
A Adding Regularization to LSTD-Q

For LSTD-Q, regularization cannot be applied directly since the algorithm is finding a fixed-point and not
solving a LS problem. To overcome this obstacle, we augment the fixed point function of the LSTD-Q algorithm
to include a regularization term based on (Kolter & Ng, 2009):

f(w) = argmin
u
‖φu−ΠT ∗φw‖+ λg(u) , (3)

where Π stands for the linear projection, T ∗ for the Bellman optimality operator and g(u) is the regularization
function. Once the augmented problem is solved, the solution to the regularized LSTD-Q problem is given by
w = f(w). This derivation results in the same solution for LSTD-Q as was obtained for FQI (Equation 2). In
the special case where µ = 0, we get the L2 regularized solution of Kolter & Ng (2009).

B LS-DQN Algorithm

Figure 4 provides an overview of the LS-DQN algorithm described in the main paper. The DNN agent is trained
for NDRL steps (A). The weights of the last hidden layer are denoted wk. Data is then gathered (LS.1) from
the agent’s experience replay and features are generated (LS.2). An SRL-Algorithm is applied to the generated
features (LS.3) which includes a regularized Bayesian prior weight update (LS.4). Note that the weights wk

are used as the prior. The weights of the last hidden layer are then replaced by the SRL output wlast and this
process is repeated.

Dk
Φk(s)

Φk(s,a)
0
0

0
0

A b

wlast = A b+ λ I + λ wk()-1 ()

wk
last = wlast

ΦTΦ ΦTy

(A) Train DRL Network

wk
Q(s,a) Q(s,a) Q(s,a)

(LS.2) Generate Features

(LS.1) Gather Data

(LS.3) SRL-Algorithm

(LS.4) Update Weights

(LS.4) SRL-Algorithm with regularization
Figure 4: An overview of the LS-DQN algorithm.

12

C Results for SRL Algorithms with High Dimensional Observations

We present the average scores (averaged over 20 roll-outs) at different epochs, for both the original DQN and
after relearning the last layer using LSTD-Q, for different regularization coefficients.

Breakout

Table 2: Average scores on the different epochs as a function of regularization coefficients
PPPPPPEpoch

λ
102 101 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 DQN

Epoch 1 54 49 48 44 53 49 48 50 28 30 46
Epoch 2 207 189 196 193 64 30 18 4 9 5 171
Epoch 3 238 247 314 284 277 254 270 232 225 194 271
Epoch 4 238 271 289 249 207 201 291 326 274 304 212
Epoch 5 265 311 322 315 208 109 175 36 14 48 292
Epoch 6 299 331 327 328 259 150 248 227 281 245 164
Epoch 7 332 335 350 266 128 67 145 249 291 214 325
Epoch 8 361 352 343 262 204 65 270 309 287 304 324
Epoch 9 294 291 323 319 101 85 224 276 347 340 350
Epoch 10 186 297 256 263 243 236 349 323 333 333 165
Epoch 11 241 277 290 140 79 111 338 335 330 315 233
Epoch 12 328 336 327 352 226 208 337 374 354 377 302
Epoch 13 343 305 247 308 62 112 338 342 305 344 316
Epoch 14 278 294 259 273 156 198 320 355 350 346 306
Epoch 15 312 327 282 292 161 141 321 381 368 367 252
Epoch 16 186 160 283 273 170 225 370 314 325 324 114

Qbert

Table 3: Average scores on the different epochs as a function of regularization coefficients
PPPPPPEpoch

λ
102 101 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 DQN

Epoch 1 3470 3070 2163 1998 1599 2078 964 629 831 484 2978
Epoch 2 2794 1853 2196 2565 3839 3558 1376 2123 1728 2388 2060
Epoch 3 4253 4188 4579 4034 4031 2239 561 691 824 570 4148
Epoch 4 2789 2489 2536 2750 3435 5214 2730 2303 1356 594 1878
Epoch 5 6426 6831 7480 6703 3419 3335 4205 3519 4673 5231 7410
Epoch 6 8480 7265 7950 5300 4978 4178 4533 6005 6133 4829 8356
Epoch 7 8176 9036 8635 7774 7269 7428 6196 3030 3246 2343 8643
Epoch 8 9104 10340 9935 7293 7689 7343 6728 2913 3299 1473 9315
Epoch 9 9274 10288 9115 7508 6660 7800 120 8133 4880 5018 8156
Epoch 10 10523 7245 9704 7949 8640 7794 2663 8905 10044 7585 12584
Epoch 11 10821 11510 9971 7064 6836 9908 1020 11868 9940 11138 10290
Epoch 12 7291 10134 7583 6673 7815 9028 5564 8893 8649 6748 7438
Epoch 13 12365 12220 13103 11868 11531 10091 2753 10804 8216 8835 13054
Epoch 14 11686 11085 10338 10811 8386 9580 2980 6469 6435 6071 10249
Epoch 15 11228 12841 13696 10971 5820 10148 7524 11959 9270 6949 11630
Epoch 16 11643 12489 13468 11773 8191 8976 198 7284 7598 5649 12923

D Results for Ablative Analysis

We used the implementation of ADAM from the optim package for torch that can be found at https://
github.com/torch/optim/blob/master/adam.lua. We used the default hyperparameters (except for the
learning rate): learningRate= 0.00025, learningRateDecay= 0, beta1= 0.9, beta2= 0.999, epsilon= 1e−8,
and weightDecay= 0. For solutions that use the prior, we set λ = 1.

Figure 5 depicts the offset of the average scores from the DQN’s scores, after one iteration of the ADAM
algorithm:

13

Figure 5: Differences of the average scores from DQN compared to ADAM and FQI (with and
without priors) for different mini-batches (MB) sizes.

Table 4 shows the norm of the difference between the different solution weights and the original last layer
weights of the DQN (divided by the norm of the DQN’s weights for scale), averaged over epochs. Note that MB
stands for mini-batch sizes used by the ADAM solver.

Table 4: Norms of the Difference Between solutions Weights

Batch MB=32
iter=1

MB=32
iter=20

MB=512
iter=1

MB=512
iter=20

MB=4096
iter=1

MB=4096
iter=20

w/ prior ∼3e-4 ∼3e-3 ∼3e-3 ∼2e-3 ∼2e-3 ∼1.7e-3 ∼1.8e-3
wo/ prior ∼3.8e-2 ∼2.7e-1 ∼1.3e-2 ∼1.2e-1 ∼5e-3 ∼5e-2

E Feature augmentation

The LS-DQN algorithm requires a function Φ (s, a) that creates features (Algorithm 1, Line 9) for a dataset D
using the current value-based DRL network. Notice that for most value-based DRL networks (e.g. DQN and
DDQN), the DRL features (output of the last hidden layer) are a function of the state and not a function of the
action. On the other hand, the FQI and LSTDQ algorithms require features that are a function of both state and
action. We, therefore, augment the DRL features to be a function of the action in the following manner. Denote
by φ (s) ∈ Rf the output of the last hidden layer in the DRL network (where f is the number of neurons in this
layer). We define Φ (s, a) ∈ Rf |A| to be φ (s) on a subset of indices that belongs to action a and zero otherwise,
where |A| refers to the size of the action space.

Note that in practice, DQN and DDQN maintain an ER, and we create features for all the states in the ER. A
more computationally efficient approach would be to store the features in the ER after the DRL agent visits them,
makes a forward propagation (and compute features) and store them in the ER. However, SRL algorithms work
only with features that are fixed over time. Therefore, we generate new features with the current DRL network.

14

