Supplementary material

Organization. In Section|A] we prove some novel results about anti-concentration of Dirichlet
random vectors. These are used in Section [Bto prove Lemma4.2]and Lemma[4.3] In Section [C]
we prove several concentration bounds on Dirichlet posteriors and empirical estimates of transition
probability vectors to prove Lemma4.4] Here, we utilize the stochastic optimism technique from
Osband et al.| [2014]]. In Section @], we prove Lemma bounding the diameter of extended MDP
with high probability. And, in Section [E] we list some known results (or easy corollaries of known
results) that are utilized in our proofs.

A Anti-concentration of Dirichlet distribution

We prove the following general result on anti-concentration of Dirichlet distributions, which will be
used to prove optimism.

Proposition A.1. Consider a random vector p generated from Dirichlet distribution with parameters
(mpy, ..., mps), where mp; > 6. Then, for any fixed h € [0, D]°, with probability Q(1/S) — Sp,

where

_ _ s
_ Pi(Piv1 + ...+ Ds) _ — — 1 _
i = (P ),Ci =(hi — Hiy1), Hip1 = —g—— Z h;p;.

= — S _
(i + ... +Ps) i1 Pi S

We use an equivalent representation of a Dirichlet vector in terms of independent Beta random
variables.

Di Ji = Di
pit - +ps’ It T pite4Ps

Fact 1. Fix an ordering of indices 1, ..., S, and define y; := . Then, for

any h € RS,

B—p)"h =" G — 5i)(hi — Hip1) (@i + - +Ps) = Y (G — §i)(hi — Hip1)(Bi + -+ + Ps)
2 s . = s _
where Hi 1 = ﬁ > i—it1 Py Hipr = ﬁ 2 j=iy1 by

Fact2. Fori=1,...,5, §; == —2—
pit+--+DPs
Beta(mp;, m(pi+1 + - - - + Ds)), with mean

are independent Beta random variables distributed as
. mp; _
IE = = iy
and variance
Di(Pix1 + -+ +DPs)
(Bi + -+ +ps)?(m(pi + -+ +Ds) +1)

Lemma A.2 (Corollary of Lemma[E.2). Let §;, §;, G; be defined as in Fact2] If mp;, m(pi41+- -+
Ds) > 6, then, for any positive constant C < =,

a7 =E[(5: — 5:)%] =

C

Py >y +Co; + ———
( m(pi —‘r...—l—ps)

) >0.15 =: 7.

Proof. Apply Lemmawith a=mp;,b=m(Pit1+ -+ Ds). O
Lemma A.3. (Application of Berry-Esseen theorem) Let G C {1, ..., S} be a set of indices, z; € R

be fixed. Let
Xg =Y (i — Ui
i€G
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Let F be the cumulative distribution function of
Xa
= where, 0% = E 2257,
oG ;
i€G

a; being the standard deviation of ; (refer to Fact[2). Let ® be the cumulative distribution function
of standard normal distribution. Then, for all € > 0:

sup |F(z) — ®(x)| <€

as long as
2i0j

VIG| > @, where R := max
€

i,jEG zjﬁj
for some C' < 3 + mip.

Proof. 'Y; = (§; — ¥:)zi- Then, Y;, i € G are independent variables, with E[Y;] = 0,

of =E[Y?] = E[@ —u)*(z)’]
~ o

pi =E[Yi]’] < E[y;*]**
= E[|j—gl"]¥*3
< kE[§ - g2
= H&?zf’

where the first inequality is by using Jensen’s inequality and « is the Kurtosis of Beta distribution.
Next, we use that 3 is Beta distributed, and Kurtosis of Beta(vu,v(1 — w)) Distribution is

B 6 ((L-2w2(L+v) 6
n=dt 3+v) <u(1—u)(2+V) ) =9 B+v)u’

Here, o = m(p; + -+ - + ps)¥i, B = m(p; + - - + bs)(1 — 4;), so that

6 1 6
K S 3 + — — — S 3 =+ —.
3+m(pi+ - +ps) Ui mp;
Now, we use Berry-Esseen theorem (Fact [6]), with
1 i
) = ————=max P

: 2
2 1€G O3
\/ZieG 0; ¢

K MaX;eq 2i0;

< - —
V|G| minieq 2;0;

to obtain the lemma statement.

Lemma A.4. Assuming mp; > 6, Vi, for any fixed z;, i =1,..., 85,

Pr Z(@-—yi)zﬁzi > 5222 | > Q(1/9).

% %

Proof. Define constant § := % and k(9) :

2
%, where C < 4.

Consider the the group of indices with the k(d) largest values of |z;5;|, call it group G(1), and then
divide the remaining into smallest possible collection G of groups such that |2;7;|/|z;5;| < % for all
1, j in any given group GG. Define an ordering < on groups by ordering them by maximum value of
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|2;7;| in the group. Thatis G > G’ 1f max;eq 2207 > maxjeq z Note that by construction, for

2

G = G’, we have max;c 2262 > 2 55 MaXecc z ;.

Recall from Lemma for every group G € G of size /|G| > £, we have that its cdf is within e

of normal distribution cdf, giving that Pr(Xs > %ag) > 2§ — €. Using this result for € = §, we get
that for every group of size at least k(0), we have

Pr(Xg > %UG) > 6. (11)

We will look at three types of the groups we created above:

e Top big groups: those among the top log; /5(.5) groups that have cardinality at least k()

e Top small groups: those among the top log 5(S) groups that have cardinality smaller than
k(9)

e Bottom groups: those not among the top log; /5(.5) groups

Here, top groups refers to the those ranked higher according to the ordering >.

For the first group type above, apply (TT)) to obtain,

for all big groups among top log; /5(5), X¢ > log

1
with probability at least §'°81/5(5) = 5 (12)

Next, we analyze the remaining indices (among top small groups and bottom groups). Consider the
group G(1) we set aside. Using Lemma[A.2] k(9) times, we have:

Pr Z (J; — ¥i)zi > 0.5 Z 2262 | > k(9)
ieG(1) ica(1)

Now, if it is the case where the top group is of small size, we apply the above anticoncentration of
beta for each element in the group, so that for all indices i in this group, (J; — ¥;)2; > 0.52;7;, with

probability n*(%). To conclude, so far, we have with probability at least £7*(%)

Z (9 — yi)zi > 0.5 Z 252,

1€G(1),iE€top big groups 1€G(1),iE€top big groups

where > 0.15.

For every other small group G, the group’s total variance is at most k(J) max;cq 2262 <
k(8)6% z(21)6(21), where j is the rank of the group in ordering > and (1) is the index of the smallest

variance in G/(1). So, the sum of the standard deviation for top log; /5(.S) small groups is at most

10g1/5(S)

k(8)5?
MO S et <k0) Y s <10t
G':top small groups

as it is a geometric series with § multiplier. For the remaining bottom group, each element’s variance
is at most %2(21)5(21), therefore

Z 2—2<(k(5)52+1) 2 -2 2 -2 o 1 Z 2_2
% 0i = 1-62 ' § 1)) = 25 Lo = 25 %0 -

4:top small groups, bottom groups 1€G(1)



By Cantelli’s Inequality (Fact, with probability at least %

> (T — Ui)zi = —\/ >

i:top small groups, bottom groups 4 €top small groups, bottom groups

Hence combining our results above,

o _ 1 _
> Wi — vz = 3 zo7 — 5 > ol
i 1€G(1 big groups i€G(1)

O
3 1
2=2
> 1 Z ST
1€G(1),top big groups
13 _ 1 _
> 0 2262 + — E 2252
1€G(1),top big groups 1€G(1)

v
-
-M

NN

with probability 12(%) % =

Proof. (Proof of Proposition Use Factto express (p — p)Th as:

B—p)"h=">_ (5 — 5)(hi — Hig1)(pi + -~ + Ps)-
Using Lemma[E3]and Corollary [E7]
~ - 2log(2
\H; — H;| <D M
m(p; + ...+ Ps)
with probability 1 — p for any 3.
and similarly using Lemma[E-3|and Corollary [E.7]
o 2log (2
19i =il <\| == ( /p)ﬁ .
m(p; + ...+ Ds)
Therefore, with probability 1 — Sp,
(B —p)"h- Z(ﬂi — i) (hi = Hit1)(pi + -+ + Ps)
— Z (i — ) (Hip1 — Hip1)(pi + -+ + bs)

210g(2/p) 2log(2/p) _
> - D - —(pi + -+ +DPs
Z\/ m(pi + ... + Ps) m(pi+...+ps)( )
_ 25Dlog 2/p
o m
Then, applying Lemma(given mp; > 6) for z; = (hy — Hiy1)(Pi + - +Psg),i =
with probability 2(1/.5),
1 25D log(2
G—p)Th> < |3 2207 - 22010820
4 - m
Now, we observe
727 — —
2.2 3 2/ S \222 c;pi(Di + ... Ds)
o7 = (hi — H; i+ o = —
zi:zzo—z ( +1) (p + +pS) g m(pz+ +pS)+1
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to obtain

(5 — % /Z Yi¢; 28D 125(2/0)

_— Pi(Pit1+...+Ds)
(pz +. +pS)

where

B Optimism

In this section, we prove the following lemmas.

Lemma 4.2. With probability 1 — p, for every epoch k, the optimal gain e of the extended MDP

MF satisfies:
M= A= 0 (D1ogX(T/p)y /5,

where \* the optimal gain of MDP M and D is the diameter.

Proof. Let h* be the bias vector for an optimal policy 7* of MDP M (refer to Lemma [2.1]in the
preliminaries section). Since h* is a fixed (though unknown) vector with |h; — h;| < D, we can

apply Lemmato obtain that with probability 1 — p, for all s, a, there exists a sample vector g’;
for some j € {1,...,%} such that

(QI)Th* =PI =

where § = O (D log?(T/p)\/ 52 ) Now, consider the policy 7 for MDP M* which for any s, takes
action a’, where a = 7*(s), and j is a sample satisfying above inequality. Note that 7 is essentially

7" but w1th a different transition probablhty model. Let (), be the transition matrix for this policy,
whose rows are formed by the vectors QJ . ()" and P« be the transition matrix whose rows are
formed by the vectors P - (5). Above unphes

Qrh* > Poh® — 1.

Let Q% denote the limiting matrix for Markov chain with transition matrix (.. Observe that Q)
is aperiodic, recurrent and irreducible : it is aperiodic and irreducible because each entry of @,
being a sample from Dirichlet distribution is non-zero, and it is positive recurrent because in a finite
irreducible Markov chain, all states are positive and recurrent. This implies that @)} is of the form
1q*T where q* is the stationary distribution of (), and 1 is the vector of all 1s (refer to (A.6) in
Puterman| [2014]]). Also, Q;:Qr = @, and Q11 = 1.

Therefore, the gain of policy 7

A1 = (rIq")1l = QLrs

where 7 is the S dimensional vector [rg r(s)]s=1,...,5. Now,
M)l =M1 = Qfrp— A1
Qrre — A (Qx1) ... (usingQ:1=1)

Qr(rr — A"1) (

Qi(I — Pr<)h* ... (using (1))

Q?}( x = Pro)b™ . (using Q7 Qr = Q)

—61 .(using (Qr — Pr<)h* > —01,Q%1 =1).

VI

Then, by optimality,
A > M) > A =0
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Lemma 4.3. (Optimistic Sampling) Fix any vector h € R such that |h; — hy| < D for any i,
and any epoch k. Then, for every s, a, with probability 1 — &x there exists at least one j such that

(Qii}é)Th > Pgah -0 (D IOgQ(T/p)\/S»TA)'

Proof. For s,a with NJ% > ), )k were generated using posterior sampling from Dirich-

let distribution Dirichlet(M7% (i), = 1,...,5). We use Proposition for optimism of a
Dirichlet posterior sample. Let’s verify the conditions applying for this proposition. We have

NIt >n= /I8 +120wS? > 12052, and w = T20log(n/p).

Therefore, applying Proposition with probability ©(1/5), the j* sample Qg:’g satisfies the
following kind of optimism:

DS log?(n/p)

(QUa)"h 2 Ploh— O(—=

).

Substituting Nk > n = \/T—f + 12wS? we get that every j satisfies the stated condition with
probability £2(1/5).

For s, a with NJ* < n, we used simple optimistic sampling. In Lemmawe show for such s, a
the condition (Q%%)"h > PT h is satisfied by any j with probability 1/25.

Therefore, given that the number of samples is ¢y = C'Slog(SA/p) for some large enough constant
C, for every s, a, with probability 1 — &, there exists at least one sample Q{’; satisfying the required
condition.

O

Notations We fix some notations for the rest of the section. Fix an epoch k, state and action

pair s, a, sample j. In below, we denote n = NJ%, n; = N;‘a(i),pi = Psali), pi == 7,0 =
it pi = QL% (i), fori € S.

B.1 Optimism for n < n (Simple Optimistic Sampling)

When n < 7, simple optimistic sampling is used, so that any sample vector p was generated as

follows: we let p~ = [p — (y/32 13,3;(45) + 31°g7f4s) )1]*, and let z be a random vector picked
uniformly at random from {14,...,1g}, and set

p=p +1=3;p;)z
We prove the following lemmas for this sample vector.
Lemma B.1. For any fixed h € [0, D]°, we have

P h > pTh,

with probability at least 2(1/5).

Proof. Define §; := p; — p; (and hence Zl 0; = 0). By multiplicative Chernoff bounds (Fact
, with probability 1 — ok, [6;] < |/22a8) 4 31845 = Ajso define A; = f; — p; =

min {\/ 3 log(49) | 31"%5“%@}. Note that A; > 6; and 3, Ay = S.(pi —p; ) = 1= 3, p; .

With probability 1/S, z = 1; is picked such that h; = D, and (by union bound over all i) with
8| < o/ ostis) | 310‘5‘;(45) for every 7. So with probability 1/25:

n

probability 1 — S5k = 1,
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Bihi = Y opihi+ D=3 p) =Y pihi+ DI A,
i j 1 J

= Z(ﬁz —Aj)h; + DA; = Zﬁihi + (D = hi)A;

i

Y

Zﬁzhz + (D —hy)d; = Z(@ — 8;)hi + D6;

> pihi+DY 6= pihi.

O

Using the same technique as above, we can also prove the following “pessimism” for these samples,
which will be used later, in bounding the diameter in Section [D}

Lemma B.2 (Pessimism). When n < 1, we have for any fixed h € [0, D]°
P h<p"h,
with probability at least 2(1/5).

Proof. Define 6;, A; as before. With probability 1/.5, z = 1; is picked such that h; = 0, and again
with probability 1 — S5k = 1, |5, < /210845) 4 310815) for every 4. So with probability 1/25:

n

Zﬁihi = Zp:hz
= ) (i — D)k

i

< Z(ﬁi—5i)hi
= Zpihi-

B.2 Optimism for n > 7 (Dirichlet posterior sampling)

When n > 7, Dirichlet posterior sampling is used so that p is a random vector distributed as
Dirichlet(mps, . .., mps), where m = % p= :-;-% We prove an optimism property for this

sample vector. Following notations will be useful.

s
Pi(Pit1+ .- +ps) 1
i PO i = o 5
pi+...+Dps Zj:i+1 Pj j=it1
_ _ s
_ Pi(Pit1 + ... +Ds) _ 7 7 1 b
Vi == — Ci=(hi—Hip1),Hipn = —g—— Z h;p;
(Pi+...+Ds) Zj:i+1 Pj j=it1

where the states are indexed from 1 to S such that p; < --- < pg.

Proposition B.3. Assuming w = 7201log(n/p) > 613log(2/p),n > 12wS? k = 120log(n/p) =
&, then with probability Q(1/S) — 8Sp,

DSlog®(n/p)

prh>pth —O(
n

).
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Proof. The proof of this proposition involves showing that with probaility 2(1/.5) —8S)p, the random
quantity p” h exceeds its mean p” h enough to overcome the possible deviation of empirical estimate
" h from the true value p” h. This involves a Dirichlet anti-concentration bound (Proposition
and Lemma to lower bound 5" h, and a concentration bound on empirical estimates p (Lemma
C.3)) to lower bound p” h which by definition is close to p” h.

In Lemma [B.4] we show that with probability ©(1/5) — 7S,

DSwlog(n/p)

a2
5— ) Th > 0.188 T4 o
(B—p)h= > - ( -

i< S

).

Note that m = ”*WS and so 2 < m < 2% since n > 12wS?. Then we have that

5— 5 iC? DSwlog(n
B—p)"h> 0.184\/@ _ 0(#)_

‘We can also calculate

p—p)7 nﬁi"’w_npz (1—Sp;) - wDS <wDS
|(p—5)"h| = |Zh oS \_\Z e < e <

Finally, from Lemma|C.3|bounding the deviation of empirical estimates, we have that with probability
1—p,

2
p T ViC; log(n/p)
(b —p)"hl <2, log(n/p) ES LoD B

Hence putting everything together we have that with probability 2(1/S) — 8Sp,

B-p)'h = G-D"h+E-D"h+H-p)"h
> p-p)"h—|@—p) "l —|H—p)"h
> 0.184 /RZ%TC%—Q 1og(n/p)z%ﬁ70(%g(n/p))
7 1<S
. _O(DSlogQ(n/p))

where the last inequality follows with w = 7201og(n/p) and k = 1201og(n/p).
O

Lemma B.4. Assume that h € [0, D)%, and w > 6131log(2/p),n > 12wS?, k = %, and an ordering
of i such that py < --- < pg. Then, with probability Q(1/S) — 7Sp,

B—p)"h> 0.188\/27%5_ O(M)_

Proof. The proof is obtained by a modification to the proof of Proposition [A.I] which proves a
similar bound but in terms of 7;’s and ¢;’s.

In the proof of that proposition, we obtain (refer to Equation (T3))), with probability 1 — Sp (assuming
mp; 2 6),

B-p)"h > Z(ﬂz —4i)(hi = Hiy1)(pi + -+ + Ds) —

> @i = 5i)(hi — Hix1)(pi + -+ ps) — O(

%

2DSlog(2/p)
m

DSwlog(n/p)
n

v

)
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P Di = e Di 7 _ 1 S = 7 —
where Yi = ﬁi+...+z‘;s7yi = pit+ps’ Hi+1 - S = Zj:i+1 hgpg, Hi+1 =

Zj:H»l by
m Z]S i41 NjDj. Now, breaking up the term in the summation and using Lemma to
bound |H; 41 — H;y1|(pi + -+ + ps) (since we have by assumption that w > 613 1og(2/p) and

n > 12wS?) and Lemma and Corollary -to bound |§; — 7|, we get that for every 4, with
probability 1 — 4S5,

DSwlog(n/p)
m

(ﬁ_ﬁ)Th_Z@i_gi)(hi_Hi—i-l)(pi"‘"""]js)""O( )

Y

Z y yz)(Hz+1 Hz+1)(ﬁi+"'+ﬁ$)

—Z\/ 210g 2/p )<3D\/10g(n/p)(pi+-7.l.—|—ps)+4(OJS+loi(n/P))D>

() > _6DS\/Iog 2/p)log(n/p)  4(wS +log(n/p))D+/21og(2/p) Z
- vmn nym m'

Recall that m = Lﬁ‘”s, so that for n > Sw, n > Bf = B2 > mlog(2/p), and the first term of ()
is at least:

_GDS\/log(Q/p) log(n/p) _ _ 6DS/log(n/p) _ _O(DSw log(n/p)
m?log(2/p) m n

v

).

Then using Lemma|B.5|and m = (n + Sw)/k > 6n/w > 7252, the second term in (x) is at least:

_ 85(wS +log(n/p))Dy/2log 2/p DSw log(n/p))
nv'7252 n '

Then, applying Lemmal[A.4| (given mp; > 6) for z; = (h; — Hiy1)(pi + -+ + Ds), i = 1,..., 5,

with probability 2(1/.5),
S 1 522
% (i — ¥i)zi 1 El 05 % -

‘We substitute this in the above, with the observation

2-2 2/ _ \2-2 20i(Di + ..., Ds) 6 7;c?
“of = h; — H; P SRR s = - > e .
;Zz 0; ;( +1) (p + +p5) o ; m(pl + +pS) +1 Z T m
So far we have that with probability Q(l /S) —4Sp,
% DSwlog(n/p)
- O0(———————). 14
(=p)"h= f Z ( - ) (14)

Finally, we use Lemma with k = 14 (this requires w > 6131og(2/p)) to lower bound ¥; by
-7 — O(%2) to get with probability (1/5) — 7Sp,

F-p)"h > 0.188\/277;1012_0(%“;1?;(”/'0)).

Lemma B.5. Letx € R" such that0 < z1 < --- <z, < land Zl x; = 1. Then

- 1
— <.
; l‘i—"_...xni n

(2
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,n. We prove that z* := (& 1 ... 1)

n’n’ 'n

Proof. Define f(y) := ﬁ forally = 1,-

achieves the maximum value. Consider any solution z’. Assume there exists some index pair 7, j
with 7 < j and some € > 0 such that ] # x; and increasing z} by ¢ and decreasing z’; by € preserves

the ordering of the indices. This strictly increases the objective, because f (k) strictly increases for
all i < k < j and remains unchanged otherwise, and hence z’ is not an optimal solution. The only
case where no such index pair (i, j) exists is when every x; is equal- this is precisely the solution x*.
Since ), f(4) is a continuous functions over a compact set, it has a maximum, which therefore must
be attained at z*.

This means

;\/ﬁggm ;\/><\f10d1—2n
O

Lemma B.6. Let A = 310g(%) and w > %kQA. Also let n > 12wS?. Then for any group G of
indices, with probability 1 — p,

(1_%)2p1_%<zpz_ sz QWS
i€G i€G i€G

If in the definition of 7;, we use an ordering of i such that pg > % (e.g., if max p; is the last in the
ordering), then for all i, with probability 1 — 3p,

(1+ %) 2(1 %

77_1_7_%% 1_

Proof. By multiplicative Chernoff-Hoeffding bounds (Fact[)), with probability 1 — p,

|sz sz|< \/AZ i g

where A = 310g(%) so thatusing | >, p; — >, pi| < WT’

DA VAS A wS DA 2wS
g Sop <A VARS A WS [ 208
, - n

n n n - n n

npitw
n+wsS Z n+wS

_ _ A 2wS _ A 2wS
|ZP¢*ZP1‘\§ZP1‘ nziﬁiJr%SZPm/m T‘kz L

so that

Now, for n > 12wS?, np; = n > 24“’ > k2A.

sz_ 1+ sz QWS sz_ 1_7 sz QWS

For the second statement of the lemma, using what we just proved, we have that with probability
1—3p,

_ _ 2(1+ 1) )wS(Pi+-+Db w282
b= PPy +---+ps) (1 1)2Pi(Bis + -+ + ) + ZETRISREAR) | b
" pitetps (1= 3) (i + - +ps) — 22
Now, if indices 7 are ordered such that pg > s’ then p; + - - - +pg > 1 for all 4. Also, if n > 12wS?,
we have the following bound on the denominator in above: (1 — 7)(pz + o+ ps) — % >
(1-4-— %)(]31- + -+ 4 pg), so that from above
(1+£)? 201+ ++3ws
=y _1_17n" + 1_1_1 "
%% ~“r~6 "

21



Lemma B.7. For any fixed h € RS, and i, let H; = —=— 5 f:i hip;, Hi = <5* Py > :f:z h;p;,
=i Pi Zj:i f)
H;, = L ) s h;pj. Then if n > 96, with probability 1 — p,

S —
Zj:i pj =t

= B3+ ..+ 5s)] < 2D gt/ ) Pt P) 55 +ToR(/)D

Moreover, if we also assume that w > 3010g(2/p) and n > 12wS?, then with probability 1 — 2p,
)(151' +o+ps) |, WS log(n/p))D
n n

|(H; — H;)(p; + ...+ Ps)| < 3Dy/log(n/p

Proof. Forevery t,k > i, define

pl—i—pik—i—ps . ]].(St S {Z, . ,S})) ]]-(st—l =S5,¢—1 = a),

Zt == Z Zt,k~

k>i

Zt,k = <hk]l(st = ]C) — hk

Then,

Y1 % . Pk . R y R R
e =y b — ) hp———— - (Pi + ... +Ds) = (H; — Hy)(pi + ... + Ds)
where we used Factfor the last equality. Now, E[Z;|s;—1,a:—1] = Zkzi ElZ; k|st-1, a1—1] = 0.
Also, we observe that for any ¢, Z; ; and Z, ; for any k # j are negatively correlated given the

current state and action:

BlZiaZeslsisais] = WbELGsy =D)L =)~ 1o =) (s € {0 5))
Pj .
—1(s :ki']]-SE'L,..,?S
(50 = k) 5, L e 13
DiPk )
- L(sy € {i,..., S
(pi+ -+ ps)? (st €4 13l
2p;Pk PkD; ,
= h/k;h]E— J + J ]ls c Z’.._’S
! | pi+ -+ Dps (pi + -+ +ps)? (st €{ H]
P;Di
= hyhE[————"———
klty [ pi+"'+ps}
< 0.
And,
T t p2
E Z2 St—1 = S,0¢t—-1 = aQ = h2 1(s¢ =S,at—-1 = Q I f . A et )
[; tklst—1 -1 =a] k; (st-1 t—1 )(pk (pi+-~+ps)2(p Ps)
Y PE(Q >k Pi)
= h2 1(s¢— = 5,0 :aj;,j#
k; (st-1 t-1=a) s
PR (i Pi)
= nhy
pi+ - +ps
é nD2pk
Therefore,

ZE[ZﬂSt—l’ ag—1] < Z ZE[Zz?,MSt—l, ai—1] <nD?*(p; + -+ + ps).
t=1 t=1 k>i

Then, applying Bernstein’s inequality (refer to Corollary to bound | >°/_, Z;|, we get the
following bound on % Yore1 Zy = (H; — H;)(pi + . .. + pg) with probability 1 — p:

(pi+ - +ps)
n

]
43D og(:/p) .

(H; — Hy)(pi + ...+ ps)| = |%2Zt| < 2D\/log(n/p)
t=1
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Also,

- ) b D
H— Hi| =) - Dk py— L% _hk|§#7
— Dit -+ Ps pit+- +DPs n(pi+ -+ Ps)
Combining,
_ P 1 SD
|(Hi—Hi)(ﬁi+...+ﬁs)|<2D\/10g(n/p)(p - n+p3)+3D Og(g/p)+“n .
Replacing p; by p;,
_ L S +1 D
(= H) 5 ..+ ps)| < 2D gy L PS) | 505+ osln/p)

with probability 1 — p.

Now, if we also have that w > 301log(2/p) and n > 12wS?, using lemmawith k = 3 to replace
p; by D;, with probability 1 — 2p,

YORRDES SENCE SaL Uk

|(H; — H;)(p; + ...+ Ps)| < 3Dy/log(n/p

C Deviation bounds

Lemma 4.4. (Deviation bound) With probability 1 — p, for all epochs k, sample j, all s,a

0 <D log(iféf /0) + DSlogJ(\ffT/p)> . NJ&>n
I[IlaX]S(Q‘g’E _ Ps’a)Th S s,a s,a
he[0,2D ’
o (D Slog(SAT/p) DSIog(S)) |

A NJ*,
Proof. For n > n, express the above as

max (Q* — P, )Th < max (QFF — P, ) h+ (Pey— Pau)Th+ (Psy — Pso)Th

s,a — s,a

hel0,2D]8 hel0,2D]S
po— MG _ Nh()tw . " ™ ) disteibuti .k
where P, , = J\Sﬂ,’z = ]\ZT‘,’Z ~og s the mean of Dirichlet(IMZ,) distribution used to sample 7",
3 Nk (4)
and P, , = Nﬁk . Now,

s,a

2wSD
Psa_PsaTh< .
her[ggg]s( : a) h < N7

And, to bound the first and the last terms in above, we use Lemma[C.1]and Lemma[C.2] with union
bound for all S, A, v, k, to get the lemma statement for n > 7.

For n < 7, we use Lemma|C.4] with a union bound for S, A, ¢, k, we get the lemma statement. [

C.1 Dirichlet concentration

A similar result as the lemma below for concentration of Dirichlet random vectors was proven in
Osband and Van Roy|[[2016]]. We include (an expanded version of) the proof for completeness.

Lemma C.1 (Osband and Van Roy|[2016]). Let p ~ Dirichlet(mp). Let

7 = 5 — )T w.
véfé?ﬁ]s(p p)v

Then, Z < D QIL(Z/’)), with probability 1 — p.

m
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Proof. Define disjoint events &,,v € [0, D]° in the sample space of Z as

Ev=1{2:2Z= p—p) w = (p—p) v}
{ w?&fms@ p) w=(p—p) v}

Let f(v) be the probability of event £,. (Here, ties are broken in arbitrary but fixed manner to assign
each Z to one of the &, so that £, are disjoint and f(v) integrate to 1).

Now, define a random variable Y distributed as follows: Y = Y,, — E[Y,] with probability f(v),
where Y, s are Beta variables distributed as Y, ~ Beta(m2p” v, m(1 — 55" v)). We show that Y
is stochastically optimistic compared to Z.

We couple Y and Z as follows: when Z € &, which is with probability f(v), we setY is Y,. By
definition, under this event, Z = (p — ﬁ)Tv. By Dirichlet-Beta optimism (Lemma , for any
v, DY, is stochastically optimistic compared to 5’ v. Now, since they have the same mean, from
equivalence condition for stochastic optimism (Condition 3 in Lemma 3 of |Osband et al.|[2014])

E[DY, — p v|pTv] =0
for all values of v, p7v. Since we coupled Y and Z so that Y is Y, — E[Y,] when Z € &,, we can
derive that for any v, and z € &,,
EDY - Z|Z=%2:2€&, = E[DY,—DEY,|—Z|Z==z2:2€&,)]

= E[DY, - DE[Y,] = (p—p)"v | (5 —5)""]

= E[DY, —p v |pTv] = 0.
This is true for all z, since every z € &, for some v, thus proving

DY =, Z.

Let X be distributed as Gaussian with mean 0 and variance % By Gaussian-Beta stochastic optimism
X =50 Y, — E[Y,], which implies for any convex increasing u(-),

Efu(Y)] = / E[u(Y, — E[Y,])(v) < / E[u(X)]f (1) = E[u(X)]

v

so that X =,, Y, and

1
X >~3o Y >90 *Z
s )]

Therefore, we can use Corollary to bound Z by D/ QIOgT(Q/p) with probability 1 — p. O

C.2 Concentration of average of independent multinoulli trials

Below we study concentration properties of vector p defined as the average of n independent
multinoulli trials with parameter p € AS ie., p= Z?:1 x;, where x;s are iid random vectors, with

235 = 1 with probability p;.
Lemma C.2. Let p be the average of n independent multinoulli trials with parameter p. Let

7 = p—p)lo.
ve%ég]s(p p)v

Then, Z < D4/ 21%(1/”), with probability 1 — p.

Proof. Define disjoint events &,,v € [0, D]° in the sample space of Z as

& ={2:7Z= —p)lw = (p—p)To}.
{ wéﬂ%]s@ p) w=(p—p) v}

Let f(v) be the probability of event £,. (Here, ties are broken in arbitrary but fixed manner to assign
each Z to one of the &, so that £, are disjoint and f(v) integrate to 1).

Now, define a random variable Y™ distributed as follows: Y = Y, — E[Y,] with probability f(v),
where Y, s are independent Binomial variables distributed as Y,, ~ %Binmm’al(n7 % pTv). We show
that Y is stochastically optimistic compared to Z.
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We couple Y and Z as follows: when Z € &,, which is with probability f(v), we setY is Y. By
definition, under this event, Z = (p — p)”v. By Multinomial-Binomial optimism (Lemmaand
Corollary , for any v, DY, is stochastically optimistic compared to p”v. Now, since they have
the same mean, from equivalence condition for stochastic optimism (Condition 3 in Lemma 3 of
Osband et al.|[2014])
E[DY, — p v|pTv] =0

for all values of v, 57 v. Since we coupled Y and Z so that Y is Y, — E[Y,] when Z € &,, we can
derive that for any v, and z € &,,

EDY —Z|Z=2:2€&,] = E[DY,—DE[Y,|—Z|Z=2z2:2€&,)]
= E[DY, - DE[Y,] — (p—p)"v|(p—p)" ]
E[DY, — pTv [pTv] = 0.
This is true for all z, since every z € &, for some v, thus proving
DY =, Z.

Next, we bound Z using the stochastic optimism. First, let us express the distribution of Y in a more
convenient way. Let y1,, = 5p" v, n = [, f(v)p,. Define

X = ixi
Jj=1

where X7s are iid random variables, distributed as follows: X7 takes value 1 — p,, with probability
f(v)po and —py, wop. f(v)(1 = ), for v € [0, D]%. Therefore, E[X7] = [ (1 — py) f(v)pte —
pof(0)(1 = py) =0, and X7 € [—1,1]. We show that X and Y have the same distribution.

Since each Y, is Binomial(n, 11,), we can write it as Y, = >, Y/ where Y;/ are independent

Bernoulli(y,, ) random variables. Define a random variable © which is v with probability f(v). Then,
since Y is Y, — p, w.p. f(v),

Vo [Ompmlo=0) = 3 [0t = 0¥ = Dol =0 Y] = 0) ~ L 3K

Therefore,
1
X~Y =, =2
- D
where X = %2721 X7, is the sum of n mean 0, bounded [—1, 1], iid random variables. By

Hoeffding’s lemma, for any s € R

ns?

) o2
E[e*X'] < 7, so that, E[e*"¥] < e™%".

Using stochastic optimism E[u(Z/d)] < E[u(Y")] = E[u(X)] for all convex increasing u(-), there-
fore for s > 0,

Z E[es"%] E[esnX] s
P(nﬁ > nt) < St S ot <e™ nt
Choosing s =t = \/@’
A 1 1 42
P(B W) <eT < p.

O

Lemma C.3. Let p € A be the average n independent multinoulli trials with parameter p € A®.
Then, for any fixed h € [0, D]® and n > 96, with probability 1 — p,

& los(2/p)
NN el g
|(p—p)" h| <2, |log(n/p) E L+ 3D,
i<S
_ pi(pit+1t+-+ps) _ _ 1 S
where y; = SRS, ¢ = hy — Higy, Higy = S > i1 hiDs-
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Proof. For every t, i, define

Ztﬁ‘ = (Cﬂl(st = ’L) — C;

Then,

pi+.‘.

CiPi

22—1215 A
= _ cibi— .

Di
+ ps

7 = Z Zii.

“1(st € {L...,S})) 1(si—1 = s,at-1 = a),

S—1

(it +Ds) = D (Gi—y:) (Bit+- - +Ds)e; = (p—p)"h
=1

where we used Fact for the last equality. Now, E[Z;|s;_1,a;—1] = Y, E[Z;i|s¢—1,a:-1] = 0.
Also, we observe that for any ¢, Z; ; and Z, ; for any ¢ # j are independent given the current state
and action: (assume j > ¢ w.l.o.g.)

E[Z; i Z: j|s¢—1,ae-1] =

cicE[1(sy = 4)1(s¢ = j) — L(s¢ = j) i

(s € {i,...,S})

. p; .
—1(sy =i)——2—— - 1(sy € {j,..., S
(0= 8) g M € 0 SY)
p;iDi .
+ ; -1(s¢ € {j,..., S
(pj + -+ +ps)(pi+ - +ps) (e e Dl
= c¢cE[-1(s; =7 4
][ (t ])pz’+"'+ps
p;iDi .
+ -1(s¢ € {j,..., S
(pj+--+ps)(pi+--- +ps) (s &4 2l
_ Cich[_ Pjbi PiPi ]
pit-+ps  (pit--+ps)
= 0.

Therefore,

ZE[Zt2|3t—1aat—1

t=1

.
=YY &BIZ [si-1,a4] =Y i,
t=1 7

%

where the last equality is obtained using the following derivation:

IE[Z Z}i|si-1 = s,ai-1 = d

t=1

T

t=1
T

t=1

npi(pi+1 + -+ ps)

pit-+ps

2

P;
Z 1(s¢—1 = s,at—1 = a) (pi - m(}% + - +ps))

Z L(si1 = s,ar_1 = a)pi(pz’+1 + - +Dps)

pit e+ ps

= n7;.

Then, applying Bernstein’s inequality (refer to Corollary|[E.1) to bound | Y"7_, Z;|, we get the desired
boundon (p — p)Th =137 | Z,.

C.3 Concentration of simple optimistic samples

O

Lemma Cd4. Letp = p~ + (1 — Zle p; )z where z be a random vector picked uniformly at

random from {11,...,1g}, andp™ =p — A, A; = min{

probability at least 1 — p, for any D, we have

max (p7h —pTh) <O(D

hel0,D]s

Slog(nS/p) . DSlog(25)

3p; lcf(ﬁls) + 3103;(45) ,pi}, then with
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Proof. By definition of p and using Lemma [C.2] with probability 1 — p,
3D log (45)

11 (4
max (p'h—p'h) < (pTh—p” —|—DZ 3p: 10s(45)

hel0,D]S
< /210g 2log(1/p) D /S3log (45) DSlog (45)

Slog(4S/p) DS'log(45) )
n n

= O(D

D Diameter of the extended MDP M?*

Lemma 4.1. Assume T > CDAlog?(T/p) for a large enough constant C. Then, with probability
1 — p, for every epoch k, the diameter of MDP MP is bounded by 2D.

Proof. Using Lemma along with Lemma m for h = E*, we obtain that the diameter of M*
is bounded by D /(1 — §) for § = O(D,/ log%/p) + Dlog(f/”))), where 77 = /ZZ. Therefore, if

T > CDAlog?(T/p), thenn > CDSlog(T/p) > CD?log(1/p), making § < 1/2 for some large
enough constant C'. O

Lemma D.1. For every k, and any fixed h € [0, D]°, with probability 1 — p, there exists a sample
vector Q] k such that

: log(1 log(T
QE h< P h+O(D Og(n/”) + DS Og(n /o)y,

Proof. First consider s,a with NJ* > 7. For such s, a posterior sampling is used, and by Lemmas

[C]and[C2]

QU -h < Pyy-h+0O(D +DS

+D SPS,U.'h+O(D

log(1/p) wS ) log(1/p) )
NIk, Nk, n '

log(T/p)
n

For s,a with N7* <1, we use a simple optimistic sampling. In Lemma@, we prove that under
such sampling QJ k -h < P, , - h with probability 1/2S for every sample j. Then, since the number
of samples is @(S log(l/p)) we get that it holds for some j with probability 1 — p. O

Lemma D.2. Let E° € Ri be the vector of the minimum expected times to reach s from s' € S in
true MDP M, i.e., ES, = min, T _, .. Note that E; = 0. For any episode k, if for every s, a there
exists some j such that '

QL B* < Pyo- E° 44, (15)

for some 6 € [0,1), then the diameter of extended MDP MF is at most %, where D is the diameter
of MDP M.

Proof. Fix a k. For brevity, we omit the superscript & in below.

Fix any two states s; # so. We prove the lemma statement by constructing a policy 7 for M such
that the expected time to reach s from s; is at most ;=5. Let 7 be the policy for MDP M for which
the expected time to reach so from s; is at most D (smce M has diameter D, such a policy exists).
Let E be the | S| — 1 dimensional vector of expected times to reach s, from every state, except so
itself, using 7 (E is the sub-vector formed by removing s coordinate of vector £*2 where E* was
defined in the lemma statement. Note that £52 = 0). By ﬁrst step analysis, E is a solution of:

E=1+PIE,
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where P/ is defined as the (S — 1) x (S — 1) transition matrix for policy , with the (s, s")!" entry
being the transition probability Py () (s") for all s,s" # s2. Also, by choice of 7, E satisfies

E,, < D.

Now, we define 7 using 7 as follows: For any state s # s3, let a = 7(s) and 4" sample satisfies the
property (I3) for s, a, E*2, then we define 7(s) := a’. Let Q# be the transition matrix (dimension
S x S) for this policy.

Q= defines a Markov chain. Next, we modify this Markov chain to construct an absorbing Markov

chain with a single absorbing state s5. Let Q;fr be the submatrix (S — 1) x (S — 1) submatrix of Q5
obtained by removing the row and column corresponding to the state so. Then Q' is defined as (an
appropriate reordering of) the following matrix:

. _ ot
Qﬁ_{o ﬂ

where q is an (S — 1)-length vector such that the rows of Q% sum to 1. Since the probabilities in Q#
were drawn from Dirichlet distribution, they are all strictly greater than 0 and less than 1. Therefore

each row-sum of Q; is strictly less than 1, so that the vector q has no zero entries and the Markov

chain is indeed an absorbing chain with single absorbing state s,. Then we notice that (I — Q;fr)_1 is
precisely the fundamental matrix of this absorbing Markov chain and hence exists and is non-negative
(see |Grinstead and Snell| [2012], Theorem 11.4). Let F be defined as the S — 1 dimensional vector of
expected time to reach sy from s’ # so in MDP MF using 7. Then, it is same as the expected time
to reach the absorbing state so from s’ # s in the Markov chain Q%, given by

E=(I-QhH) 1.

Then using (T3)) (since E32 = 0, the inequality holds for P, Q),

S2

E=1+PE>1+QlE-51 = I-QLE>@1-01. (16)

Multiplying the non-negative matrix (I — Q;fr)_l on both sides of this inequality, it follows that
E>1-0)I-Q) ™M =(1-0F
so that ~Esl < ﬁEsl < 1—?(3, proving that the expected time to reach s5 from s; using policy 7 in
MDP M¥ is at most 2.
O

E Useful deviation inequalities

Fact 3 (Bernstein’s Inequality, from Seldin et al.|[2012[] Lem 11/Cor 12). Let Zy, Zo, ..., Z,, be a
bounded martingale difference sequence so that |Z;| < K and E[Z;|F;_1] = 0. Define M,, =
St Ziand V,, = Y i E[(Z;)?|Fi-1]. Forany ¢ > 1 and 6 € (0,1), with probability greater
than 1 — 9, if

In %” 1
Y R
(e—2)V, - K
then
2u
M| < (14 )/ (e~ 2)Valn S,
otherwise, )
|M,| < 2K In %,
where
In (/53") 1
ol e
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Corollary E.1 (to Bernstein’s Inequality above). Let Z; fori =1,--- ,n, My, and V,, as above. For
n > 96 and 6 € (0,1), with probability greater than 1 — §,

M| < 24 /ann% +3Kln%.

Proof. Applying Bernstein’s Inequality above withc =1 + %, with probability greater than 1 — 4,

2 2
IM,| < (L4+0)/(e—2)V, ln% + 2K1n%
ns ns
< (1+4¢ (efQ)annT +2K1n7
4 n n
/ n n
< = =
< 2 ann(S —&-3Kln(S
where
In (,/=2m)
In 2 n (e—2)n n (e —2)n 1 4
=[—— 1=[=1 —_ 1< -1 2< -—n3.
v=1 Inc 1+ [2 n ln% N+ _2n( In2 )+ _2713
O
Fact 4 (Multiplicative Chernoff Bound, |[Kleinberg et al.|[2008] Lemma 4.9). Consider n i.i.d. random
variables X1, -+ , X, on [0, 1]. Let 1 be their mean and let X be their average. Then for any o > 0
the following holds:
P(|X - :u’| < T(O[’X) < 37"(0[,[1,)) >1- GQ(Q)a
where r(a, x) = \/9F + 2.

More explicitly, we have that with probability 1 — p,

3105(2/p)X | 3log(2/p).

X —pl <
Fact 5 (Cantelli’s Inequality). Let X be a real-valued random variable with expectation u and
variance o®. Then P(X — pu > \) < #izfor)\ >0and P(X —p>A)>1-— #Z))\Zfor)\ <0.

Fact 6 (Berry-Esseen Theorem). Ler X1, Xs, ..., X, be independent random variables with E[X;] =
0, E[X?] = 02 > 0, and E[| X;|3] = p; < oo. Let

X1+ X+ .+ Xy
Voi4 .. +o?

and denote F,, the cumulative distribution function of S,, and ® the cumulative distribution function
of the standard normal distribution. Then for all n, there exists an absolute constant Cy such that

supzer|Fn(xz) — ®(z)] < Ciy

S

n
where 1y = (> 012)*1/2 maxi<;<n % The best upper bound on Cy known is C7 < 0.56 (see

=1
Shevisovd [2010)).

Fact 7 (Abramowitz and Stegun| [[1964] 26.5.21). Consider the regularized incomplete Beta function
I.(a,b) (cdf) for the Beta random variable with parameters (a,b). For any z such that (a + b —
1)(1 —2) > 0.8, I.(a,b) = ®(y) + ¢ with |¢| < 0.005 if a + b > 6. Here ® is the standard normal

CDF with ) .
_Bun(l- ) —ws(1— )
5+ e

where wy = (b2)'/3 and wo = [a(1 — 2)]/3.
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The following lemma uses the above fact to lower bound the probability of a Beta random variable to
exceed its mean by a quantity close to its standard deviation.

Lemma E.2 (Anti-concentration for Beta Random Variables). Let F, ;, denote the cdf of a Beta
random variable with parameter (a,b), witha > 6,b > 6. Let z = a%_b +C,/ (a+b)2’?72+b+1) + QL_H)

with C < 0.5. Then,
1-— F(a’b)(z) >1—®(1) —0.005 > 0.15.

Proof. Let v = C,/m + C. Then, z = “=w; = (b(a + z)/(a + b))"/? and wy =

[a(b—z)/(a + b))]/3. Also, z < 2C LAlso, (a+b—1)(1—-2)>(a+b—1)(1 — aT—b _
ab c C ab (& atb—1

¢ m o a+b) (a+b— 1)(aTb T atb\/ atb+rl a+b) > Lb b-C a+b+1

- +b) > L(b- CVb— <) > 0.8. Hence we can apply Factrelating Beta with Normal. We bound

the numerator and denommator in the expression of y, to show that the relation I (a,b) < ®(y) + €
holds for some y < 1.

1 1
numerator(y) = 3[wi(l— %) —wa(l — g—a)]
ab 1 T.1 1 T 1 1
= 30+ DI - ) - - Dha- )
ab 1 T 1 T 222 1
< 3 — _ _ _
< 3(a+b) [(A+ 5 )0 = gp) (=g = 52)(1 = 5]
_ ab 1.,b—a z(a+0b) 2z 1 272 1
B 3(a+b)‘[( 9ab>+( 3ab ) (27ab)] (a+b) lopz 1~ 5a)!
ab (1. b—a x(a+b) ab 1 222 1
< 3 3 -
- (a+b) I 9ab )+ ( 3ab )H_g(a—!—b) [9b2( 9aﬂ
ab 1.,a+b b—a 222 1
= G G Tt g g
ab [1,a+0b b—a 22 1 ab 1
< R 2
= G lGaay) Tart —g0) TO +b) ]
- b—a 402\/%+C\/a+b+c)( ab )%(a—i—b)
- 3\/ab a+b) bVa+bd Vab a+b ab
1 1 1 ab s, a+b
< =) (—— )8 ,
= (f o6 Tavs  2are Cap )
In above, we used that C' < % and a,b > 6. Similarly,
. wi w3 1/2
denominator(y) = [TJr;]
o ab (1455 (1-2)5,
N (a—i-b)[ b + a )
ab ;(1+f79722) (1-25) a? 1
(a+b)3[ b + a _9a2]
_(ab )%[a(wg—g— Z)+b(1 — z—%)ﬁ
a+b ab
ab 1,a+b 2 1
N (a—i-b) ( ab (1 %))
ab

1.a+b 40?2
Rl 2
ab 1,a+b 107 .1
a—i—b) ( ab (ﬁ)) '

(
(
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Hence we have that y < w < 1, so that I,(a,b) < ¢(1) + € for ¢ < 0.005. The
108

lemma statement follows by observing that 1 — Fi4)(2) = 1 — I.(a,b) > 1 — ¢(1) — € >

1 — 0.845 — 0.005 > 0.15.

Definition 5. For any X and Y real-valued random variables, X is stochastically optimistic for Y if
forany u: R — R convex and increasing E[u(X)] > E[u(Y)].
Lemma E.3 (Gaussian vs Dirichlet optimism, from|Osband et al.|[2014] Lemma 1). Let Y = PTV
for V€ [0,1]° fixed and P ~ Dirichlet(c) with o« € R3 and Zle a; > 2. Let X ~ N(u,o0?)
S GV
w, 0% = (Zf,l a;) 7Y, then X is stochastically optimistic for Y .
i=1 % -
Lemma E.4 (Gaussian vs Beta optimism, (Osband et al.| [2014] Lemma 6). Let Y ~ Beta(a, 3)
forany o, > 0and X ~ N <aL+B7 ﬁ) Then X is stochastically optimistic for Y whenever
a+ 8 >2
Lemma E.5 (Dirichlet vs Beta optimism, [Osband et al.| [2014] Lemma 5). Let y = p”v for some
random variable p ~ Dirichlet() and constants v € R and o € N'. Without loss of generality,
assume v] < vy < --- < wg Letax = 2?21 a;(v;—v1)/(vg—v1) and B = Zle a;(vg—v;)/(vg—
v1). Then, there exists a random variable p ~ Beta(a, 8) such that, for § = pvg + (1 — p)vy,
E[gly] = E[y].
Lemma E.6. IfE[X]| = E[Y] and X is stochastically optimistic for Y, then —X is stochastically
optimistic for =Y.

with p =

Proof. By Lemma 3.3 in|Osband et al.| [2014], X stochastically optimistic for Y is equivalent to
having X =p Y+ A+ W with A > 0 and E[W]Y + A] = 0 for all values y + a. Taking
expectation of both sides, we get that E[X]| = E[Y] + E[A] + E[W] and since E[X] = E[Y] =0
and E[W] = E[E[W|Y + A]] = 0 we get that E[A] = 0. Since A > 0, A = 0. Also note that
E[W|Y = y] = 0forall y.

Now we can show that — X is stochastically optimistic for —Y as follows: From above, — X =p
—(Y4+A4+W)=-Y+ (—W). Then forall y/, E[-W| - Y = ¢/] = —E[W|Y = —¢/] =0 by
definition of . Therefore, —X is stochastically optimistic for —Y'. O

Corollary E.7. Let Y be any distribution with mean i such that X ~ N(u,c?) is stochastically
optimistic for Y. Then with probability 1 — p,

Y — | < \/202log(2/p).

Proof. For any s > 0, and ¢, and applying Markov’s inequality,

E[esY]

P(Y —p>t)=P(Y > p+t)= P’y > et)) < ,
es(ﬂ+t)

By Definition[3] taking u(a) = ¢, which is a convex and increasing function, E[e*Y] < E[e*¥],

and hence
EleX]  enstio’s’

es(itt)  es(utt)
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PY—-p>t)<

2

Since the above holds for all s > 0, using s = 5, P(Y — > t) < e 207,

Similarly, for the lower tail bound, we have for any s > 0,

oY) — s(eprt)y  Ele2CY)]
PY—-p<—t)=P(-Y >—p+t)=P(e >ty < — =
es(_ﬂ""t)

By Lemma — X is stochastically optimistic for —Y", so E[e*(~Y)] < E[e*(-X)], and hence
E[es(—X)] 6_H5+%0282 L,
P(Y —Hs _t) = 65(7”+t) - 65(*H+t) =e? :

2

Again letting s = 5, P(Y — pn < —t) < e 207
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Then, for t = \/2021log(2/p), we have that

P(lY — | < v/20210g(2/p)) > 1 = p.
O

Lemma E.8 (Binomial, Multinomial). Let Y = pTv where p € A® be distributed as multinomial
average with parameter n, p and fixed v € R where 0 < v; < D. Then, there exists a random

variable distributed as § ~ 1 Binomial(n, p;h) such that, E[§]Y] = %?

Proof. Let X f ,J =1,...,n denote the outcomes of the trials used to define p;, that is,
n .
=2 Xi/n
j=1

where Xij7j =1,...,n are distributed as Xf ~ Multivariate(p,1).

For every i, define n i.i.d. variables Yij7j = 1,...,n, where Yij ~ Bernoulli(v;/D), and is
independent of X?. Define g as:
1 n o
At VAV
i j=1
Let X ={X,,,i=1,...,5,j=1,...,n}. Then,
[q\p v,n] = E[E[(ﬂX,ﬁTv,n] \ﬁTv,n]
= E[E[§|X,n]|pTv,n]
1 o
= —E[E]) X/V/|x,n]p"
EELS X1l

1
= ZXJIEYJ pTv,n]

= fIEZX pvn
= pv/D.

Also, ng is a binomial random variable Binomial(n, 5 LpTv) since it is formed by sum of outcomes
of m trials Z;.L:l Z7, where each trail Z7 = )", X J Y] is an independent Bernoulli trial: takes value
1 with probability > . p;v;/D. O

Corollary E.9. For X = D§, Y = p v (with G and p™v as defined in the previous lemma), X is
stochastically optimistic for 'Y .

Proof. We have

E[X —Y|Y] = E[DG — p"v|p"v] = 0.
Then stochastic optimism follows from applying the optimism equivalence condition from Lemma 3
(Condition 3) of |(Osband et al.|[2014]. O]
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