
7 Supplementary (Local Aggregative Games)

We now provide detailed proofs of all the theoretical results stated in the main text.

7.1 Existence of ε-PSNE in local aggregative games

We will use the following version of Talagrand’s inequality that gives a concentration of convex
Lipschitz functions around the median.

Lemma (Talagrand’s inequality). Let P = µ1 ⊗ µ2 . . .⊗ µn be a product probability measure on
the Cartesian product A = A1 ×A2 . . .×An of metric spaces (Ai, di) equipped with the l1 metric
d =

∑n
i=1 di where each di is bounded. Let a = (a1, . . . , an) be a point in this product space and

F : A→ R be a convex 1-Lipschitz function on (A, d). Then, for any r > 0,

P (|F −MF | ≥ r) ≤ 4e−r
2/4,

where MF is the median of F .

Theorem 1. Any local aggregative game on a connected digraph G, where G ∈ L(∆, n) and
max
i
|Ai| ≤ m, admits a 10∆

√
ln(8mn)-PSNE.

Proof. The main idea behind the proof is to sample a random strategy profile from a mixed strategy
Nash equilibrium of the game (any finite game is guaranteed to have a mixed strategy Nash
equilibrium). Specifically, using a concentration argument, we show a self-purification [24; 23; 9]
result that a profile sampled from a mixed strategy equilibrium is likely to be an approximate pure
strategy equilibrium when the Lipschitz constant is small. This would typically be the case in large
population aggregative games, where each player will likely have a sufficiently large number of
neighbors. We follow the probabilistic approach outlined in [23], who introduced Lipschitz games
and proved a remarkable result for general games with a small Lipschitz constant. We exploit the
convexity of the payoff functions to obtain a tighter bound in the number of players n.

The proof involves three steps. First, using an application of the Talagrand’s inequality, we will bound
the deviation of each individual payoff function around their median value with high probability.
Then, we will obtain a deviation around the mean by bounding the discrepancy between the median
and the mean. Finally, we will take a union bound over all players to obtain an approximate pure
strategy equilibrium by sampling from the mixed strategy equilibrium.

Let µ = (µ1, . . . , µn) be a mixed strategy Nash equilibrium of G, where each µi is a probability
distribution on Ai. Then, the support of each µi contains all those pure strategies in Ai that maximize
the expected payoff of player i when the other players play according to µ−i. Since the players play
their mixed strategies independently, we obtain a product probability measure P =

∏
i µi over the

strategy space A =
∏
iAi.

Fix ε′ > 0 and let ∆ = ε′/5
√

ln(8mn). We define event Ei,h,ε′ to be the set of all strategy profiles
a such that by playing strategy h against strategy profile a−i of her neighbors, player i ∈ [n] receives
nearly the same payoff as the median payoff Mi(h) when it plays h and others play their Nash
equilibrium strategy:

Ei,h,ε′ = Ai × {a−i ∈ A−i : |ui(h, fG(a, i))−Mi(h)| ≤ ε′} .

Likewise we define event E
′

i,h,ε′ where we instead consider the mean payoff Ei(h) to player i instead
of the median payoff, when others play their Nash equilibrium strategy:

E
′

i,h,ε′ = Ai ×

a−i ∈ A−i :

∣∣∣∣∣∣∣∣∣ui(h, fG(a, i))−
∫
ui(h, z)µ−i(dz)︸ ︷︷ ︸

Ei(h)

∣∣∣∣∣∣∣∣∣ ≤ ε
′

 .
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We denote the complement of event E by Ec. Since the payoff function ui(·, ·) is convex and
δi-Lipschitz in the second argument (where δi ≤ ∆) for every fixed instantiation of the first argument,
we get from the Talagrand’s inequality (following a scaling of ui by ∆):

P (Eci,h,ε′) ≤ 4e−ε
′2/4∆2

. (2)

Now, we can bound the deviation between the median Mi(h) and the expected value Ei(h) using a
standard result to obtain

P (E
′c
i,h,ε′) ≤ 8e−ε

′2/16∆2

<
1

mn
,

for every i ∈ [n] and h ∈ Ai. Since there are only n players with at most m strategies each,
we immediately note on taking a union bound over players i and their strategies h ∈ Ai, that
there is some non-zero probability that the players play a mixed strategy ε′-equilibrium. There-
fore, we can sample a pure-strategy profile a∗ from the support of µ such that a∗ ∈ ∩i∈[n],h∈AiE

′

i,h,ε′ .

The arguments in [23] can be recycled to show that a∗ is a pure 2ε′-equilibrium. We reproduce these
arguments for sake of completeness. Consider any player i and strategy h′i ∈ Ai \ {a∗i }. Since
a∗ ∈ E

′

i,h′i,ε
′ and the support of µi contains only those pure strategies in Ai that maximize the

expected payoff of player i when others play according to µ−i, we note that

ui(h
′
i, fG(a∗, i)) ≤

∫
ui(h

′
i, z)µ−i(dz) + ε′

(
since a∗ ∈ E

′

i,h′i,ε
′

)
≤

∫
ui(a

∗
i , z)µ−i(dz) + ε′ (since a∗i is in the support of µi)

≤ ui(a
∗
i , fG(a∗, i)) + 2ε′

(
since a∗ ∈ E

′

i,a∗i ,ε
′

)
The proof is complete since our choice of i and h′i was arbitrary, and ∆ = ε′/5

√
ln(8mn).

7.1.1 Extending the result to submodular functions

The result of Theorem 1 can be extended to submodular functions. Balcan and Harvey [27] proved
the following result for a certain class of submodular functions. Specifically,

Theorem (Balcan & Harvey [27]). Let F : 2[n] → R+ be a non-negative, monotone, submodular,
1-Lipschitz function, and let X ∈ [n] have a product distribution. Then for any b, t ≥ 0,

P (F (X) ≤ b− t
√
b) · P (F (X) ≥ b) ≤ e−t

2/4.

Defining m = b− t
√
b, and setting b = 1, this immediately yields the following for all t ≥ 0:

P (F (X) ≤ m)P (F (X) ≥ m+ t) ≤ e−t
2/4.

Let MF be the median of F . Since P (F ≥ MF ) = 1/2 = P (F ≤ MF ), invoking this inequality
twice with m = MF and m = MF − t, where t ≥ 0, we immediately get the following concentration
inequality which is of identical form as the Talagrand concentration result in Lemma 7.1:

P (|F −MF | ≥ t) ≤ 4e−t
2/4.

Therefore, the result regarding existence of pure strategy Nash equilibrium under convex Lipchitz
assumption on the individual payoff functions in Theorem 1 carries over nicely to non-negative,
monotone, submodular, Lipschitz functions as well.
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7.2 Information theoretic lower bounds

Lemma 2. Consider a directed random graph DG(n, p) where p ∈ (0, 1) is the probability of
choosing any directed edge independently of others. Define q = 1− p. Let Pn be the probability that
DG is connected. Then, the probability thatDG is disconnected is 1−PN = nq2(n−1) +O

(
n2q3n

)
.

Proof. Gilbert [25] proved an elegant result for bounding the probability that an Erdős-Rényi graph is
disconnected. We will adapt his proof for our setting. Consider any node i. For i to be in a component
of size k, there must be exactly (k − 1) other nodes in the component. Moreover, there should not be
any edge between this component and any of the other (n− k) nodes. The number of these missing
edges is exactly 2k(n− k) when we account for the direction. Therefore, we must have the following
recurrence relation:

1− Pn =

n−1∑
k=1

(
n− 1

k − 1

)
Pkq

2k(n−k) (3)

First we bound this quantity from above. [25] noted that since x(N − x) is convex, we have:

2k(n− k) ≥
{

(n− 2)k + n if 1 ≤ k ≤ n/2
(n− 2)(n− k) + n if n/2 ≤ k ≤ n− 1.

(4)

Since q < 1, we can decompose the sum on right side of (3) into two sums to obtain

1− Pn ≤
n−1∑
k=1

(
n− 1

k − 1

)
q2k(n−k) ≤

n/2∑
k=1

(
n− 1

k − 1

)
q2k(n−k)

︸ ︷︷ ︸
(A)

+

n−1∑
k=n/2+1

(
n− 1

k − 1

)
q2k(n−k)

︸ ︷︷ ︸
(B)

.

We will bound these two sums (A) and (B) separately. Note that, using (4),

(A) =

n/2∑
k=1

(
n− 1

k − 1

)
q2k(n−k) ≤

n/2∑
k=1

(
n− 1

k − 1

)
q(n−2)k+n =

n/2−1∑
j=0

(
n− 1

j

)
q(n−2)(j+1)+n

= q2(n−1)

n/2−1∑
j=0

(
n− 1

j

)
q(n−2)j ≤ q2(n−1)

n−1∑
j=0

(
n− 1

j

)
q(n−2)j −

(
n− 1

n− 1

)
q(n−2)(n−1)


= q2(n−1)

[(
1 + q(n−2)

)n−1

− q(n−2)(n−1)

]
.

Moreover, since
(
n−1
k−1

)
=
(
n−1
n−k
)
, using (4),

(B) =

n−1∑
k=n/2+1

(
n− 1

k − 1

)
q2k(n−k) ≤

n−1∑
k=n/2+1

(
n− 1

n− k

)
q(n−2)(n−k)+n

= qn
n−1∑

k=n/2+1

(
n− 1

n− k

)
q(n−2)(n−k) = qn

n/2−1∑
j=1

(
n− 1

j

)
q(n−2)j

= qn

n/2−1∑
j=0

(
n− 1

j

)
q(n−2)j − 1

 ≤ qn [(1 + q(n−2)
)n−1

− 1

]
.
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Adding (A) and (B), we get an upper bound on the probability that the graph is disconnected:

1− Pn ≤ q2(n−1)

[(
1 + q(n−2)

)n−1

− q(n−2)(n−1)

]
+ qn

[(
1 + q(n−2)

)n−1

− 1

]
. (5)

On the other hand, the lower bound denotes the probability that some node is isolated, i.e. it does
not have any incoming or outgoing edge. In other words, the lower bound L is dictated by the union
of the individual events Ei that the node i is isolated. Feller attributes the following inequality to
Bonferroni [26]:

L ≥
∑
i

P (Ei)−
∑
i<j

P (EiEj).

Clearly, P (Ei) = q2(n−1) since i does not share any edges in either direction with the remaining
(n− 1) vertices. Now, the event Ei ∩ Ej happens when nodes i and j do not have any edge between
them, and with any of the other (n − 2) vertices. Therefore, the total number of missing edges is
2 + 2 ∗ 2(n− 2) = 2(2n− 3). Since there are

(
n
2

)
such pairs (i, j), we immediately get the lower

bound:

1− Pn ≥ L ≥ nq2(n−1) −
(
n

2

)
q2(2n−3) = nq2(n−1)

[
1−

(
n− 1

2

)
q2(n−2)

]
. (6)

The statement of the lemma follows by combining the bounds from (5) and (6).

Theorem 3. Let ε > 0, and α, δ ∈ (0, 1). Let n be the number of players in a local aggregative
game, where each player i ∈ [n] is provided with some convex ∆-Lipschitz function ui and an
aggregator A. Let Dn , Dn(∆, ε, A, (ui)i∈[n]) be the sufficient in-degree (number of incoming
edges) of each player such that the game admits some ε-PSNE when the players play to maximize
their individual payoffs ui according to the local information provided by the aggregator A. Assume
any non-negative monotone submodular cost function on the edge set cardinality. Then for any
d ≥ max{Dn, n

α lnn}/(1− α), any randomized algorithm that approximates the game structure to
a factor n1−α/(1 + δ)d requires exponentially many queries under the value oracle model.

Proof. The main idea is to construct a directed graph that has exponentially many spanning directed
subgraphs, and define two carefully designed submodular cost functions over the edges of the graph,
one of which is deterministic in query size while the other depends on a distribution. We will make it
hard for a deterministic algorithm to tell one cost function from the other. This general paradigm
[29; 30; 31] can be accomplished by ensuring two conditions: (a) these cost functions map to the same
value on almost all the queries, and (b) the discrepancy in the optimum value of the functions (on the
optimum query) is massive. Thus, since the total number of queries is exponential, we would make it
difficult for the non-optimal function to figure out the optimal query when the optimal query would
be chosen from a distribution over a large collection of the spanning subgraphs that satisfy the degree
constraint with high probability (and thus, in turn, guarantee a pure strategy ε-Nash equilibrium).
Our analysis falls under the general framework introduced in [14], where lower bounds on some well
known combinatorial problems were proved.

We first construct an good graph instance for our setting. Fix α. Specifically, we consider nα cliques
DG1, . . . , DGnα , each with n1−α vertices. We form a spanning graph DG(V, E) by choosing an
arbitrary vertex from each clique and then joining these vertices together via edges of arbitrary
orientation. We now construct a random subset of edges DR =

⋃
i∈[n]

DRi, where each DRi is

obtained by randomly sampling every edge in DGi independently with probability p = d/n1−α.
Since each DGi is a clique on n′i , n1−α vertices, and each edge is sampled independently with
probability p, we can invoke Lemma 2 on each subset DGi separately. Then, taking a union bound,
it is easy to see that the probability thatDR is connected is at least 1−n exp (−Ω(nα lnn (1− o(1))).

We now claim that with high probability the degree of each vertex in DGi restricted to edges in
DRi is at least Dn. Let degi(v) be the in-degree of any node v restricted to set DRi. Invoking the
Chernoff’s bound on each DGi, we have

P (∃v ∈ DGi : |degi(v)− n′ip| ≥ αn′ip) ≤ 2n′ exp(−α2n′ip/3)︸ ︷︷ ︸
δ1

.
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Equivalently, with probability at least 1-δ1, we have for all v ∈ DGi:

degi(v) ∈ [(1− α)n′ip, (1 + α)n′ip] = [(1− α)d, (1 + α)d].

Since d ≥ Dn

1− α
, this immediately implies that with high probability, degi(v) ≥ Dn, ∀v in

DGi. Therefore taking a union bound over DGi, . . . , DGnα , with probability at least 1 - nαδ1, or
equivalently 1 − 2n exp(−α2d/3), we have that degree of each vertex restricted to DR is at least
Dn. Since d = Ω(nα lnn), this bound holds with high probability. This would ensure the existence
of an ε-Nash equilibrium in the underlying local aggregative game.

Thus far, we have shown a high probability result that DG(V, E), when restricted to DR, simulta-
neously satisfies both the spanning and degree constraints. Fix δ. We denote the complement of a
subset S ⊆ E by Sc = E \ S. We now define two submodular functions fDR, g : 2E → R+ that
score any query Q ∈ 2E . The cost of optimal solution in fDR is

fDR(Q) = min {|Q ∩DRc|+ min{|Q ∩DR|, (1 + δ)npd} , nd}
g(Q) = min{|Q|, nd}.

Since |Q| = |Q ∩ DR| + |Q ∩ DRc|, we have fDR(Q) ≤ g(Q) for all Q. Moreover, since with
high probability DR is connected, the cost of optimal spanning graph under fDR is (1 + δ)npd. On
the other hand, the optimal cost under g is nd. Therefore, we have with high probability that the ratio

of the optimal cost in g and that in fDR is at least
1

(1 + δ)p
=

n1−α

(1 + δ)d
.

Note that since fDR(Q) ≤ g(Q) for all Q, we have P (fDR(Q) 6= g(Q)) = P (fDR(Q) < g(Q)).
Now we claim that the size of optimal query Q∗ is nd. To see this, consider first the case |Q| ≥ nd.
We have g(Q) = nd. Therefore,

P (fDR(Q) < g(Q)) = P (min {|Q ∩DRc|+ min{|Q ∩DR|, (1 + δ)npd} , nd} < nd).

Clearly, this probability increases when we reduce the size of Q. Since |Q| ≥ nd, we must have
Q∗ = nd. Now consider the other side, i.e. |Q| ≤ nd. In this case, g(Q) = |Q| and

fDR(Q) = |Q ∩DRc|+ min{|Q ∩DR|, (1 + δ)npd}.

Therefore, since we sampled the edges randomly, we see via an application of Chernoff’s bound that

P (fDR(Q) < g(Q)) = P (|Q ∩DRc|+ min{|Q ∩DR|, (1 + δ)npd} < |Q|)
= P (min{|Q ∩DR|, (1 + δ)npd} < |Q ∩DR|)
= P ((1 + δ)npd < |Q ∩DR|),

increases when |Q ∩DR| increases which happens when |Q| increases. Therefore, we must have
|Q∗| = nd in this case as well. Also,

P (fDR(Q) < g(Q)) = P ((1 + δ)E|Q ∩DR| < |Q ∩DR|)
≤ exp(−δ2npd/3),

which is exponentially small. In other words, the probability that fDR and g can be distinguished by
an arbitrary query is exponentially small. The result stated in the theorem then follows immediately
from the Yao’s minimax principle.

7.3 Stability in γ-aggregative games

Theorem 4. Let γ ∈ (0, 1), and gG(·, ·, `, ·) be the γ-aggregator defined above. Let PG(`) be the
property “the number of maximum permissible intermediaries in a shortest path of length l in G”.
Then, gG is a (2ηκG, ηκG)P,WG,L- SSA, where L < WG and κG depends on γ and WG − L.

Proof. The proof proceeds in three steps. First step is to show the existence of an approximate pure
strategy Nash equilibrium under PG(DG). The proof from Theorem 1 carries over directly while
noting that we now instead need to use δγ(G) as the Lipschitz constant. The second step is to show
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that the players are in an approximate pure strategy equilibrium when the aggregator now aggregates
using PG(L). To see this, note that since under PG(WG) we have an approximate pure ε′-equilibrium
profile a∗, and so for any strategy h′i ∈ Ai (note that Theorem 1 proved the following result for any
deviation from a∗i , however, the result holds trivially for h′i = a∗i as well, and so we can consider an
arbitrary action in Ai):

ui(h
′
i, gG(a∗, γ,WG, i)) ≤ ui(a∗i , gG(a∗, γ,WG, i)) + ε′. (7)

Define B(γ, `) ,
∑̀
t=0

γt, and C(a, γ, `, i) =
∑`
t=0 γ

tf tG(a, i). Then, since the payoff functions ui

are η-Lipschitz in the second argument, it is easy to show that for every a′i,

|ui(a′i, gG(a∗, γ, `, i))− ui(a′i, gG(a∗, γ,WG, i))| ≤ ηκG(γ, `),

where

κG(γ, `) , max
i

∣∣∣∣C(a∗, γ, `, i)

(
B(γ,WG)−B(γ, `)

B(γ,WG)B(γ, `)

)
− C(a∗, γ,WG, i)− C(a∗, γ, `, i)

B(γ,WG)

∣∣∣∣ .
In particular, substituting a′i = h′i, we have

ui(h
′
i, gG(a∗, γ, L, i)) ≤ ui(h′i, gG(a∗, γ,WG, i)) + ηκG(γ, L). (8)

Also, substituting a′i = a∗i and using the other direction, we have

ui(a
∗
i , gG(a∗, γ,WG, i)) ≤ ui(a∗i , gG(a∗, γ, L, i)) + ηκG(γ, L). (9)

Combining (7), (8) and (9), we get that players are playing an (ε′+ 2ηκG(γ, L))-PSNE under PG(L)
by sticking to the profile a∗:

ui(h
′
i, gG(a∗, γ, L, i)) ≤ ui(h

′
i, gG(a∗, γ,WG, i)) + ηκG(γ, L) (10)

≤ ui(a
∗
i , gG(a∗, γ,WG, i)) + ε′ + ηκG(γ, L)

≤ ui(a
∗
i , gG(a∗, γ, L, i)) + ε′ + 2ηκG(γ, L).

Finally, exploiting the η-Lipschitz property again, we immediately get that the payoff of each player
does not decrease too much under PG(L):

ui(a
∗
i , gG(a∗, γ, L, i)) ≥ ui(a∗i , gG(a∗, γ,WG, i))− ηκG(γ, L).

Therefore, gG is (2ηκG(γ, `), ηκG(γ, `))P,WG,L − structurally stable.

Note that κG(γ, `) is often small when WG−L is small. For instance, in large population games with
the average aggregator f tG(·, ·), for a fixed γ, C(γ, `, i) would typically be small compared to B(γ, `)
since the f tG(a, i) would generally be much smaller than 1. Then, κG is largely determined by the
gap between B(γ, `) and B(γ,WG) which would be small when ` is close to WG. In particular, κG
would be small when either γ is small (in which case the aggregator behaves increasingly like a local
aggregator), or when ` is close to WG. Thus, by controlling ` and γ, we can ensure κG is small.
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