
A Network Architectures

Layer CNN-3 CNN-9 CNN-18 CNN-45 CNN-60 CNN-69

Conv1.x [3×3, 64]×1 [3×3, 64]×3 [3×3, 64]×6 [3×3, 64]×15 [3×3, 64]×20 [3×3, 64]×23
Pool1 2×2 Max Pooling, Stride 2

Conv2.x [3×3, 96]×1 [3×3, 96]×3 [3×3, 96]×6 [3×3, 96]×15 [3×3, 96]×20 [3×3, 96]×23
Pool2 2×2 Max Pooling, Stride 2

Conv3.x [3×3, 128]×1 [3×3, 128]×3 [3×3, 128]×6 [3×3, 128]×15 [3×3, 128]×20 [3×3, 128]×23
Pool3 2×2 Max Pooling, Stride 2

Fully Connected 256 256 256 256 256 256

Table 5: Our plain CNN architectures with different convolutional layers. Conv1.x, Conv2.x and Conv3.x
denote convolution units that may contain multiple convolution layers. E.g., [3×3, 64]×3 denotes 3 cascaded
convolution layers with 64 filters of size 3×3.

Layer ResNet-32 for Section 4.2 ResNet-32 for Section 4.3 ResNet-18 for Section 4.6

Conv0.x N/A N/A [7×7, 256], Stride 2
3×3, Max Pooling, Stride 2

Conv1.x

[3×3, 64]×1[
3× 3, 64

3× 3, 64

]
× 5

[3×3, 96]×1[
3× 3, 96

3× 3, 96

]
× 5

[
3× 3, 256

3× 3, 256

]
× 2

Conv2.x

[
3× 3, 96

3× 3, 96

]
× 5

[
3× 3, 192

3× 3, 192

]
× 5

[
3× 3, 512

3× 3, 512

]
× 2

Conv3.x

[
3× 3, 128

3× 3, 128

]
× 5

[
3× 3, 384

3× 3, 384

]
× 5

[
3× 3, 768

3× 3, 768

]
× 2

Conv4.x N/A N/A

[
3× 3, 1024

3× 3, 1024

]
× 2

Average Pooling

Table 6: Our ResNet architectures with different convolutional layers. Conv0.x, Conv1.x, Conv2.x, Conv3.x
and Conv4.x denote convolution units that may contain multiple convolutional layers, and residual units are
shown in double-column brackets. Conv1.x, Conv2.x and Conv3.x usually operate on different size feature
maps. These networks are essentially the same as [6], but some may have different number of filters in each
layer. The downsampling is performed by convolutions with a stride of 2. E.g., [3×3, 64]×4 denotes 4 cascaded
convolution layers with 64 filters of size 3×3, and S2 denotes stride 2.

B Experimental Details for Imagenet-2012

For the input data of the Imagenet-2012 experiment, we only use the minimum data augmentation.
Specifically, we first resize the images to 256× 256 resolution and then randomly crop patches of
size 224× 224 from the resized images. Besides that, we also randomly flip the image horizontally.
For SphereResNet-18-v1, we use the cosine SphereConv and the cosine W-Softmax loss. For
SphereResNet-18-v2, we use the cosine SphereConv and the softmax loss. Generally, we find that the
standard softmax loss and all kinds of W-Softmax loss usually have similar empirical performance.
Note that, we could obtain better performance by using the other SphereConvs (sigmoid SphereConv
with k = 0.3 is a good choice), but it requires more GPU memory. Due to the width of our
architecture and the limitation of GPU memory, the mini-batch size is set to 40 for all methods in the
Imagenet-2012 experiment.

C More Discussions for Sphere-normalized Softmax Loss

The sphere-normalized softmax (S-Softmax) loss is essentially applying the SphereConv to the fully
connected layer in the softmax loss2. However, simply applying the SphereConv can not make such
loss work, because this loss function is difficult to converge in practice. To address this, we rescale
the logit output of the S-Softmax loss with a scaling factor s. Therefore, the output range is changed
from [−1, 1] to [−s, s]. Typically, setting s from 10 to 70 works pretty well in practice. We could
also use the cross-validation strategy to set the hyperparameter s.

2The softmax loss is defined as the combination of the last fully connected layer, the softmax function and
the cross-entropy loss.

12



D Proofs of Lemmas

D.1 Proof of Lemma 1

The gradient is

∇G(U ,V ) =

[
∇UG(U ,V )
∇V G(U ,V )

]
=

[
(UV > − F )V

(V U> − F>)U

]
The Hessian matrix is

∇2G(U ,V ) =

[
∇2

UG(U ,V ) ∇2
U ,V G(U ,V )

∇2
V ,UG(U ,V ) ∇2

V G(U ,V )

]
=

[
V >V ⊗ In (UV > − F )⊗ Ik + U � V

(V U> − F>)⊗ Ik + V �U U>U ⊗ Im

]
, (12)

where In is an n× n identity matrix for any integer n, given matrices A ∈ Rn×r and B ∈ Rm×k
with A:,i denoting the i-th column of A, A�B ∈ Rnk×mr is defined as

A�B =


A:,1B

>
:,1 A:,2B

>
:,1 · · · A:,rB

>
:,1

A:,1B
>
:,2 A:,2B

>
:,2 · · · A:,rB

>
:,2

...
...

. . .
...

A:,1B
>
:,k A:,2B

>
:,k · · · A:,rB

>
:,k

 .

At a global optimum, we have UV > = F . Then it is easy to see that for any real c, if Ũ = cU and
Ṽ = V /c, then we have

∇2G(Ũ , Ṽ ) =

[
1
c2V

>V ⊗ In U � V
V �U c2U>U ⊗ Im

]
We have that at a global optimal point,∇2G(U ,V ) is a positive semidefinite matrix with the smallest
eigenvalue equal to 0. Specifically, due to the existence of the invariance, i.e., UV > = UR(V R)>

for any orthogonal matrix R ∈ Rr×r, there are r(r − 1)/2 number of eigenvectors of ∇2G(U ,V )
at UV > = F corresponding to 0 eigenvalue [10]. Then for any c > 1, we have

Tr(∇2G(Ũ , Ṽ )) =
1

c2
Tr(V >V ⊗ In) + c2Tr(U>U ⊗ Im)

≥ c2

2

(
Tr(V >V ⊗ In) + Tr(U>U ⊗ Im)

)
=
c2

2
Tr(∇2G(U ,V )).

This indicates that the largest eigenvalue of ∇2G(Ũ , Ṽ ) is on the order of Θ(c2) times the largest
eigenvalue of∇2G(U ,V ) following the perturbation bound analysis [15] and U and V are balanced.
Using a similar idea, the smallest nonzero eigenvalue of ∇2G(Ũ , Ṽ ) is no greater than the smallest
nonzero eigenvalue of ∇2G(U ,V ), which results in our claim on the restricted condition number.

D.2 Proof of Lemma 2

The gradient of GS(U ,V ) is

∇GS(U ,V ) =

[
∇UGS(U ,V )
∇V GS(U ,V )

]
with

∇UGS(U ,V ) = DU (DUUV >DV − F )DV V −
(
D3

U (DUUV >DV − F )~k (UV >DV )
)
�U ,

∇V GS(U ,V ) = DV (DV V U>DU − F>)DUU −
(
D3

V (DV V U>DU − F>)~k (V U>DU )
)
� V ,

Note that after each iteration of SGD, we perform the entry-wise normalization for both U and V ,
which means DU = In and DV = Im. Then the gradient of GS(U ,V ) is

∇GS(U ,V ) =

[
∇UGS(U ,V )
∇V GS(U ,V )

]
=

[
(UV > − F )V −

(
(UV > − F )~k (UV >)

)
�U

(V U> − F>)U −
(
(V U> − F>)~k (V U>)

)
� V

]
,

13



where given matrices A,B ∈ Rn×m with A:,i denoting the i-th column of A, A�B ∈ Rn×m is
the Hadamard (pointwise) product, and the operation A~k B ∈ Rn×k is defined as

A~k B =


A1,:B

>
1,:

A2,:B
>
2,:

...
An,:B

>
n,:

11×k,

where 11×k is a 1× k vector with all entries equal to 1.

Consequently, the Hessian matrix is

∇2GS(U ,V ) =

[
∇2

UGS(U ,V ) ∇2
U ,V GS(U ,V )

∇2
V ,UGS(U ,V ) ∇2

V GS(U ,V )

]
with

∇2
UGS(U ,V ) = V >V ⊗ In − diag

(
vec
(
(UV > − F )~k (UV >)

))
−

 diag
(
U:,1 �

(
(2UV > − F )V:,1

))
· · · diag

(
U:,1 �

(
(2UV > − F )V:,k

))
...

. . .
...

diag
(
U:,k �

(
(2UV > − F )V:,1

))
· · · diag

(
U:,k �

(
(2UV > − F )V:,k

))


∇2
U ,V GS(U ,V ) = Ik ⊗ (UV > − F ) + U � V

−

 (2UV > − F )� ((U:,1 �U:1)11×m) · · · (2UV > − F )� ((U:,1 �U:k)11×m)
...

. . .
...

(2UV > − F )� ((U:,k �U:1)11×m) · · · (2UV > − F )� ((U:,k �U:k)11×m)


∇2

V ,UGS(U ,V ) =
(
∇2

U ,V GS(U ,V )
)>

∇2
V GS(U ,V ) = U>U ⊗ In − diag

(
vec
(
(V U> − F>)~k (V U>)

))
−

 diag
(
V:,1 �

(
(2V U> − F>)U:,1

))
· · · diag

(
V:,1 �

(
(2V U> − F>)U:,k

))
...

. . .
...

diag
(
V:,k �

(
(2V U> − F>)U:,1

))
· · · diag

(
V:,k �

(
(2V U> − F>)U:,k

))


Then we have λi(∇2GS(Ũ , Ṽ )) = λi(∇2GS(U ,V )) for all i ∈ [(n+m)k] = {1, 2, . . . , (n+m)k}
by noticing that we normalize the data as Ui,j

‖Ui,:‖2 for all i ∈ [n] and Vi,j

‖Vi,:‖2 for all i ∈ [m]. This
finishes the proof.

14




