
such that θ(v0, u) ≤ π

2 , target error �, confidence δ, sample schedule {mk} where mk =

�(3200π)3d(ln(3200π)3d + ln k(k+1)
δ )�, band width {bk} where bk = 1

2(600π)2 ln
m2

k
k(k+1)

δ

2−kπ√
d

.

Additionally ν ≤ �
384(600π)4(4 ln((3200π)3d)+8 ln ln 1

�+ln 1
δ )

. Then with probability at least 1− δ:

1. The output halfspace v is such that P[sign(v ·X) �= sign(u ·X)] ≤ �.

2. The number of label queries is O
�
d · ln 1

� ·
�
ln d+ ln 1

δ + ln ln 1
�

��
.

3. The number of unlabeled examples drawn is O
�
d ·

�
ln d+ ln 1

δ + ln ln 1
�

�2 · 1
� ln

1
�

�
.

4. The algorithm runs in time O
�
d2 ·

�
ln d+ ln 1

δ + ln ln 1
�

�2 · 1
� ln

1
�

�
.

Proof of Theorem 5. From Lemma 3, we know that for every k, there is an event Ek such that
P(Ek) ≥ 1 − δ

k(k+1) , and on event Ek, items 1 to 4 of Lemma 3 hold for input w0 = vk, output
wm = vk+1, θ = π

2k
.

Define event E = ∪k0

k=1Ek. By union bound, P(E) ≥ 1− δ. We henceforth condition on event E
happening.

1. By induction, the final output v = vk0
is such that that θ(v, u) ≤ 2−k0π ≤ �π, implying

that P[sign(v ·X) �= sign(u ·X)] ≤ �.
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2. Define the number of label queries to oracle O at iteration k as mk. On event Ek, mk

is at most O
�
d
�
ln d+ ln k

δ

��
. Thus, the total number of label queries to oracle O is

�k0

k=1 mk, which is at most

k0 ·mk0
= O

�
k0 · d

�
ln d+ ln

k0
δ

��
.

Item 2 is proved by noting that k0 ≤ log 1
� + 1.

3. Define the number of unlabeled examples drawn iteration k as nk. On event Ek, nk is at

most O
�
d ·

�
ln d+ ln k

δ

�2

· 1
�

�
. Thus, the total number of unlabeled examples drawn is

�k0

k=1 nk, which is at most

k0nk0
= O

�
k0 · d ·

�
ln d+ ln

k0
δ

�2

· 1
�

�
.

Item 3 is proved by noting that k0 ≤ log 1
� + 1.

4. Item 4 is immediate from Item 3 and the fact that the time for processing each example is at
most O(d).

D Performance Guarantees of MODIFIED-PERCEPTRON

In this section, we prove Lemmas 2 and 3, which guarantees the shrinkage of θt. Two major building
blocks of Lemma 2 (resp. Lemma 3) are Lemmas 7 and 9 (resp. Lemmas 7 and 10). In essence,
Lemma 7 turns per-iteration in-expectation guarantees provided by Lemmas 9 and 10 into high
probability upper bounds on the final θm. We present Lemma 7 and its proof in detail in this section,
and defer Lemmas 9 and 10 to Appendix E.

Lemma 4 (Lemma 2 Restated). Suppose Algorithm 2 has inputs labeling oracle O that satis-
fies η-bounded noise condition with respect to underlying halfspace u, initial vector w0 and
angle upper bound θ ∈ (0, π

2 ) such that θ(w0, u) ≤ θ, confidence δ, number of iterations

m = � (3200π)3d
(1−2η)2 (ln (3200π)3d

(1−2η)2 + ln 1
δ )�, band width b = 1

2(600π)2 ln m2

δ

θ(1−2η)√
d

. then with proba-

bility at least 1− δ:

1. The output halfspace wm is such that θ(wm, u) ≤ θ
2 .

2. The number of label queries is O
�

d
(1−2η)2

�
ln d

(1−2η)2 + ln 1
δ

��
.

3. The number of unlabeled examples drawn is O
�

d
(1−2η)3 ·

�
ln d

(1−2η)2 + ln 1
δ

�2

· 1
θ

�
.

4. The algorithm runs in time O

�
d2

(1−2η)3 ·
�
ln d

(1−2η)2 + ln 1
δ

�2

· 1
θ

�
.

Proof of Lemma 4. We show that each item holds with high probability respectively.

1. It can be verified that conditions for Lemma 7 are satisfied with ζ = 1− 2η (item 3 in the
condition follows from Lemma 9, and item 4 in the condition follows from Lemma 6). This
shows that items 1 with probability at least 1− δ/2.

2. By the definition of m, the number of label queries is m = O
�

d
(1−2η)2 log

d
δ(1−2η)2

�
.
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3. As for the number of unlabeled examples drawn by the algorithm, at each iteration t ∈ [0,m],
it takes Zt trials to hit an example in [ b2 , b], where Zt is a Geometric(p) random variable
with p = Px∼DX [wt · x ∈ [ b2 , b]]. From Lemma 18, p ≥

√
d

8π b =
c̃(1−2η)θ

8π = Ω( (1−2η)θ

ln d
δ(1−2η)2

).

Define event

E :=

�
Z1 + . . .+ Zm ≤ 2m

p

�

From Lemma 16 and the choice of m, P[E] ≥ 1− δ
2 . Thus, on event E, the total number of

unlabeled examples drawn is at most 2m
p = O( d

(1−2η)3 log
2 d

δ(1−2η)2
1
θ ).

4. Observe that the time complexity for processing each example is at most O(d). This
shows that on event E, the total running time of the algorithm is at most O(d · 2m

p ) =

O( d2

(1−2η)3 log
2 d

δ(1−2η)2
1
θ ).

Therefore, by a union bound, with probability at least 1− δ, items 1 to 4 hold simultaneously.

Lemma 5 (Lemma 3 restated). Suppose Algorithm 2 has inputs labeling oracle O that satisfies ν-
adversarial noise condition with respect to underlying halfspace u, initial vector w0 and angle upper
bound θ such that θ(w0, u) ≤ θ, confidence δ, number of iterations m = �(3200π)3d ln (3200π)3d

δ �,
band width b = 1

2(600π)2 ln m2

δ

· θ√
d

. Additionally ν ≤ θ

384(600π)4 ln m2

δ

. Then with probability at least

1− δ:

1. The output halfspace wm is such that θ(wm, u) ≤ θ
2 .

2. The number of label queries is O
�
d ·

�
ln d+ ln 1

δ

��
.

3. The number of unlabeled examples drawn is O
�
d ·

�
ln d+ ln 1

δ

�2 · 1
θ

�

4. The algorithm runs in time O
�
d2 ·

�
ln d+ ln 1

δ

�2 · 1
θ

�
.

Proof of Lemma 5. We show that each item holds with high probability respectively.

1. It can be verified that conditions for Lemma 7 are satisfied with ζ = 1 (item 3 in the
condition follows from Lemma 10, and item 4 in the condition follows from Lemma 6).
This gives items 1 with probability at least 1− δ/2.

2. By the definition of m, the number of label queries is m = O
�
d ·

�
ln d+ ln 1

δ

��
.

3. The number of unlabeled examples drawn by the algorithm can be analyzed similarly as in
the previous proof, which is at most 2m

p = O
�
d ·

�
ln d+ ln 1

δ

�2 · 1
θ

�
with probability at

least 1− δ/2.

4. Observe that the time complexity for processing each example is at most O(d). This
gives that on event E, the total running time of the algorithm is at most O(d · 2m

p ) =

O
�
d2 ·

�
ln d+ ln 1

δ

�2 · 1
θ

�
.

Therefore, by a union bound, with probability at least 1− δ, items 1 to 4 hold simultaneously.

Next we show a technical lemma used in the above proofs, coarsely bounding the difference between
cos θt+1 and cos θt.
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Lemma 6. Suppose 0 < c̃, ζ < 1, b = c̃ζθ√
d

≤ 1, and (xt, yt) is drawn from distribution D|Rt

where Rt =
�
(x, y) : x · wt ∈ [ b2 , b]

�
. If unit vector wt has angle θt with u such that θt ≤ 5

3θ, then

update (5) has the following guarantee: |cos θt+1 − cos θt| ≤ 16c̃ζθ2

3
√
d

.

Proof. By Lemma 8,

cos θt+1 − cos θt = −21
�
yt �= sign(wt · xt)

�
(wt · xt) · (u · xt).

Firstly, note |cos θt+1 − cos θt| ≤ 2 |wt · xt| |u · xt| ≤ 2b |u · xt|.
Observe that

|u · xt|
≤ |wt · xt|+

��(u− wt) · xt

��

≤ b+ 2 sin
θt
2

≤ b+ θt

Thus, we have |cos θt+1 − cos θt| ≤ 2b(b+ θt) =
2c̃2ζ2θ2

d + 2c̃ζθθt√
d

≤ 16c̃ζθ2

3
√
d

.

Lemma 7. Suppose 0 < ζ < 1, and the following conditions hold:

1. Initial unit vector w0 has angle θ0 = θ(w0, u) ≤ θ ≤ 27
50π with u;

2. Integer m = � (3200π)3d
ζ2 (ln (3200π)3d

ζ2 + ln 1
δ )� and c̃ = 1

2(600π)2 ln m2

δ

;

3. For all t, if 1
4θ ≤ θt ≤ 5

3θ, then E[cos θt+1 − cos θt|θt] ≥ c̃
100π

ζ2θ2

d ;

4. For all t, if θt ≤ 5
3θ, then | cos θt+1 − cos θt| ≤ 16c̃ζθ2

3
√
d

holds with probability 1.

Then with probability at least 1− δ/2, θm ≤ 1
2θ.

Proof. Define random variable Dt as:

Dt :=

�
cos θt+1 − cos θt −

c̃

100π

ζ2θ2

d

�
1

�
1

4
θ ≤ θt ≤

5

3
θ

�

Note that E[Dt|θt] ≥ 0 and from Lemma 6, |Dt| ≤ | cos θt+1 − cos θt| + c̃
100π

ζ2θ2

d ≤ 6c̃ζθ2

√
d

.
Therefore, {Dt} is a bounded submartingale difference sequence. By Azuma’s Inequality (see
Lemma 15) and union bound, define event

E =



for all 0 ≤ t1 ≤ t2 ≤ m,

t2−1�

s=t1

Ds ≥ −6c̃ζθ2√
d

�
2(t2 − t1) ln

2m2

δ





Then P(E) ≥ 1− δ
2 .

We now condition on event E. We break the subsequent analysis into two parts: (1) Show that there
exists some t such that θt goes below 1

4θ. (2) Show that θt must stay below 1
2θ afterwards.

1. First, it can be checked by algebra that m ≥ 200πd
ζ2c̃ . We show the following claim.

Claim 1. There exists some t ∈ [0,m], such that θt < 1
4θ.
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Proof. We first show that it is impossible for all t ∈ [0,m] such that θt ∈
�
1
4θ,

5
3θ
�
. To

this end, assume this holds for the sake of contradiction. In this case, for all t ∈ [0,m],
Dt = cos θt+1 − cos θt − c̃

100π
ζ2θ2

d . Therefore,

cos θm − cos θ0

=
m−1�

s=0

Ds +
c̃

100π

ζ2θ2

d
m

≥ c̃

100π

ζ2θ2

d
m− 6c̃ζθ2√

d

�
2m ln

m2

δ

≥ θ2

100π

�
c̃ζ2m

d
−
�

c̃ζ2m

d

�

≥ θ2

where the first inequality is from the definition of event E, the second inequality is from
that c̃ = 1

2(600π)2 ln m2

δ

, the third inequality is from that c̃ζ2m
d ≥ 200π.

Since cos θ0 ≥ cos θ ≥ 1− 1
2θ

2, this gives that cos θm ≥ 1 + 1
2θ

2 > 1, contradiction.

Next, define τ := min
�
t ≥ 0 : θt /∈

�
1
4θ,

5
3θ
��

. We now know that τ ≤ m by the reasoning

above. It suffices to show that θτ < 1
4θ, that is, the first time when θt goes outside the

interval [ 14θ,
5
3θ], it must be crossing the left boundary as opposed to the right one.

By the definition of τ , for all 0 ≤ t ≤ τ − 1, θτ ∈
�
1
4θ,

5
3θ
�
. Thus,

cos θτ − cos θ0

=

τ−1�

t=0

Dt +
c̃

100π

ζ2θ2

d
τ

≥ c̃

100π

ζ2θ2

d
τ − 6c̃ζθ2√

d

�
τ ln

m2

δ

≥ −900π ln
m2

δ
c̃θ2 ≥ − 1

75
θ2 (3)

where the first inequality is by the definition of E; the second inequality is by minimizing
over τ ∈ [0,m]; the last inequality is from the definition of c̃.

Now, if θτ ≥ 5
3θ, then

cos θτ − cos θ0 ≤ cos
5

3
θ − cos θ

≤ 1− 1

5

�
5

3

�2

θ2 − 1 +
1

2
θ2

< − 1

75
θ2

where the first inequality follows from θτ ≥ 5
3θ and θ0 ≤ θ, and the second inequality

follows from Lemma 13. This contradicts with Inequality (3).

This gives that θτ < 5
3θ. Since θτ /∈

�
1
4θ,

5
3θ
�
, it must be the case that θτ < 1

4θ.

2. We now show the following claim to conclude the proof.

Claim 2. θm, the angle in the last iteration, is at most 1
2θ.

Proof. Define σ = max
�
t ∈ [0,m] : θt <

1
4θ
�

. by Claim 1, such σ is well-defined on
event E. We now show that θt will not exceed 1

2θ afterwards. Assume for the sake of
contradiction that for some t > σ, θt > 1

2θ.
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Now define γ := min
�
t > σ : θt >

1
2θ
�

. We know by the definitions of σ and γ, for all
t ∈ [σ + 1, γ − 1], θt ∈ [ 14θ,

1
2θ]. Thus,

cos θγ − cos θσ+1

=

γ−1�

t=σ+1

Dt +
c̃

100π

ζ2θ2

d
(γ − σ − 1)

≥ c̃

100π

ζ2θ2

d
(γ − σ − 1)− 6c̃ζθ2√

d

�
(γ − σ − 1) ln

m2

δ

≥ −900π ln
m2

δ
c̃ ≥ − 1

75
θ2 (4)

where the first inequality is by the definition of E; the second inequality is by minimization
over γ − σ − 1 ∈ [0,m]; the last inequality is from the definition of c̃.

On the other hand, θγ > 1
2θ and θσ < 1

4θ. We have

cos θγ − cos θσ+1 ≤ cos θγ − cos θσ +
6c̃ζθ2√

d

≤ cos
θ

2
− cos

θ

4
+

6c̃ζθ2√
d

≤ 1− 1

20
θ2 − 1 +

1

32
θ2 +

6c̃ζθ2√
d

< − 1

75
θ2

where the first inequality follows from Lemma 6, the third follows from Lemma 13, and the
last follows from algebra. This contradicts with Inequality (4).

Thus, with probability at least 1− δ/2, θm ≤ 1
2θ.

E Progress Measure Analysis

In this section, we prove two key lemmas on cos θt (Lemmas 9 and 10), our measure of progress.
We show that under the bounded noise model and the adversarial noise model, cos θt increases by a
decent amount in expectation at each iteration of MODIFIED-PERCEPTRON, with appropriate settings
of bandwidth b.

We begin with a generic lemma that gives a recurrence of cos θt when the modified Perceptron update
rule (1) is applied to a new example.
Lemma 8. Suppose wt ∈ Rd is a unit vector, and (xt, yt) is an labeled example where xt ∈ Rd is a
unit vector and yt ∈ {−1,+1}. Let θt = θ(u,wt). Then, update

wt+1 ← wt − 21 {ytwt · xt < 0} (wt · xt) · xt (5)

gives an unit vector wt+1 such that

cos θt+1 = cos θt − 21 {ytwt · xt < 0} (wt · xt) · (u · xt) (6)

Proof. We first show that wt+1 is still a unit vector. If yt = sign(wt · xt), then wt+1 = wt, thus it is
still a unit vector; otherwise wt+1 = wt − 2(wt · xt) · xt. This gives that

�wt+1�2 = �wt�2 − 4(wt · xt)(wt · xt) + �2(wt · xt) · xt�2 = �wt�2 = 1.

This implies that cos θt = wt · u, and cos θt+1 = wt+1 · u. Now, taking inner products with u on
both sides of Equation (5), we get

wt+1 · u = wt · u− 21 {ytwt · xt < 0} (wt · xt) · (u · xt)

which is equivalent to Equation (6).
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E.1 Progress Measure under Bounded Noise

Lemma 9 (Progress Measure under Bounded Noise). Suppose 0 < c̃ < 1
288 , b = c̃(1−2η)θ√

d
, θ ≤ 27

50π,

and (xt, yt) is drawn from D|Rt
, where Rt =

�
(x, y) : x · wt ∈ [ b2 , b]

�
. Meanwhile, the oracle O

satisfies the η-bounded noise condition. If unit vector wt has angle θt with u such that 1
4θ ≤ θt ≤ 5

3θ,
then update (5) has the following guarantee:

E
�
cos θt+1 − cos θt | θt

�
≥ c̃

100π

(1− 2η)2θ2

d
.

Proof. Define random variable ξ = xt · wt. By the tower property of conditional expectation,
E
�
cos θt+1 − cos θt | θt

�
= E

�
E
�
cos θt+1 − cos θt | θt, ξ

�
| θt

�
. Thus, it suffices to show

E
�
cos θt+1 − cos θt | θt, ξ

�
≥ c̃

100π

(1− 2η)2θ2

d

for all θt ∈ [ 14θ,
5
3θ] and ξ ∈ [ 12b, b].

By Lemma 8, we know that

cos θt+1 − cos θt = −21
�
yt �= sign(wt · xt)

�
(wt · xt) · (u · xt).

We simplify E
�
cos θt+1 − cos θt | θt, ξ

�
as follows:

E
�
cos θt+1 − cos θt | θt, ξ

�

= E
�
−2ξu · xt1 {yt = −1} | θt, ξ

�

= E
�
−2ξu · xt(1{u · xt > 0, yt = −1}+ 1{u · xt < 0, yt = −1}) | θt, ξ

�

≥ E
�
−2ξu · xt(η1{u · xt > 0}+ (1− η)1{u · xt < 0}) | θt, ξ

�

= E
�
−2ξu · xt(η + (1− 2η)1{u · xt < 0}) | θt, ξ

�

= −2ξ
�
ηE

�
u · xt | θt, ξ

�
+ (1− 2η)E

�
u · xt1{u · xt < 0} | θt, ξ

��
(7)

where the second equality is from algebra, the first inequality is from that P[yt = −1|u · xt > 0] ≤ η
and P[yt = −1|u · xt < 0] ≥ 1− η, the last two equalities are from algebra.

By Lemma 19 and that 0 ≤ θt ≤ 5
3θ ≤ 9

10π, E[u · xt|θt, ξ] ≤ ξ and E[u · xt1 {u · xt < 0} |θt, ξ] ≤
ξ − θt

36
√
d

.

Thus,

E
�
cos θt+1 − cos θt | θt, ξ

�

≥ −2ξ(ξη + (ξ − θt

36
√
d
)(1− 2η))

≥ 2ξ(
θt

36
√
d
(1− 2η)− ξ)

≥ b
θt

72
√
d
(1− 2η)

≥ c̃

100π

(1− 2η)2θ2

d

where the first and second inequalities are from algebra, the third inequality is from that ξ ≤ b ≤
θ(1−2η)

288
√
d

≤ θt(1−2η)

72
√
d

, and that ξ ≥ b
2 . the last inequality is by expanding b = c̃(1−2η)θ√

d
and that

θt ≥ θ
4 .

In conclusion, if 1
4θ ≤ θt ≤ 5

3θ, then E
�
cos θt+1 − cos θt | θt, ξ

�
≥ c̃

100π
(1−2η)2θ2

d for ξ ∈ [ b2 , b].
The lemma follows.
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E.2 Progress Measure under Adversarial Noise

Lemma 10 (Progress Measure under Adversarial Noise). Suppose 0 ≤ c̃ ≤ 1
100π , b = c̃θ√

d
, θ ≤ 27

50π,

and (xt, yt) is drawn from distribution D|Rt where Rt =
�
(x, y) : x · wt ∈ [ b2 , b]

�
. Meanwhile, the

oracle O satisfies the ν-adversarial noise condition where ν ≤ c̃θ
192(200π)2 . If unit vector wt has

angle θt with u such that 1
4θ ≤ θt ≤ 5

3θ, then update (5) has the following guarantee:

E
�
cos θt+1 − cos θt | θt

�
≥ c̃

100π

θ2

d
.

Proof. Define random variable ξ = xt · wt.

By Lemma 8, we know that

cos θt+1 − cos θt = −21
�
yt �= sign(wt · xt)

�
(wt · xt) · (u · xt).

We expand E
�
cos θt+1 − cos θt | θt

�
as follows.

E
�
cos θt+1 − cos θt | θt

�

= E
�
−2(wt · xt)(u · xt)1 {yt = −1} | θt

�

= E
�
−2(wt · xt)(u · xt)1 {u · xt < 0} | θt

�

+E
�
2(wt · xt)(u · xt)(1 {yt = +1, u · xt < 0}− 1 {yt = −1, u · xt > 0})) | θt

�
(8)

We bound the two terms separately. Firstly,

E
�
−2(wt · xt)(u · xt)1 {u · xt < 0} | θt

�

≥ −bE
�
(u · xt)1 {u · xt < 0} | θt

�

= −bE
�
E
�
(u · xt)1 {u · xt < 0} | θt, b

�
| θt

�

≥ b(
θt

36
√
d
− b) (9)

where the first inequality is from that −(u · xt)1 {u · xt < 0} ≥ 0 and wt · xt ≥ b
2 , the equality is

from the tower property of conditional expectation, the second inequality is from Lemma 19.

Secondly,
���E

�
2(wt · xt)(u · xt)(1 {yt = +1, u · xt < 0}− 1 {yt = −1, u · xt > 0})) | θt

����

≤ 2bE
�
|u · xt|1

�
yt �= sign(u · xt))

�
| θt

�

≤ 2b

�
E
�
1
�
yt �= sign(u · xt))

�
| θt

�
· E

�
(u · xt)2 | θt

�

= 2b

�
P
�
yt �= sign(u · xt) | θt

�
E
�
E
�
(u · xt)2 | θt, ξ

�
|θt

�
(10)

where the first inequality is from that |E[X]| ≤ E|X|, and wt · xt ≤ b, the second inequality is from
Cauchy-Schwarz, the third equality is by algebra.

Now we look at the two terms inside the square root. First,

P
�
yt �= sign(u · xt) | θt

�

= Px∼D|Rt

�
y �= sign(u · x)

�

≤ P(x,y)∼D

�
y �= sign(u · x)

�

Px∼D

�
x1 ∈ [b/2, b]

�

≤ 8πν

c̃θ

≤ 1

16(200π)2
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where the first inequality is from that P[A|B] ≤ P[A]
P[B] , the second inequality is from Lemma 18 that

Px∼D

�
x1 ∈ [b/2, b]

�
≥

√
d

8π b =
c̃θ
8π , and the last inequality is by our assumption on ν.

Second, fix ξ ∈ [ b2 , b], ξ ≤ b ≤ θt
4
√
d

. Item 2 of Lemma 19 implies that E
�
(u · xt)

2 | θt, ξ
�
≤ 5θ2

t

d .

By the tower property of conditional expectation, E
�
(u · xt)

2 | θt
�
≤ 5θ2

t

d . Continuing Equation (10),
we get
���E

�
2(wt · xt)(u · xt)(1 {yt = +1, u · xt < 0}− 1 {yt = −1, u · xt > 0})) | θt

���� ≤ b
θt

100π
√
d
.

(11)

Continuing Equation (8), we have

E
�
cos θt+1 − cos θt | θt

�

≥ b(
θt

36
√
d
− θt

100π
√
d
− b)

≥ b
θt

25π
√
d
≥ c̃

100π

θ2

d

where the first inequality is from Equations (9) and (11), the second inequality is from algebra and
that b ≤ θt

100π
√
d

, the third inequality is by expanding b = c̃θ√
d

and θt ≥ θ
4 .

F Acute Initialization

We show in this section that the angle between the initial vector v0 and the underlying halfspace u
can be assumed to be acute under the two noise settings without loss of generality. To this end, we
give two algorithms (Algorithms 5 and 6) that returns a halfspace that has angle at most π

4 with u,
with constant overhead in label and time complexities. The techniques here are due to Appendix B
of [6]. This fact, in conjunction with Theorems 2 and 3, yield an active learning algorithm that learns
the target halfspace unconditionally with a constant overhead of label and time complexities.

For the bounded noise setting, we construct Algorithm 5 as an initialization procedure. It runs
ACTIVE-PERCEPTRON twice, taking a vector v0 and its opposite direction −v0 as initializers. Then
it performs hypothesis testing using Õ( 1

(1−2η)2 ) labeled examples to identify a halfspace that has
angle at most π

4 with u.

Algorithm 5 Master Algorithm in the Bounded Noise Setting
Input: Labeling oracle O, confidence δ, noise upper bound η, sample schedule {mk}, band width

{bk}.
Output: a halfspace v̂ such that θ(v̂, u) ≤ π

4 .
1: v0 ← (1, 0, . . . , 0).
2: v+ ← ACTIVE-PERCEPTRON(O, v0,

(1−2η)
16 , δ

3 , {mk} , {bk}).
3: v− ← ACTIVE-PERCEPTRON(O,−v0,

(1−2η)
16 , δ

3 , {mk} , {bk}).
4: Define region R :=

�
x : sign(v+ · x) �= sign(v− · x)

�
.

5: S ← Draw 8
(1−2η)2 ln

6
δ iid examples from D|R and query their labels.

6: if errS(hv+) ≤ errS(hv−) then
7: return v+
8: else
9: return v−

10: end if

Theorem 6. Suppose Algorithm 5 has inputs labeling oracle O that satisfies η-bounded
noise condition with respect to u, confidence δ, sample schedule {mk} where mk =

Θ
�

d
(1−2η)2 (ln

d
(1−2η)2 + ln k

δ )
�

, band width {bk} where bk = Θ̃
�

2−k(1−2η)√
d

�
. Then, with proba-

bility at least 1− δ, the output v̂ is such that θ(v̂, u) ≤ π
4 . Furthermore, (1) the total number of label
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queries to oracle O is at most Õ
�

d
(1−2η)2

�
; (2) the total number of unlabeled examples drawn is

Õ
�

d
(1−2η)3

�
; (3) the algorithm runs in time Õ

�
d2

(1−2η)3

�
.

Proof. Note that one of θ(v0, u), θ(−v0, u) is at most π
2 . From Theorem 2 and union bound, we

know that with probability at least 1− 2δ
3 , either θ(v+, u) ≤ (1−2η)π

16 , or θ(v−, u) ≤ (1−2η)π
16 .

Suppose without loss of generality, θ(v+, u) ≤ (1−2η)π
16 . We consider two cases.

Case 1: θ(v+, v−) ≤ π/8. By triangle inequality, θ(v−, u) ≤ θ(v+, u) + θ(v+, v−) ≤ π/4. In
this case, θ(v+, u) ≤ π

4 and θ(v−, u) ≤ π
4 holds simultaneously. Therefore, the returned vector v̂

satisfies θ(v̂, u) ≤ π
4 .

Case 2: θ(v+, v−) > π/8. In this case, P[x ∈ R] ≥ 1/8, thus,

PR[sign(v+ · x) �= sign(u · x)] ≤ P[sign(v+ · x) �= sign(u · x)]
P[x ∈ R]

≤ 1− 2η

8
=

1

4
(
1

2
− η).

Meanwhile, PR[sign(v+ ·x) �= y] ≤ ηPR[sign(v+ ·x) = sign(u·x)]+PR[sign(v+ ·x) �= sign(u·x)].
Therefore,

1

2
− PR[sign(v+ · x) �= y]

≥ (
1

2
− η)PR[sign(v+ · x) = sign(u · x)]− 1

2
PR[sign(v+ · x) �= sign(u · x)]

≥ (
1

2
− η) · 1

2
− (

1

2
− η) · 1

4

≥ 1

4
(
1

2
− η)

Since v+ disagrees with v− everywhere on R, PR[sign(v+ · x) �= y] + PR[sign(v− · x) �= y] = 1.
Thus, errD|R(hv+) ≤ 1

2 − ( 12 − η) 14 and errD|R(hv−) ≥ 1
2 + ( 12 − η) 14 . Therefore, by Hoeffding’s

Inequality, with probability at least 1− δ/3,

errS(v+) <
1

2
< errS(v−)

therefore v+ will be selected for v̂. This shows that θ(v̂, u) ≤ π/4.

In conclusion, by union bound, we have shown that with probability 1− δ, θ(v̂, u) ≤ π
4 . The label

complexity, unlabeled sample complexity, and time complexity of the algorithm follows immediately
from Theorem 2.

For the adversarial noise setting, [6] outlines an algorithm that returns a vector that has angle at most
π
4 with u. We state the algorithm in our context for completeness.

Theorem 7. Suppose Algorithm 6 has inputs labeling oracle O that satisfies η-bounded noise
condition with respect to u, confidence δ, sample schedule {mk} where mk = Θ

�
d(ln d+ ln k

δ )
�

,

band width {bk} where bk = Θ̃
�

2−k
√
d

�
. Then, with probability at least 1 − δ, the output v̂ is such

that θ(v̂, u) ≤ π
4 . Furthermore, (1) the total number of label queries to oracle O is at most Õ (d);

(2) the total number of unlabeled examples drawn is Õ (d); (3) the algorithm runs in time Õ
�
d2
�
.

The proof of this theorem is almost the same as Theorem 6 and is thus omitted.

G Basic Lemmas for the Upper Bounds

In this section, we present a few useful lemmas that serve as the basis of proving Theorems 2 and 3.
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Algorithm 6 Master Algorithm in the Adversarial Noise Setting
Input: Labeling oracle O, confidence δ
Output: a halfspace v̂ such that θ(v̂, u) ≤ π

4 .
1: v0 ← (1, 0, . . . , 0).
2: v+ ← ACTIVE-PERCEPTRON(O, v0,

1
16 ,

δ
3 , {mk} , {bk}).

3: v− ← ACTIVE-PERCEPTRON(O,−v0,
1
16 ,

δ
3 , {mk} , {bk}).

4: Define region R :=
�
x : sign(v+ · x) �= sign(v− · x)

�
.

5: S ← Draw 8 ln 6
δ iid examples from D|R and query their labels.

6: if errS(hv+) ≤ errS(hv−) then
7: return v+
8: else
9: return v−

10: end if

G.1 Basic Facts

We first collect a few useful facts for algebraic manipulations.

Lemma 11. If 0 ≤ x ≤ 1− 1
e , then for any d ≥ 1, (1− x

d )
d
2 ≥ e−x ≥ 1

2 .

Lemma 12. Given a ∈ (0,π), if x ∈ [0, a], then sin a
a x ≤ sinx ≤ x.

Lemma 13. If x ∈ [0,π], then 1− x2

2 ≤ cosx ≤ 1− x2

5 .

Lemma 14. Let B(x, y) =
� 1

0
(1− t)x−1ty−1dt be the Beta function. Then 2√

d−1
≤ B( 12 ,

d
2 ) ≤ π√

d
.

G.2 Probability Inequalities

Lemma 15 (Azuma’s Inequality). Let {Yt}mt=1 be a bounded submartingale difference sequence,
that is, E[Yt|Y1, . . . , Yt−1] ≥ 0, and |Yt| ≤ σ. Then, with probability at least 1− δ,

m�

t=1

Yt ≥ −σ

�
2m ln

1

δ

Lemma 16 (Concentration of Geometric Random Variables). Suppose Z1, . . . , Zn are iid geometric
random variables with parameter p. Then,

P[Z1 + . . .+ Zn >
2n

p
] ≤ exp(−n

4
)

Proof. Since Z1 + . . . + Zn > 2n
p implies that Z1 + . . . + Zn ≥ � 2n

p � (as Z1 + . . . + Zn is an
integer), the left hand side is at most P[Z1 + . . .+ Zn ≥ � 2n

p �].
Let X1, . . . , X� 2n

p � be a sequence of iid Bernoulli(p) random variables. By standard relationship
between Bernoulli random variables and geometric random variables, we have that

P[Z1 + . . .+ Zn ≥ �2n
p
�] = P[X1 + . . .+X� 2n

p �−1 ≤ n− 1]

Note that P[X1+ . . .+X� 2n
p �−1 ≤ n− 1] ≤ P[X1+ . . .+X� 2n

p � ≤ n] since X� 2n
p � ≤ 1. Applying

Chernoff bound, the above probability is at most exp(−� 2n
p � · p · 1

8 ) ≤ exp(−n
4 ).

G.3 Properties of the Uniform Distribution over the Unit Sphere

Lemma 17 (Marginal Density and Conditional Density). If (x1, x2, . . . , xd) is drawn from the
uniform distribution over the unit sphere, then:

1. (x1, x2) has a density function of p(z1, z2), where p(z1, z2) =
(1−z2

1−z2
2)

d−4
2

2π
d−2

.
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2. Conditioned on x2 = b, x1 has a density function of pb(z), where pb(z) =

(1−b2−z2)
d−4
2

(1−b2)
d−3
2 B( d−2

2 , 12 )
.

3. x1 has a density function of p(z), where p(z) = (1−z2)
d−3
2

B( d−1
2 , 12 )

.

Lemma 18. Suppose x is drawn uniformly from the unit sphere, and b ≤ 1
10

√
d

. Then,

P
�
x1 ∈

�
b
2 , b

��
≥

√
d

8π b.

Proof.

P

�
x1 ∈

�
b

2
, b

��

=

� b

b/2
(1− t2)

d−3
2 dt

B(d−1
2 , 1

2 )

≥
b
2 (1− b2)

d−3
2

π√
d−1

≥
√
d

8π
b

where the first equality is from item 3 of Lemma 17, giving the exact probability density function of x1,
the first inequality is from that (1− t2)

d−3
2 ≥ (1− b2)

d−3
2 when t ∈

�
b/2, b

�
, and Lemma 14 giving

upper bound on B(d−1
2 , 1

2 ), and the second inequality is from Lemma 11 and that d− 1 ≥ d
2 .

Lemma 19. Suppose x is drawn uniformly from unit sphere restricted to the region {x : v · x = ξ},
and u, v are unit vectors such that θ(u, v) = θ ∈ [0, 9

10π] and 0 ≤ ξ ≤ θ
4
√
d

. Then,

1. E[u · x] ≤ ξ.

2. E[(u · x)2] ≤ 5θ2

d .

3. E[(u · x)1 {u · x < 0}] ≤ ξ − θ
36

√
d

.

Proof. By spherical symmetry, without loss of generality, let v = (0, 1, 0, . . . , 0), and u =
(sin θ, cos θ, 0, . . . , 0). Let x = (x1, . . . , xd).

1.

E[u · x]
= E[x1 sin θ + x2 cos θ|x2 = ξ]

= E[x1|x2 = ξ] sin θ + ξ cos θ

≤ ξ

where the first two equalities are by algebra, the inequality follows from cos θ ≤ 1 and
E[x1|x2 = ξ] = 0 since the conditional distribution of x1 given x2 = ξ is symmetric around
the origin.
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2.

E[(u · x)2]
= E[(x1 sin θ + x2 cos θ)

2|x2 = ξ]

≤ E[2x2
1 sin

2 θ + 2x2
2 cos

2 θ|x2 = ξ]

≤ 2E[x2
1|x2 = ξ] sin2 θ + 2ξ2

≤ 2θ2
� 1

−1
z2(1− z2)

d−4
2 dz

B(d−2
2 , 1

2 )
+ 2ξ2

= 2θ2
B(d−2

2 , 3
2 )

B(d−2
2 , 1

2 )
+ 2ξ2

≤ 5θ2

d

where the first equality is by definition of u, the first inequality is from algebra that (A+
B)2 ≤ 2A2 + 2B2, the second inequality is from that | cos θ| ≤ 1, the third inequality is
from item 2 of Lemma 17 and that sin θ ≤ θ, and the last inequality is from the fact that
B( d−2

2 , 32 )

B( d−2
2 , 12 )

= 1
d−1 ≤ 2

d , and ξ2 ≤ θ2

16d .

3.

E[(u · x)1 {u · x < 0}]
= E[(x1 sin θ + x2 cos θ)1 {x1 < −ξ cot θ} |x2 = ξ]

≤ E[x11 {x1 < −ξ cot θ} |x2 = ξ] sin θ + ξ

= ξ + sin θ

� −ξ cot θ

−
√

1−ξ2

(1− ξ2 − x2
1)

d−4
2 x1

(1− ξ2)
d−3
2 B(d−2

2 , 1
2 )

dx1

= ξ − sin θ

2
d−2

�
1−

�
ξ

sin θ

�2
� d−2

2

(1− ξ2)
d−3
2 B(d−2

2 , 1
2 )

≤ ξ − sin θ
2

π
√
d− 2

�
1−

�
ξ

sin θ

�2
� d−2

2

≤ ξ − sin θ

π
√
d

≤ ξ − θ

36
√
d

where the first inequality is by algebra and | cos θ| ≤ 1, the second equality is by item 2 of
Lemma 17, the third equality is by integration, the second inequality is from (1−ξ2)

d−3
2 ≤ 1

and Lemma 14 that B(d−2
2 , 1

2 ) ≤ π√
d−2

, the third inequality follows by Lemma 11 that
�
1−

�
ξ

sin θ

�2
� d−2

2

≥ 1
2 , since ξ ≤ θ

4
√
d

, and the last inequality follows from Lemma 12

that sin θ ≥ 5θ
18π when θ ∈ [0, 9

10π] and algebra.

H Proof of the Lower Bound

In this section, we give the proof of Theorem 1 (label complexity lower bound in the bounded noise
setting). The proof follows from two key lemmas, Lemma 24 and Lemma 25. We start with some
additional definitions.
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Definition 3. Let P,Q be two probability measures on a common measurable space and P is
absolutely continuous with respect to Q.

• The KL-divergence between P and Q is defined as DKL (P,Q) = EX∼P ln
P(X)
Q(X) .

• We define dKL(p, q) = DKL (P,Q), where P,Q are distributions of a Bernoulli(p) and a
Bernoulli(q) random variables respectively.

• For random variables X,Y, Z, define the mutual information between X and Y un-
der P as I(X;Y ) = DKL

�
P(X,Y ),P(X)P(Y )

�
= EX,Y ln P(X,Y )

P(X)P (Y ) , and define the
mutual information between X and Y conditioned on Z under P as I(X;Y | Z) =

EX,Y,Z ln P(X,Y |Z)
P(X|Z)P (Y |Z) .

• For a sequence of random variables X1, X2, . . ., denote by Xn the subsequence
{X1, X2, . . . Xn}.

We will use the following two folklore information-theoretic lower bounds.

Lemma 20. Let W be a class of parameters, and {Pw : w ∈ W} be a class of probability
distributions indexed by W over some sample space X . Let d : W × W → R be a semi-metric.
Let V = {w1, . . . , wM} ⊆ W such that ∀i �= j, d(wi, wj) ≥ 2s > 0. Let V be a random variable
uniformly taking values from V , and X be drawn from PV . Then for any algorithm A that given a
sample X drawn from Pw outputs A(X) ∈ W , the following inequality holds:

sup
w∈W

Pw

�
d(w,A(X)) ≥ s

�
≥ 1− I(V ;X) + ln 2

lnM

Proof. For any algorithm A, define a test function Ψ̂ : X → {1, . . . ,M} such that

Ψ̂(X) = arg min
i∈{1,...,M}

d(A(X), wi)

We have

sup
w∈W

Pw

�
d(w,A(X)) ≥ s

�
≥ max

w∈V
Pw

�
d(w,A(X)) ≥ s

�
≥ max

i∈{1,...,M}
Pwi

�
Ψ̂(X) �= i

�

The desired result follows by classical Fano’s Inequality:

max
i∈{1,...,M}

Pwi

�
Ψ̂(X) �= i

�
≥ 1− I(V ;X) + ln 2

lnM

Lemma 21. [4, Lemma 5.1] Let γ ∈ (0, 1), δ ∈ (0, 1
4 ), p0 = 1−γ

2 , p1 = 1+γ
2 . Suppose

that α ∼Bernoulli( 12 ) is a random variable, ξ1, . . . , ξm are i.i.d. (given α) Bernoulli(pα) ran-

dom variables. If m ≤ 2
�
1−γ2

2γ2 ln 1
8δ(1−2δ)

�
, then for any function f : {0, 1}m → {0, 1},

P
�
f(ξ1, . . . , ξm) �= α

�
> δ.

Next, we present two technical lemmas.

Lemma 22. [48, Lemma 6] For any 0 < γ ≤ 1
2 , d ≥ 1, there is a finite set V ∈ Sd−1 such that the

following two statements hold:

1. For any distinct w1, w2 ∈ V , θ(w1, w2) ≥ πγ;

2. |V| ≥
√
d
2

�
1

2πγ

�d−1

− 1.

Lemma 23. If p ∈ [0, 1] and q ∈ (0, 1), then dKL(p, q) ≤ (p−q)2

q(1−q) .
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Proof.

dKL(p, q) = p ln
p

q
+ (1− p) ln

1− p

1− q

≤ p(
p

q
− 1) + (1− p)(

1− p

1− q
− 1)

=
(p− q)2

q(1− q)

where the inequality follows by lnx ≤ x− 1.

Lemma 24. For any 0 ≤ η < 1
2 , d > 4, 0 < � ≤ 1

4π , 0 < δ < 1
2 , for any active learning algorithm

A, there is a u ∈ Sd−1, and a labeling oracle O that satisfies η-bounded noise condition with respect
to u, such that if with probability at least 1−δ, A makes at most n queries to O and outputs v ∈ Sd−1

such that P[sign(v · x) �= sign(u · x)] ≤ �, then n ≥ d ln 1
�

16(1−2η)2 .

Proof. We will prove this Lemma using Lemma 20.

First, we construct W , V , d, s, and Pθ. Let W = Sd−1. Let V be the set in Lemma 22 with γ = 2�.
For any w1, w2 ∈ W , let d(w1, w2) = θ(w1, w2), s = π�. Fix any algorithm A. For any w ∈ W , any

x ∈ X , define Pw[Y = 1|X = x] =

�
1− η, w · x ≥ 0

η, w · x < 0
, and Pw[Y = 0|X = x] = 1− Pw[Y =

1|X = x]. Define Pn
w to be the distribution of n examples

�
(Xi, Yi)

�n

i=1
where Yi is drawn from

distribution Pw(Y |Xi) and Xi is drawn by the active learning algorithm A based solely on the
knowledge of

�
(Xj , Yj)

�i−1

j=1
.

By Lemma 22, we have M = |V| ≥
√
d
2

�
1

4π�

�d−1 − 1 ≥ 1
4

�
1

4π�

�d−1
, and d(w1, w2) ≥ 2π� = 2s

for any distinct w1, w2 ∈ V .

Clearly, for any w ∈ W , if the optimal classifier is w, and the oracle O responds according to
Pw(· | X = x), then it satisfies η-bounded noise condition. Therefore, to prove the lemma, it suffices
to show that if n ≤ d ln 1

�

16(1−2η)2 , then

sup
w∈W

Pw

�
d(w,A(Xn, Y n)) ≥ s

�
≥ 1

2
.

Now, by Lemma 20,

sup
w∈W

Pn
w

�
d(w,A(Xn, Y n)) ≥ s

�
≥ 1− I(V ;Xn, Y n) + ln 2

lnM
≥ 1− I(V ;Xn, Y n) + ln 2

(d− 1) ln 1
4π� − ln 4

.

It remains to show if n =
d ln 1

�

16(1−2η)2 , then I(V ;Xn, Y n) ≤ 1
2

�
(d− 1) ln 1

4π� − ln 4
�
− ln 2.

By the chain rule of mutual information, we have

I(V ;Xn, Y n) =

n�

i=1

�
I
�
V ;Xi | Xi−1, Y i−1

�
+ I

�
V ;Yi | Xi, Y i−1

��

First, we claim V and Xi are conditionally independent given
�
Xi−1, Y i−1

�
, and thus

I
�
V ;Xi | Xi−1, Y i−1

�
= 0. The proof for this claim is as follows. Since the selection of Xi

only depends on algorithm A and Xi−1, Y i−1, for any v1, v2 ∈ V , P
�
Xi | v1, Xi−1, Y i−1

�
=
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P
�
Xi | v2, Xi−1, Y i−1

�
. Thus,

P
�
Xi | Xi−1, Y i−1

�
=

�

v

P
�
Xi, v | Xi−1, Y i−1

�

=
�

v

P(v)P
�
Xi | v,Xi−1, Y i−1

�

=
1

|V|
�

v

P
�
Xi | v,Xi−1, Y i−1

�

= P
�
Xi | V,Xi−1, Y i−1

�

Next, we show I
�
V ;Yi | Xi, Y i−1

�
≤ 5(1 − 2η)2 ln 2. On one hand, since Yi ∈ {−1,+1},

I
�
V ;Yi | Xi, Y i−1

�
≤ H

�
V | Xi, Y i−1

�
≤ ln 2. where H(·|·) is the conditional entropy.

On the other hand,

I
�
V ;Yi | Xi, Y i−1

�

=EXi,Y i,V

�
ln

P
�
V, Yi | Xi, Y i−1

�

P
�
V | Xi, Y i−1

�
P
�
Yi | Xi, Y i−1

�
�

=EXi,Y i,V

�
ln

P
�
Yi | V,Xi, Y i−1

�

P
�
Yi | Xi, Y i−1

�
�

=EXi,Y i,V

�
ln

P
�
Yi | V,Xi, Y i−1

�

EV �P
�
Yi | V �, Xi, Y i−1

�
�

≤EXi,Y i,V,V �

�
ln

P
�
Yi | V,Xi, Y i−1

�

P
�
Yi | V �, Xi, Y i−1

�
�

≤ max
xi,yi−1,v,v�

DKL

�
P
�
Yi | xi, yi−1, v

�
,P

�
Yi | xi, yi−1, v�

��

= max
xi,yi−1,v,v�

DKL

�
P
�
Yi | xi, v

�
,P

�
Yi | xi, v

���

= max
xi,v,v�

DKL

�
Pv

�
Yi | xi

�
, Pv�

�
Yi | x�

i

��

≤ (1− 2η)2

η(1− η)

where the first inequality follows from the convexity of KL-divergence, and the last inequality follows
from Lemma 23.

Combining the two upper bounds, we get I
�
V ;Yi | Xi, Y i−1

�
≤ min

�
ln 2, (1−2η)2

η(1−η)

�
≤ 5(1 −

2η)2 ln 2.

Therefore, I(V ;Xn, Y n) ≤ 5n(1 − 2η)2 ln 2. If n ≤ d ln 1
�

16(1−2η)2 ≤
1
2 ((d−1) ln 1

4π�−ln 4)−ln 2

5(1−2η)2 ln 2 , then
I(V ;Xn, Y n) ≤ 1

2

�
(d− 1) ln 1

4π� − ln 4
�
− ln 2. This concludes the proof.

Lemma 25. For any d > 0, 0 ≤ η < 1
2 , 0 < � < 1

3 , 0 < δ ≤ 1
4 , for any active learning algorithm A,

there is a u ∈ Sd−1, and a labeling oracle O that satisfies η-bounded noise condition with respect to
u, such that if with probability at least 1− δ, A makes at most n queries to O and outputs v ∈ Sd−1

such that P[sign(v · x) �= sign(u · x)] ≤ �, then n ≥ Ω
�

η ln 1
δ

(1−2η)2

�
.

Proof. We prove this result by reducing the hypothesis testing problem in Lemma 21 to our problem
of learning halfspaces.
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Fix d, �, δ, η. Suppose A is an algorithm that for any u ∈ Sd−1, under η-bounded noise condition,
with probability at least 1 − δ outputs v ∈ Sd−1 such that P[sign(v · x) �= sign(u · x)] ≤ � < 1

3 ,
which implies θ(v, u) ≤ π

3 under bounded noise condition.

Let p0 = η, p1 = 1 − η. Suppose that α ∼Bernoulli( 12 ) is an unknown random variable. We are
given a sequence of i.i.d. (given α) Bernoulli(pα) random variables ξ1, ξ2 . . . , and would like to test
if α equals 0 or 1.

Define e = (1, 0, 0, . . . , 0) ∈ Rd. Construct a labeling oracle O such that for the i-th query xi, it
returns 2ξi − 1 if xi · e ≥ 0, and 1− 2ξi otherwise. Clearly, the oracle O satisfies η-bounded noise
condition with respect to underlying halfspace u = (2α− 1)e = (2α− 1, 0, 0, . . . , 0) ∈ Rd.

Now, we run learning algorithm A with oracle O. Let m be the number of queries A makes, and
A(ξ1, . . . , ξm) be the normal vector of the halfspace output by the learning algorithm. We define

f(ξ1, . . . , ξm) =

�
0 if A(ξ1, . . . , ξm) · e < 0

1 otherwise
.

By our assumption of A and construction of O, P
�
θ
�
u,A(ξ1, . . . , ξm)

�
≤ 1

3π
�

≥ 1 − δ, so

P
�
f(ξ1, . . . , ξm) = α

�
≥ 1 − δ, implying P

�
f(ξ1, . . . , ξm) �= α

�
≤ δ. By Lemma 21, m ≥

2
�
4η(1−η)
(1−2η)2 ln 1

8δ(1−2δ)

�
= Ω

�
η ln 1

δ

(1−2η)2

�
.
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