
Supplementary Note
Net-Trim: Convex Pruning of Deep Neural Networks with

Performance Guarantee

Alireza Aghasi, Afshin Abdi, Nam Nguyen and Justin Romberg∗

Abstract

The material presented in this document is supplementary to the manuscript presented
at the NIPS 2017. The document contains extended discussions on some of the material
presented in the paper, an extended experiment highlighting the Net-Trim performance
and the technical proofs of the statements presented in the paper.
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1 Maintaining the Feasibility for the Cascade Net-Trim

As pointed out in the text, in the case of cascade Net-Trim, the proposed convex program
needs to be slacked to prevent an infeasibility issue. To better explain the mechanics, consider
starting the cascade process by retraining the first layer as

Ŵ1 = arg min
U

∥U∥1 s.t. U ∈ Cε1 (X,Y (1),0) . (S.1)

Setting Ŷ (1) = max(Ŵ1
⊺X,0) to be the outcome of the retrained layer, to retrain the second

layer, we ideally would like to address a similar program as (S.1) with Ŷ (1) as the input and
Y (2) being the output reference, i.e.,

min
U

∥U∥1 s.t. U ∈ Cε2 (Ŷ
(1),Y (2),0) . (S.2)

However, there is no guarantee that program (S.2) is feasible, that is, there exists a matrix
W = [w1,⋯,wN2] such that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
m,p∶ y

(2)
m,p>0

(w⊺

mŷ
(1)
p − y

(2)
m,p)

2 ≤ ε22

w⊺

mŷ
(1)
p ≤ 0 m,p ∶ y

(2)
m,p = 0

. (S.3)

If instead of Ŷ (1) the constraint set (S.2) was parameterized by Y (1), a natural feasible point
would have beenW2. Now that Ŷ (1) is a perturbed version of Y (1), the constraint set needs
to be slacked to maintain the feasibility of W2. In this context, one may easily verify that

W2 ∈ Cε2 (Ŷ
(1),Y (2),W ⊺

2 Ŷ
(1)

) (S.4)

as long as ε22 ≥ ∑
m,p∶ y

(2)
m,p>0

(w⊺

2,mŷ
(1)
p − y

(2)
m,p)

2
, where w2,m is the m-th column ofW2. Basically

the constraint set in (S.4) is a slacked version of the constraint set in (S.3), where the right
hand side quantities in the corresponding inequalities are sufficiently extended to maintain the
feasibility of W2. A similar argument applies to all subsequent layers justifying formulations
(6) and (7) of the paper.

2 Retraining the Last Layer

Commonly, the last layer in a neural network is not subject to an activation function and a
standard linear model applies, i.e., Y (L) =W ⊺

LY
(L−1). This linear outcome may be directly

exploited for regression purposes or pass through a soft-max function to produce the scores
for a classification task.
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In this case, to retrain the layer we simply need to seek a sparse weight matrix under the
constraint that the linear outcomes stay close before and after retraining. More specifically,

ŴL = arg min
U

∥U∥1 s.t. ∥U⊺Y (L−1)
−Y (L)∥

F
≤ εL. (S.5)

In the case of cascade Net-Trim,

ŴL = arg min
U

∥U∥1 s.t. ∥U⊺Ŷ
(L−1)

−Y (L)∥
F
≤ εL, (S.6)

and the feasibility of the program is established for

ε2L = γL ∥W ⊺

L Ŷ
(L−1)

−Y (L)∥
2

F
, γ ≥ 1. (S.7)

It can be shown that the results stated earlier in Theorems 1 and 2 regarding the overall
discrepancy of the network generalize to a network with linear activation at the last layer.

Proposition S.1. Consider a link-normalized network T N({W`}
L
`=1,X), where a standard

linear model applies to the last layer.
(a) If the first L− 1 layers are retrained according to the process stated in Theorem 1 and

the last layer is retrained through (S.5), then

∥Ŷ
(L)

−Y (L)∥
F
≤

L

∑
`=1

εj .

(b) If the first L− 1 layers are retrained according to the process stated in Theorem 2 and
the last layer is retrained through (S.6) and (S.7), then

∥Ŷ
(L)

−Y (L)∥
F
≤ ε1

¿
Á
Á
ÁÀ

L

∏
j=2

γj .

Proof. For part (a), from Theorem 1 we have ∥Ŷ
(L−1)

−Y (L−1)∥F ≤ ∑
L−1
`=1 ε`. Furthermore,

∥Ŷ
(L)

−Y (L)∥
F
= ∥Ŵ

⊺

L Ŷ
(L−1)

−Y (L)∥
F

≤ ∥Ŵ
⊺

L Ŷ
(L−1)

− Ŵ
⊺

LY
(L−1)

∥
F
+ ∥Ŵ

⊺

LY
(L−1)

−Y (L)∥
F

≤ ∥Ŵ
⊺

L ∥
F
∥Ŷ
(L−1)

−Y (L−1)
∥
F
+ εL

≤
L

∑
`=1

ε`,
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where for the last inequality we used a similar chain of inequalities as (S.19).

To prove part (b), for the first L−1 layers, ∥Ŷ
(L−1)

−Y (L−1)∥F ≤ ε1

√

∏
L−1
`=1 γ`, and therefore

∥Ŷ
(L)

−Y (L)∥
F
= ∥Ŵ

⊺

L Ŷ
(L−1)

−Y (L)∥
F

≤
√
γL ∥W ⊺

L Ŷ
(L−1)

−W ⊺

LY
(L−1)

∥
F

≤
√
γL ∥WL∥F ∥Ŷ

(L−1)
−Y (L−1)

∥
F

≤
√
γL ∥Ŷ

(L−1)
−Y (L−1)

∥
F

≤ ε1

¿
Á
ÁÀ

L

∏
`=1

γ`.

Here, the first inequality is thanks to (S.6) and (S.7).

While the cascade Net-Trim is designed in way that infeasibility is never an issue, one
can take a slight risk of infeasibility in retraining the last layer to further reduce the overall
discrepancy. More specifically, if the value of εL in (S.6) is replaced with κεL for some
κ ∈ (0,1), we may reduce the overall discrepancy by the factor κ, without altering the sparsity
pattern of the first L−1 layers. It is however clear that in this case there is no guarantee that
program (S.6) remains feasible and multiple trials may be needed to tune κ. We will refer to
κ as the risk coefficient.

3 Additional Experiment: Classification of Data on Nested Spi-
rals

For a better demonstration of the Net-trim performance in terms of model reduction, mean
accuracy and cascade vs. parallel retraining frameworks, here we focus on a low dimensional
dataset. We specifically look into the classification of two set of points lying on nested spirals
as shown in Figure S.1(a). The dataset is embedded into the H2O package [1, 2] and publicly
available along with the module.

As an initial experiment, we consider a network of size 2⋅200⋅200⋅2, which indicates the use
of two hidden layers of 200 neurons each, i.e., W1 ∈ R2×200, W2 ∈ R200×200 and W3 ∈ R200×2.
After training the model, a contour plot of the soft-max outcome, indicating the classifier, is
depicted in Figure S.1(b). We apply the cascade Net-Trim for ε = 0.01×∥Y (1)∥F (the network
is not link normalized), γ = 1.1 and the final risk coefficient κ = 0.35 (see Section 2 of this
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Figure S.1: Classifying two set of data points on nested spirals; (a) the points corresponding to
each class with different colors; (b) the soft-max contour (0.5 level-set) representing the neural net
classifier; (c) the classifier after applying the Net-Trim (d) a plot of the network weights corresponding
to the last layer, before (on the left side) and after (on the right side) retraining

supplementary note for the definition of κ). To evaluate the difference between the network
output before and after retraining, we define the relative discrepancy

εrd =
∥Z − Ẑ∥F

∥Z∥F
, (S.8)

where Z =W3Y
(2) and Ẑ = Ŵ3Ŷ

(2) are the network outcomes before the soft-max operation.
In this case εrd = 0.046. The classifier after retraining is presented in Figure S.1(c), which
shows minor difference with the original classifier in panel (b). The number of nonzero
elements inW1,W2 andW3 are 397, 39770 and 399, respectively. After retraining, the active
entries in Ŵ1,Ŵ2 and Ŵ3 reduce to 362, 2663 and 131 elements, respectively. Basically, at
the expense of a slight model discrepancy, a significant reduction in the model complexity
is achieved. Figures 1(b) and S.1(d) compare the cardinalities of the second and third layer
weights before and after retraining.
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Figure S.2: Sparsity ratio as a function of overall network relative mismatch for the cascade (first
row) and parallel (second row) schemes

As a second experiment, we train the neural network with Dropout and `1 penalty to
produce a readily simple model. The number of nonzero elements in W1,W2 and W3 turn
out to be 319, 6554 and 304, respectively. Using a similar ε as the first experiment, we apply
the cascade Net-Trim, which produces a retrained model with εrd = 0.0183 (the classifiers are
visually identical and not shown here). The number of active entries in Ŵ1,Ŵ2 and Ŵ3

are 189, 929 and 84, respectively. Despite the use of model reduction tools (Dropout and `1
penalty) in the training phase, the Net-Trim yet zeros out a large portion of the weights in
the retraining phase. The second layer weight-matrix densities before and after retraining are
visually comparable in Figure 1(c).

We next perform a more extensive experiment to evaluate the performance of the cascade
Net-Trim against the parallel version. Using the spiral data, we train three networks each
with two hidden layers of sizes 50 ⋅ 50, 75 ⋅ 75 and 100 ⋅ 100. For the parallel retraining, we
fix a value of ε, retrain each model 20 times and record the mean layer sparsity across these
experiments (the averaging among 20 experiments is to remove the bias of local minima in
the training phase). A similar process is repeated for the cascade case, where we consistently
use γ = 1.1 and κ = 1. We can sweep the values of ε in a range to generate a class of curves
relating the network relative discrepancy to each layer mean sparsity ratio, as presented in
Figure S.2. Here, sparsity ratio refers to the ratio of active elements to the total number of
elements in the weight matrix.

A natural observation from the decreasing curves is allowing more discrepancy leads to
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more level of sparsity. We also observe that for a constant discrepancy εrd, the cascade
Net-Trim is capable of generating rather sparser networks. The contrast in sparsity is more
apparent in the third layer (panel (c) vs. panel (f)). We would like to note that using κ < 1
makes the contrast even more tangible, however for the purpose of long-run simulations, here
we chose κ = 1 to avoid any possible infeasibility interruptions. Finally, an interesting obser-
vation is the rather dense retrained matrices associated with the first layer. Apparently, less
pruning takes place at the first layer to maximally bring the information and data structure
into the network.

In Table S.1 we have listed some retraining scenarios for networks of different sizes trained
with Dropout. Across all the experiments, we have used the cascade Net-Trim to retrain the
networks and chosen ε small enough to warrant an overall relative discrepancy below 0.02.
On the right side of the table, the number of active elements for each layer is reported, which
indicates the significant model reduction for a negligible discrepancy.

Table S.1: Number of active elements within each layer, before and after Net-Trim for a network
trained with Dropout

Trained Network Net-Trim Retrained Network
Network Size Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
2 ⋅ 50 ⋅ 50 ⋅ 2 99 2483 100 98 467 54
2 ⋅ 75 ⋅ 75 ⋅ 2 149 5594 150 149 710 72

2 ⋅ 125 ⋅ 125 ⋅ 2 250 15529 250 247 3477 96
2 ⋅ 175 ⋅ 175 ⋅ 2 349 30395 350 348 1743 116
2 ⋅ 200 ⋅ 200 ⋅ 2 400 39668 399 399 1991 113

Table S.2: Number of active elements within each layer, before and after Net-Trim for a network
trained with Dropout and an `1-penalty

Trained Network Net-Trim Retrained Network
Network Size Layer 1 Layer 2 Layer 3 Layer 1 Layer 2 Layer 3
2 ⋅ 50 ⋅ 50 ⋅ 2 58 1604 95 54 342 46
2 ⋅ 75 ⋅ 75 ⋅ 2 96 2867 135 90 651 62

2 ⋅ 125 ⋅ 125 ⋅ 2 126 5316 226 95 751 60
2 ⋅ 175 ⋅ 175 ⋅ 2 171 9580 320 136 906 61
2 ⋅ 200 ⋅ 200 ⋅ 2 134 8700 382 109 606 70

Table S.2 reports another set of sample experiments, where Dropout and `1 penalty are
simultaneously employed in the training phase to prune the network. Going through a similar
cascade retraining, while keeping εrd below 0.02, we have reported the level of additional model
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Figure S.3: The weight histogram of the middle layer before and after retraining; (a) the middle
layer histogram of a 2 ⋅50 ⋅50 ⋅2 network trained with Dropout (left) vs. the histogram after Net-Trim
(right); (b) similar plots as panel (a) for a 2 ⋅ 200 ⋅ 200 ⋅ 2 network

reduction that can be achieved. Basically, the Net-Trim post processing module uses the
trained model (regardless of how it is trained) to further reduce its complexity. A comparison
of the network weight histograms before and after retraining may better highlight the Net-
Trim performance. Figure S.3 compares the middle layer weight histograms for a pair of
experiments reported in Table S.1.

4 Technical Proofs

4.1 Proof of Proposition 1

If Ŵ = [ŵ1,⋯, ŵM ] is a solution to (4), then the feasibility of the solution requires

∑
m,p ∶ ym,p>0

(ŵ⊺

mxp − ym,p)
2
≤ ε2 (S.9)

and
ŵ⊺

mxp ≤ 0 if ym,p = 0. (S.10)
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Consider Ŷ = [ŷm,p], then

∥Y − Ŷ ∥
2

F
=

M

∑
m=1

P

∑
p=1

(ym,p − ŷm,p)
2

= ∑
m,p ∶ ym,p>0

(ym,p − ŷm,p)
2
+ ∑
m,p ∶ ym,p=0

(ym,p − ŷm,p)
2

= ∑
m,p ∶ ym,p>0

(ym,p − (ŵ⊺

mxp)
+)

2

= ∑
m,p ∶ ym,p>0,ŵ⊺

mxp>0

(ym,p − ŵ
⊺

mxp)
2
+ ∑
m,p ∶ ym,p>0,ŵ⊺

mxp≤0

y2
m,p. (S.11)

Here since ym,p ≥ 0, the second equality is partitioned into two summations separated by the
values of ym,p being zero or strictly greater than zero. The second resulting sum vanishes in
the third equality since from (S.10), ŷm,p = max(ŵ⊺

mxp,0) = 0 when ym,p = 0. For the second
term in (S.11) we use the basic algebraic identity

∑
m,p ∶ ym,p>0,ŵ⊺

mxp≤0

y2
m,p = ∑

m,p ∶ ym,p>0,ŵ⊺

mxp≤0

(ym,p − ŵ
⊺

mxp)
2
+2ym,p(ŵ

⊺

mxp)−(ŵ⊺

mxp)
2
. (S.12)

Combining (S.12) and (S.11) results in

∥Y − Ŷ ∥
2

F
= ∑
m,p ∶ ym,p>0

(ym,p − ŵ
⊺

mxp)
2
+ ∑
m,p ∶ ym,p>0,ŵ⊺

mxp≤0

2ym,p(ŵ
⊺

mxp) − (ŵ⊺

mxp)
2
. (S.13)

From (S.9), the first sum in (S.13) is upper bounded by ε2. In addition,

2ym,p(ŵ
⊺

mxp) − (ŵ⊺

mxp)
2
≤ 0,

when ym,p > 0 and ŵ⊺

mxp ≤ 0, which together yield ∥Y − Ŷ ∥2
F ≤ ε2 as expected.

4.2 Proof of Theorem 1

We prove the theorem by induction. For ` = 1, the claim holds as a direct result of Proposition
1. Now suppose the claim holds up to the (` − 1)-th layer,

∥Ŷ
(`−1)

−Y (`−1)
∥
F
≤
`−1

∑
j=1

εj , (S.14)

we show that for the `-th layer, ∥Ŷ (`)−Y (`)∥F ≤ ∑
`
j=1 εj . The outcome of the `-th layer before

and after retraining obeys

y(`)m,p = (w⊺

my
(`−1)
p )

+

and ŷ(`)m,p = (ŵ⊺

mŷ
(`−1)
p )

+

, (S.15)
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where y(`)m,p and ŷ
(`)
m,p are entries of Y (`) and Ŷ (`), them-th columns ofW` and Ŵ` are denoted

by wm and ŵm (we have dropped the ` subscripts in the column notation for brevity), and
the p-th columns of Y (`−1) and Ŷ (`−1) are denoted by y(`−1)

p and ŷ(`−1)
p . We also define the

quantities
ỹ(`)m,p = (ŵ⊺

my
(`−1)
p )

+

,

which form a matrix Ỹ
(`)

. From Proposition 1, we have

∥Ỹ
(`)

−Y (`)∥
F
≤ ε`. (S.16)

On the other hand,

ŷ(`)m,p = (ŵ⊺

mŷ
(`−1)
p )

+

= (ŵ⊺

my
(`−1)
p + ŵ⊺

m (ŷ(`−1)
p − y(`−1)

p ))
+

≤ (ŵ⊺

my
(`−1)
p )

+

+ (ŵ⊺

m (ŷ(`−1)
p − y(`−1)

p ))
+

≤ ỹ(`)m,p + ∣ŵ⊺

m (ŷ(`−1)
p − y(`−1)

p )∣ , (S.17)

where in the last two inequalities we used the sub-additivity of the max(.,0) function and the
inequality max(x,0) ≤ ∣x∣. In a similar fashion we have

ỹ(`)m,p = (ŵ⊺

my
(`−1)
p )

+

≤ (ŵ⊺

mŷ
(`−1)
p )

+

+ (ŵ⊺

m (y(`−1)
p − ŷ(`−1)

p ))
+

≤ ŷ(`)m,p + ∣ŵ⊺

m (ŷ(`−1)
p − y(`−1)

p )∣ ,

which together with (S.17) asserts that ∣ŷ
(`)
m,p − ỹ

(`)
m,p∣ ≤ ∣ŵ⊺

m(ŷ(`−1)
p − y

(`−1)
p )∣ or

∥Ŷ
(`)

− Ỹ
(`)

∥
F
≤ ∥Ŵ

⊺

` (Ŷ
(`−1)

−Y (`−1)
)∥

F
≤ ∥Ŵ`∥F ∥Ŷ

(`−1)
−Y (`−1)

∥
F
. (S.18)

As Ŵ` is the minimizer of (5) and W` is a feasible point (i.e., W` ∈ Cε`(Y
(`−1),Y (`),0)), we

have
∥Ŵ`∥F ≤ ∥Ŵ`∥1 ≤ ∥W`∥1 = 1, (S.19)

which with reference to (S.18) yields

∥Ŷ
(`)

− Ỹ
(`)

∥
F
≤ ∥Ŷ

(`−1)
−Y (`−1)

∥
F
≤
`−1

∑
j=1

εj .
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Finally, the induction proof is completed by applying the triangle inequality and then using
(S.16),

∥Ŷ
(`)

−Y (`)∥
F
≤ ∥Ŷ

(`)
− Ỹ

(`)
∥
F
+ ∥Ỹ

(`)
−Y (`)∥

F
≤

`

∑
j=1

εj .

4.3 Proof of Theorem 2

For ` ≥ 2 we relate the upper-bound of ∥Ŷ (`) − Y (`)∥F to ∥Ŷ (`−1) − Y (`−1)∥F . By the con-
struction of the network:

∥Ŷ
(`)

−Y (`)∥
2

F
=

N`

∑
m=1

P

∑
p=1

((ŵ⊺

mŷ
(`−1)
p )

+

− (w⊺

my
(`−1)
p )

+

)
2

= ∑

m,p ∶ y
(`)
m,p>0

((ŵ⊺

mŷ
(`−1)
p )

+

−w⊺

my
(`−1)
p )

2
+ ∑

m,p ∶ y
(`)
m,p=0

((ŵ⊺

mŷ
(`−1)
p )

+

)
2
, (S.20)

where the m-th columns of W` and Ŵ` are denoted by wm and ŵm, respectively (we have
dropped the ` subscripts in the column notation for brevity), and the p-th columns of Y (`)

and Ŷ
(`)

are denoted by y(`−1)
p and ŷ(`−1)

p . Also, as before y(`)m,p = (w⊺

my
(`−1)
p )+. For the first

term in (S.20) we have

∑

m,p ∶ y
(`)
m,p>0

((ŵ⊺

mŷ
(`−1)
p )

+

−w⊺

my
(`−1)
p )

2
= ∑

m,p ∶ y
(`)
m,p>0,ŵ⊺

mŷ
(`−1)
p >0

(ŵ⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2

+ ∑

m,p ∶ y
(`)
m,p>0, ŵ⊺

mŷ
(`−1)
p ≤0

(w⊺

my
(`−1)
p )

2
. (S.21)

However, for the elements of the set {(m,p) ∶ y
(`)
m,p > 0, ŵ⊺

mŷ
(`−1)
p ≤ 0}:

(w⊺

my
(`−1)
p )

2
= (ŵ⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2
+ 2 (ŵ⊺

mŷ
(`−1)
p ) (w⊺

my
(`−1)
p ) − (ŵ⊺

mŷ
(`−1)
p )

2

≤ (ŵ⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2
,

using which in (S.21) yields

∑

m,p ∶ y
(`)
m,p>0

((ŵ⊺

mŷ
(`−1)
p )

+

−w⊺

my
(`−1)
p )

2
≤ ∑

m,p ∶ y
(`)
m,p>0

(ŵ⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2

≤ γ` ∑
m,p ∶ y

(`)
m,p>0

(w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2
(S.22)

= ε2` .
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Here, the second inequality is a direct result of the feasibility condition

Ŵ` ∈ Cε` (Ŷ
(`−1)

,Y (`),W`Ŷ
(`−1)

) . (S.23)

A second outcome of the feasibility is

ŵ⊺

mŷ
(`−1)
p ≤w⊺

mŷ
(`−1)
p , (S.24)

for any pair (m,p) that obeys y(`)m,p = 0 (or equivalently, w⊺

my
(`−1)
p ≤ 0). We can apply max(.,0)

(as an increasing and positive function) to both sides of (S.24) and use it to bound the second
term in (S.20) as follows:

∑

m,p ∶ y
(`)
m,p=0

((ŵ⊺

mŷ
(`−1)
p )

+

)
2
≤ ∑

m,p ∶ y
(`)
m,p=0

((w⊺

mŷ
(`−1)
p )

+

)
2

= ∑

m,p ∶ y
(`)
m,p=0

((w⊺

my
(`−1)
p +w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

+

)
2

≤ ∑

m,p ∶ y
(`)
m,p=0

((w⊺

my
(`−1)
p )

+

+ (w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

+

)
2

= ∑

m,p ∶ y
(`)
m,p=0

((w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

+

)
2

≤ ∑

m,p ∶ y
(`)
m,p=0

(w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2
. (S.25)

The first and second terms in (S.20) are bounded via (S.22) and (S.25) and therefore

∥Ŷ
(`)

−Y (`)∥
2

F
≤ γ` ∑
m,p ∶ y

(`)
m,p>0

(w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2
+ ∑

m,p ∶ y
(`)
m,p=0

(w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2

≤ γ`∑
m,p

(w⊺

mŷ
(`−1)
p −w⊺

my
(`−1)
p )

2

= γ` ∥W
⊺

` (Ŷ
(`−1)

−Y (`−1)
)∥

2

F

≤ γ` ∥W`∥
2
F ∥Ŷ

(`−1)
−Y (`−1)

∥
2

F

= γ` ∥Ŷ
(`−1)

−Y (`−1)
∥

2

F
. (S.26)

Based on Proposition 1, the outcome of the first layer obeys ∥Ŷ (1) − Y (1)∥2
F ≤ ε21, which

together with (S.26) confirm the overall discrepancy.
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4.4 Proof of Proposition 2

Since program (9) has only affine inequality constraints, the Karush–Kuhn–Tucker (KKT)
optimality conditions give us necessary and sufficient conditions for an optimal solution. The
pair (w∗,s∗) is optimal if and only if there exists η ∈ Rn2 and ν such that

ηks
∗

k = 0, k = 1, . . . , n2,

ηk ≥ 0, k = 1, . . . , n2,

X̃
⊺

ν ∈ [
∂∥w∗∥1

η
] .

Above, ∂∥w∗∥1 denotes the subgradient of the `1 norm evaluated at w∗; the last expression
above means that the first n1 entries of X̃

⊺

ν must match the sign of w∗

` for indexes ` with
w∗

` /= 0, and must have magnitude no greater than 1 for indexes ` with w∗

` = 0. The existence
of such (η,ν) is compatible with the existence of a Λ meeting the conditions in (10), by
taking Λ = X̃

⊺

ν.
We now argue the conditions for uniqueness. Let w∗,s∗,Λ be as above. Suppose (w′,s′)

is a feasible point with ∥w′∥1 = ∥w∗∥1. Since Λ is in the row space of X̃, we know that

Λ⊺
[
w∗ −w′

s∗ − s′
] = 0,

and since Λ⊺ [w∗;s∗] = ∥w∗∥1, we must also have Λ⊺ [w′;s′] = ∥w∗∥1. Therefore by the
properties stated in (10), the support (set of nonzero entries) Γ̃ of [w∗;s∗] and [w′;s′] must
be the same. Since these points obey the same equality constraints in the program (9), and
X̃

∶,Γ̃ has full column rank, it must be true that [w′;s′] = [w∗;s∗].

4.5 Proof of Theorem 3

For a more convenient notation we use Γ = supp w∗. Also, in all the formulations, sub-matrix
selection precedes the transpose operation, e.g., X⊺

∶,Ω = (X ∶,Ω)⊺.
Clearly since the samples are random Gaussians, with probability one the set {p ∶X⊺

∶,pw
∗ =

0} is an empty set, and following the notation in (9) and (10), suppcs∗ = ∅. Also, with
reference to the setup in Proposition 2

X̃ = [
X⊺

∶,Ω 0

X⊺

∶,Ωc −I
] .

To establish the full column rank property of X̃
∶,Γ̃ for Γ̃ = suppw∗ ∪ {N + supp s∗}, we only

13



need to show that XΓ,Ω is of full row rank (thanks to the identity block in X̃). Also, to
satisfy the equality requirements in (10), we need to find a vector ξ such that

[
XΓ,Ω XΓ,Ωc

0 −I
] [
ξΩ

ξΩc
] = [

sign(w∗

Γ)

0
] . (S.27)

This equation trivially yields ξΩc = 0. In the remainder of the proof we will show that when
P is sufficiently larger than ∣Γ∣ = s, the smallest eigenvalue of XΓ,ΩX

⊺

Γ,Ω is bounded away
from zero (which automatically establishes the full row rank property for XΓ,Ω). Also, based
on such property, we can select ξΩ to be the least squares solution

ξΩ ≜X⊺

Γ,Ω (XΓ,ΩX
⊺

Γ,Ω)
−1

sign(w∗

Γ), (S.28)

which satisfies the equality condition in (S.27). To verify the conditions stated in (10) and
complete the proof, we will show that when P is sufficiently large, with high probability
∥XΓc,ΩξΩ∥∞ < 1. We do this by bounding the probability of failure via the inequality

P{∥XΓc,ΩξΩ∥
∞
≥ 1} ≤ P{∥XΓc,ΩξΩ∥

∞
≥ 1 ∣ ∥ξΩ∥ ≤ τ} + P{∥ξΩ∥ > τ)}, (S.29)

for some positive τ , which is a simple consequence of

P{E1} = P{E1∣E2}P{E2} + P{E1∣E c
2}P{E c

2} ≤ P{E1∣E2} + P{E c
2} ,

generally holding for two event E1 and E2. Without the filtering of the Ω set, standard
concentration bounds on the least squares solution can help establishing the unique optimality
conditions (e.g., see [3]). Here also, we proceed by bounding each term on the right hand side
of (S.29) individually, while the bounding process requires taking a different path because of
the dependence Ω brings to the resulting random matrices.

- Step 1. Bounding P{∥ξΩ∥ > τ}:

By the construction of ξΩ in(S.28), clearly

∥ξΩ∥
2
= sign(w∗

Γ)
⊺ (XΓ,ΩX

⊺

Γ,Ω)
−1

sign(w∗

Γ). (S.30)

Technically speaking, to bound the expression x⊺Ax, where x is a fixed vector and A is a self
adjoint random matrix, we normally need the entries of A to be independent of the elements
in x. While such independence does not hold in (S.30) (because of the dependence of Ω to
the entries of w∗

Γ), we are still able to proceed with bounding by rewriting sign(w∗

Γ) = Λw∗1,
where

Λw∗ = diag (sign(w∗

Γ)) .
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Taking into account the facts that Λw∗ = Λ−1
w∗ and w∗

n ≠ 0 for n ∈ Γ, we have

∥ξΩ∥
2
= 1⊺ (Λw∗XΓ,ΩX

⊺

Γ,ΩΛw∗)
−1

1, (S.31)

where now the matrix and vector independence is maintained. The special structure of Λw∗

does not cause a change in the eigenvalues and

eig{Λw∗XΓ,ΩX
⊺

Γ,ΩΛw∗} = eig{XΓ,ΩX
⊺

Γ,Ω} ,

where eig{.} denotes the set of eigenvalues. Now conditioned onXΓ,ΩX
⊺

Γ,Ω ≻ 0, we can bound
the magnitude of ξΩ as

∥ξΩ∥
2
= 1⊺ (Λw∗XΓ,ΩX

⊺

Γ,ΩΛw∗)
−1

1

≤ λmax ((Λw∗XΓ,ΩX
⊺

Γ,ΩΛw∗)
−1

)1⊺1

= s (λmin (XΓ,ΩX
⊺

Γ,Ω))
−1
, (S.32)

where λmax and λmin denote the maximum and minimum eigenvalues. To lower bound
λmin (XΓ,ΩX

⊺

Γ,Ω), we focus on the matrix eigenvalue results associated with the sum of
random matrices. For this purpose, consider the independent sequence of random vectors
{xp}

P
p=1, where each vector contains i.i.d standard normal entries. We are basically interested

in concentration bounds for

λmin

⎛
⎜
⎝

∑
p ∶ x⊺pw∗>0

xpx
⊺

p

⎞
⎟
⎠
. (S.33)

When the summands are independent self adjoint random matrices, we can use standard
Bernstein type inequalities to bound the minimum or maximum eigenvalues [4]. However, as
the summands in (S.33) are dependent in the sense that they all obey x⊺pw∗ > 0, such results
are not directly applicable. To establish the independence, we can look into an equivalent
formulation of (S.33) as

λmin
⎛

⎝

P

∑
p=1

xpx
⊺

p

⎞

⎠
, (S.34)

where xp are independently drawn from the distribution

g
X
(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1
√

(2π)s
exp (−1

2x
⊺x) x⊺w∗ > 0

1
2δD(x) x⊺w∗ ≤ 0

.

Here, δD(x) = ∏s
i=1 δD(xi) denotes the s-dimensional Dirac delta function, and is probabilis-

tically in charge of returning a zero vector in half of the draws. We are now theoretically able
to apply the following result, brought from [4], to bound the smallest eigenvalue:
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Theorem S.1. (Matrix Bernstein1) Consider a finite sequence Zp of independent, random,
self-adjoint matrices with dimension s. Assume that each random matrix satisfies

E(Zp) = 0, and λmin(Zp) ≥ R almost surely.

Then, for all t ≤ 0,

P
⎧⎪⎪
⎨
⎪⎪⎩

λmin
⎛

⎝
∑
p

Zp
⎞

⎠
≤ t

⎫⎪⎪
⎬
⎪⎪⎭

≤ s exp(
−t2

2σ2 + 2Rt/3
) ,

where σ2 = ∥∑pE(Z2
p)∥.

To more conveniently apply Theorem S.1, we can use a change of variable which markedly
simplifies the moment calculations required for the Bernstein inequality. For this purpose,
considerR to be a rotation matrix which mapsw∗ to the first canonical basis [1,0,⋯,0]⊺ ∈ Rs.
Since

eig
⎧⎪⎪
⎨
⎪⎪⎩

P

∑
p=1

xpx
⊺

p

⎫⎪⎪
⎬
⎪⎪⎭

= eig
⎧⎪⎪
⎨
⎪⎪⎩

P

∑
p=1

Rxpx
⊺

pR
⊺

⎫⎪⎪
⎬
⎪⎪⎭

, (S.35)

we can focus on random vectors up =Rxp which follow the simpler distribution

g
U
(u) ≜

⎧⎪⎪
⎨
⎪⎪⎩

1
√

(2π)s
exp (−1

2u
⊺u) u1 > 0

1
2δD(u) u1 ≤ 0

. (S.36)

Here, u1 denotes the first entry of u, and we used the basic property R−1 = R⊺ along with
the rotation invariance of the Dirac delta function to derive g

U
(u) from g

X
(x). Using the

Bernstein inequality, we can now summarize everything as the following concentration result
(proved later in the section):

Proposition S.2. Consider a sequence of independent {up}
P
p=1 vectors of length s, where

each vector is drawn from the distribution g
U
(u) in (S.36). For all t ≤ 0,

P
⎧⎪⎪
⎨
⎪⎪⎩

λmin
⎛

⎝

P

∑
p=1

upu
⊺

p

⎞

⎠
≤
P

2
+ t

⎫⎪⎪
⎬
⎪⎪⎭

≤ s exp(
−t2

P (s + 3/2) − t/3
) . (S.37)

Combining the lower bound in (S.32) with the concentration result (S.37) certify that
when P + 2t > 0 and t ≤ 0,

P
⎧⎪⎪
⎨
⎪⎪⎩

∥ξΩ∥ ≥

√
2s

P + 2t

⎫⎪⎪
⎬
⎪⎪⎭

≤ s exp(
−t2

P (s + 3/2) − t/3
) . (S.38)

1The original version of the theorem bounds the maximum eigenvalue. The present version can be easily
derived using, λmin(Z) = −λmax(−Z) and P{λmin(∑pZp) ≤ t} = P{λmax(∑p −Zp) ≥ −t}.
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- Step 2. Bounding P{∥XΓc,ΩξΩ∥∞ ≥ 1 ∣ ∥ξΩ∥ ≤ τ}:

Considering the conditioned event {∥XΓc,ΩξΩ∥∞ ≥ 1 ∣ ∥ξΩ∥ ≤ τ}, we note that the set Ω is
constructed by selecting columns of X that satisfy X⊺

∶,pw
∗ > 0. However, since w∗

Γc = 0,
the index set Ω, technically corresponds to the columns p where X⊺

Γ,pw
∗

Γ > 0. In other
words, none of the entries of the sub-matrix XΓc,∶ contribute to the selection of Ω. Noting
this, conditioned on given ξΩ, the entries of the vector XΓc,ΩξΩ are i.i.d random variables
distributed as N(0, ∥ξΩ∥2) and

P{∥XΓc,ΩξΩ∥∞ ≥ 1 ∣ ∥ξΩ∥ ≤ τ} = P
⎧⎪⎪
⎨
⎪⎪⎩

∣Γc
∣

⋃
n=1

∣zn∣ ≥
1

∥ξΩ∥

RRRRRRRRRRR

∥ξΩ∥ ≤ τ

⎫⎪⎪
⎬
⎪⎪⎭

, (S.39)

where {zn} are i.i.d standard normals. Using the union bound and the basic inequality
P{∣zn∣ ≥ a} ≤ exp(−a2/2) valid for a ≥ 0, we get

P{∥XΓc,ΩξΩ∥∞ ≥ 1 ∣ ∥ξΩ∥ ≤ τ} ≤ (N − s) exp(−
1

2τ2
) . (S.40)

For τ =
√

2s(P + 2t)−1 we can combine (S.40) and (S.38) with reference to (S.29) to get

P{∥XΓc,ΩξΩ∥
∞
≥ 1} ≤ s exp(

−t2

P (2s + 1) − 2t/3
) + (N − s) exp(−

P + 2t

4s
) . (S.41)

To select the free parameter t we make the argument of the two exponentials equal to get

t∗ =
3s + 4 −

√
45s2 + 84s + 25

12s + 2
P,

for which the right hand side expression in (S.41) reduces to N exp(−(4s)−1(P +2t∗)). Based
on the given value of t∗, it is easy to verify that for all P ≥ 0 and s ≥ 1, the conditions t∗ ≤ 0
and P + 2t∗ > 0 are satisfied. Moreover some basic algebra reveals that for all P ≥ 0 and s ≥ 1

−
P + 2t∗

4s
≤ −

P

11s + 7
.

Therefore, for µ > 1, setting P = (11s + 7)µ logN guarantees that

P{∥XΓc,ΩξΩ∥
∞
≥ 1} ≤ N1−µ.

4.5.1 Proof of Proposition S.2

To use Theorem S.1, we focus on a sequence {Zp}
P
p=1 of the random matrices Z = uu⊺ −

E(uu⊺). In all the steps discussed below, we need to calculate cross moments of the type
Eg(un1

1 un2
2 ⋯uns

s ) for u = [ui] ∈ Rs distributed as

g
U
(u) =

⎧⎪⎪
⎨
⎪⎪⎩

1
√

(2π)s
exp (−1

2u
⊺u) u1 > 0

1
2δD(u) u1 ≤ 0

.
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For the proposed distribution, the matrix of second order moments can be conveniently cal-
culated as

D = E(uu⊺) =
1

2
I.

The matrix uu⊺ is a rank one positive semidefinite matrix, which has only one nonzero
eigenvalue. Using the Weyl’s inequality we get

λmin (Z) = λmin (uu⊺ −D) ≥ λmin(uu
⊺
) + λmin(−D) = −

1

2
. (S.42)

Furthermore,
E (Z2

p) = E ((uu⊺)
2
) −D2,

for which we can calculate the expectation term as

E ((uu⊺)
2
) =

s + 2

2
I.

Here, we used the following simple lemma:

Lemma S.1. Given a random vector u = [ui] ∈ Rs, with i.i.d entries ui ∼ N(0,1):

E ((uu⊺)2) = (s + 2)I.

It is now easy to observe that

XXXXXXXXXXX

P

∑
p=1

E (Z2
p)

XXXXXXXXXXX

= Pλmax (E ((uu⊺)
2
) −D2

) = P (
s + 2

2
−

1

4
) =

P

2
(s +

3

2
) . (S.43)

Now, using (S.42) and (S.43) we can apply Theorem S.1 to bound the smallest eigenvalue as

∀t ≤ 0 ∶ P
⎧⎪⎪
⎨
⎪⎪⎩

λmin
⎛

⎝

P

∑
p=1

upu
⊺

p − PD
⎞

⎠
≤ t

⎫⎪⎪
⎬
⎪⎪⎭

≤ s exp(
−t2

P (s + 3/2) − t/3
) . (S.44)

Since PD is a multiple of the identity matrix, eig{∑Pp=1upu
⊺

p −PD} = eig{∑Pp=1upu
⊺

p} −P /2
and therefore

P
⎧⎪⎪
⎨
⎪⎪⎩

λmin
⎛

⎝

P

∑
p=1

upu
⊺

p

⎞

⎠
≤
P

2
+ t

⎫⎪⎪
⎬
⎪⎪⎭

= P
⎧⎪⎪
⎨
⎪⎪⎩

λmin
⎛

⎝

P

∑
p=1

upu
⊺

p − PD
⎞

⎠
≤ t

⎫⎪⎪
⎬
⎪⎪⎭

(S.45)

which gives the probability mentioned in (S.37).
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4.5.2 Proof of Lemma S.1

The (i, j) element of the underlying matrix can be written as

((uu⊺)2)
i,j

= uiuj
s

∑
k=1

u2
k,

therefore,

E(uiuj
s

∑
k=1

u2
k) = {

0 i ≠ j

E (u4
i + u

2
i ∑k≠i u

2
k) i = j

= {
0 i ≠ j
s + 2 i = j

. (S.46)

Here, we used the facts that E(u4
i ) = 3 and ∑k≠i u2

k = s − 1.
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