
Supplementary material

Organization. In Section A, we prove some novel results about anti-concentration of Dirichlet
random vectors. These are used in Section B to prove Lemma 4.2 and Lemma 4.3. In Section C,
we prove several concentration bounds on Dirichlet posteriors and empirical estimates of transition
probability vectors to prove Lemma 4.4. Here, we utilize the stochastic optimism technique from
Osband et al. [2014]. In Section D, we prove Lemma 4.1 bounding the diameter of extended MDP
with high probability. And, in Section E we list some known results (or easy corollaries of known
results) that are utilized in our proofs.

A Anti-concentration of Dirichlet distribution

We prove the following general result on anti-concentration of Dirichlet distributions, which will be
used to prove optimism.
Proposition A.1. Consider a random vector p̃ generated from Dirichlet distribution with parameters
(mp̄1, . . . ,mp̄S), where mp̄i ≥ 6. Then, for any fixed h ∈ [0, D]S , with probability Ω(1/S)− Sρ,

(p̃− p̄)Th ≥ 1

8

√√√√∑
i<S

γ̄ic̄2i
m
− 2SD log(2/ρ)

m

where

γ̄i :=
p̄i(p̄i+1 + . . .+ p̄S)

(p̄i + . . .+ p̄S)
, c̄i = (hi − H̄i+1), H̄i+1 =

1∑S
j=i+1 p̄j

S∑
j=i+1

hj p̄j .

We use an equivalent representation of a Dirichlet vector in terms of independent Beta random
variables.
Fact 1. Fix an ordering of indices 1, . . . , S, and define ỹi := p̃i

p̃i+···+p̃S , ȳi := p̄i
p̄i+···+p̄S . Then, for

any h ∈ RS ,

(p̃− p̄)Th =
∑
i

(ỹi − ȳi)(hi − H̃i+1)(p̄i + · · ·+ p̄S) =
∑
i

(ỹi − ȳi)(hi − H̄i+1)(p̃i + · · ·+ p̃S)

where H̃i+1 = 1∑S
j=i+1 p̃j

∑S
j=i+1 hj p̃j , H̄i+1 = 1∑S

j=i+1 p̄j

∑S
j=i+1 hj p̄j .

Fact 2. For i = 1, . . . , S, ỹi := p̃i
p̃i+···+p̃S are independent Beta random variables distributed as

Beta(mp̄i,m(p̄i+1 + · · ·+ p̄S)), with mean

E[ỹi] =
mp̄i

m(p̄i + · · ·+ p̄S)
= ȳi,

and variance

σ̄2
i := E[(ỹi − ȳi)2] =

p̄i(p̄i+1 + · · ·+ p̄S)

(p̄i + · · ·+ p̄S)2(m(p̄i + · · ·+ p̄S) + 1)
.

Lemma A.2 (Corollary of Lemma E.2). Let ỹi, ȳi, σ̄i be defined as in Fact 2. If mp̄i,m(p̄i+1 + · · ·+
p̄S) ≥ 6, then, for any positive constant C ≤ 1

2 ,

P (ỹi ≥ ȳi + Cσ̄i +
C

m(p̄i + ...+ p̄S)
) ≥ 0.15 =: η.

Proof. Apply Lemma E.2 with a = mp̄i, b = m(p̄i+1 + · · ·+ p̄S).

Lemma A.3. (Application of Berry-Esseen theorem) Let G ⊆ {1, . . . , S} be a set of indices, zi ∈ R
be fixed. Let

XG :=
∑
i∈G

(ỹi − ȳi)zi.
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Let F be the cumulative distribution function of

XG

σG
, where, σ2

G =
∑
i∈G

z2
i σ̄

2
i ,

σ̄i being the standard deviation of ỹi (refer to Fact 2). Let Φ be the cumulative distribution function
of standard normal distribution. Then, for all ε > 0:

sup
x
|F (x)− Φ(x)| ≤ ε

as long as √
|G| ≥ RC

ε
, where R := max

i,j∈G

ziσ̄i
zj σ̄j

for some C ≤ 3 + 6
mp̄i

.

Proof. Yi = (ỹi − ȳi)zi. Then, Yi, i ∈ G are independent variables, with E[Yi] = 0,

σ2
i := E[Y 2

i ] = E[(ỹi − ȳi)2(zi)
2]

= z2
i σ̄

2
i

ρi := E[|Yi|3] ≤ E[|Yi|4]3/4

= E[|ỹ − ȳ|4]3/4z3
i

≤ κE[|ỹ − ȳ|2]3/2z3
i

= κσ̄3
i z

3
i

where the first inequality is by using Jensen’s inequality and κ is the Kurtosis of Beta distribution.
Next, we use that ỹ is Beta distributed, and Kurtosis of Beta(νµ, ν(1− µ)) Distribution is

κ = 3 +
6

(3 + ν)

(
(1− 2µ)2(1 + ν)

µ(1− µ)(2 + ν)
− 1

)
≤ 3 +

6

(3 + ν)µ
.

Here, α = m(p̄i + · · ·+ p̄S)ȳi, β = m(p̄i + · · ·+ p̄S)(1− ȳi), so that

κ ≤ 3 +
6

3 +m(p̄i + · · ·+ p̄S)

1

ȳi
≤ 3 +

6

mp̄i
.

Now, we use Berry-Esseen theorem (Fact 6), with

ψ1 =
1√∑
i∈G σ

2
i

max
i∈G

ρi
σ2
i

≤ κ√
|G|

maxi∈G ziσ̄i
mini∈G ziσ̄i

to obtain the lemma statement.

Lemma A.4. Assuming mp̄i ≥ 6,∀i, for any fixed zi, i = 1, . . . , S,

Pr

∑
i

(ỹi − ȳi)zi ≥
1

4

√∑
i

σ̄2
i z

2
i

 ≥ Ω(1/S).

Proof. Define constant δ :=
(1−Φ)( 1

2 )

2 and k(δ) := C2

δ4 , where C ≤ 4.

Consider the the group of indices with the k(δ) largest values of |ziσ̄i|, call it group G(1), and then
divide the remaining into smallest possible collection G of groups such that |ziσ̄i|/|zj σ̄j | ≤ 1

δ for all
i, j in any given group G. Define an ordering ≺ on groups by ordering them by maximum value of
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|ziσ̄i| in the group. That is G � G′ if maxi∈G z
2
i σ̄

2
i ≥ maxj∈G′ z

2
j σ̄

2
j Note that by construction, for

G � G′, we have maxi∈G z
2
i σ̄

2
i ≥ 1

δ2 maxj∈G′ z
2
j σ̄

2
j .

Recall from Lemma A.3, for every group G ∈ G of size
√
|G| > C

δε , we have that its cdf is within ε
of normal distribution cdf, giving that Pr(XG ≥ 1

2σG) ≥ 2δ − ε. Using this result for ε = δ, we get
that for every group of size at least k(δ), we have

Pr(XG ≥
1

2
σG) ≥ δ. (11)

We will look at three types of the groups we created above:

• Top big groups: those among the top log1/δ(S) groups that have cardinality at least k(δ)

• Top small groups: those among the top log1/δ(S) groups that have cardinality smaller than
k(δ)

• Bottom groups: those not among the top log1/δ(S) groups

Here, top groups refers to the those ranked higher according to the ordering �.

For the first group type above, apply (11) to obtain,

for all big groups among top log1/δ(S), XG ≥ 1
2σG

with probability at least δlog1/δ(S) =
1

S
. (12)

Next, we analyze the remaining indices (among top small groups and bottom groups). Consider the
group G(1) we set aside. Using Lemma A.2 k(δ) times, we have:

Pr

 ∑
i∈G(1)

(ỹi − ȳi)zi ≥ 0.5

√ ∑
i∈G(1)

z2
i σ̄

2
i

 ≥ ηk(δ)

where η ≥ 0.15.

Now, if it is the case where the top group is of small size, we apply the above anticoncentration of
beta for each element in the group, so that for all indices i in this group, (ỹi − ȳi)zi ≥ 0.5ziσ̄i, with
probability ηk(δ). To conclude, so far, we have with probability at least 1

S η
2k(δ)

∑
i∈G(1),i∈top big groups

(ỹi − ȳi)zi ≥ 0.5

√ ∑
i∈G(1),i∈top big groups

z2
i σ̄

2
i .

For every other small group G, the group’s total variance is at most k(δ) maxi∈G z
2
i σ̄

2
i ≤

k(δ)δ2jz2
(1)σ̄

2
(1), where j is the rank of the group in ordering � and (1) is the index of the smallest

variance in G(1). So, the sum of the standard deviation for top log1/δ(S) small groups is at most

k(δ)
∑

G:top small groups

max
i∈G

z2
i σ̄

2
i ≤ k(δ)

log1/δ(S)∑
j=1

δ2jz(1)σ̄(1) ≤
k(δ)δ2

1− δ2
z2

(1)σ̄
2
(1)

as it is a geometric series with δ multiplier. For the remaining bottom group, each element’s variance
is at most 1

S2 z
2
(1)σ̄

2
(1), therefore

∑
i:top small groups, bottom groups

z2
i σ̄

2
i ≤ (

k(δ)δ2

1− δ2
+

1

S
)z2

(1)σ̄
2
(1) ≤

k(δ)

25
z2

(1)σ̄
2
(1) ≤

1

25

∑
i∈G(1)

z2
i σ̄

2
i .
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By Cantelli’s Inequality (Fact 5), with probability at least 1
2 ,∑

i:top small groups, bottom groups

(ỹi − ȳi)zi ≥ −
√ ∑
i∈top small groups, bottom groups

z2
i σ̄

2
i ≥ −

1

5

√∑
i∈G(1)

z2
i σ̄

2
i .

Hence combining our results above,∑
i

(ỹi − ȳi)zi ≥
1

2

√ ∑
i∈G(1),top big groups

z2
i σ̄

2
i −

1

5

√ ∑
i∈G(1)

z2
i σ̄

2
i

≥ 3

10

√ ∑
i∈G(1),top big groups

z2
i σ̄

2
i +

1

25

√ ∑
i∈G(1)

z2
i σ̄

2
i −

1

25

√ ∑
i∈G(1)

z2
i σ̄

2
i

≥ 13

50

√ ∑
i∈G(1),top big groups

z2
i σ̄

2
i +

1

25

√ ∑
i∈G(1)

z2
i σ̄

2
i

≥ 1

4

√∑
i

z2
i σ̄

2
i

with probability η2k(δ) 1
2S = Ω(1/S).

Proof. (Proof of Proposition A.1) Use Fact 1 to express (p̃− p̄)Th as:

(p̃− p̄)Th =
∑
i

(ỹi − ȳi)(hi − H̃i+1)(p̄i + · · ·+ p̄S).

Using Lemma E.3 and Corollary E.7,

|H̃i − H̄i| ≤ D

√
2 log(2/ρ)

m(p̄i + . . .+ p̄S)

with probability 1− ρ for any i.

and similarly using Lemma E.3 and Corollary E.7,

|ỹi − ȳi| ≤

√
2 log (2/ρ)

m(p̄i + ...+ p̄S)
.

Therefore, with probability 1− Sρ,

(p̃− p̄)Th−
∑
i

(ỹi − ȳi)(hi − H̄i+1)(p̄i + · · ·+ p̄S)

=
∑
i

(ỹi − ȳi)(H̃i+1 − H̄i+1)(p̄i + · · ·+ p̄S)

≥ −
∑
i

√
2 log(2/ρ)

m(p̄i + ...+ p̄S)
D

√
2 log(2/ρ)

m(p̄i + ...+ p̄S)
(p̄i + · · ·+ p̄S)

≥ −2SD log(2/ρ)

m
. (13)

Then, applying Lemma A.4 (given mp̄i ≥ 6) for zi = (hi − H̄i+1)(p̄i + · · · + p̄S), i = 1, . . . , S,
with probability Ω(1/S),

(p̃− p̄)Th ≥ 1

4

√∑
i

z2
i σ̄

2
i −

2SD log(2/ρ)

m
.

Now, we observe∑
i

z2
i σ̄

2
i = (hi − H̄i+1)2(p̄i + · · ·+ p̄S)2σ̄2

i =
c̄2i p̄i(p̄i + . . . , p̄S)

m(p̄i + . . .+ p̄S) + 1
,
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to obtain

(p̃− p̄)Th ≥ 1

8

√∑
i

γ̄ic̄2i
m
− 2SD log(2/ρ)

m

where

γ̄i =
p̄i(p̄i+1 + . . .+ p̄S)

(p̄i + . . .+ p̄S)
.

B Optimism

In this section, we prove the following lemmas.

Lemma 4.2. With probability 1− ρ, for every epoch k, the optimal gain λ̃k of the extended MDP
M̃k satisfies:

λ̃k ≥ λ∗ −O
(
D log2(T/ρ)

√
SA
T

)
,

where λ∗ the optimal gain of MDPM and D is the diameter.

Proof. Let h∗ be the bias vector for an optimal policy π∗ of MDPM (refer to Lemma 2.1 in the
preliminaries section). Since h∗ is a fixed (though unknown) vector with |hi − hj | ≤ D, we can
apply Lemma 4.3 to obtain that with probability 1− ρ, for all s, a, there exists a sample vector Qj,ks,a
for some j ∈ {1, . . . , ψ} such that

(Qj,ks,a)Th∗ ≥ PTs,ah∗ − δ

where δ = O
(
D log2(T/ρ)

√
SA
T

)
. Now, consider the policy π for MDP M̃k which for any s, takes

action aj , where a = π∗(s), and j is a sample satisfying above inequality. Note that π is essentially
π∗ but with a different transition probability model. Let Qπ be the transition matrix for this policy,
whose rows are formed by the vectors Qj,ks,π∗(s), and Pπ∗ be the transition matrix whose rows are
formed by the vectors Ps,π∗(s). Above implies

Qπh
∗ ≥ Pπ∗h∗ − δ1.

Let Q∗π denote the limiting matrix for Markov chain with transition matrix Qπ. Observe that Qπ
is aperiodic, recurrent and irreducible : it is aperiodic and irreducible because each entry of Qπ
being a sample from Dirichlet distribution is non-zero, and it is positive recurrent because in a finite
irreducible Markov chain, all states are positive and recurrent. This implies that Q∗π is of the form
1q∗T where q∗ is the stationary distribution of Qπ, and 1 is the vector of all 1s (refer to (A.6) in
Puterman [2014]). Also, Q∗πQπ = Qπ , and Q∗π1 = 1.

Therefore, the gain of policy π
λ̃(π)1 = (rTπ q∗)1 = Q∗πrπ

where rπ is the S dimensional vector [rs,π(s)]s=1,...,S . Now,

λ̃(π)1− λ∗1 = Q∗πrπ − λ∗1
= Q∗πrπ − λ∗(Q∗π1) . . . (using Q∗π1 = 1)
= Q∗π(rπ − λ∗1)
= Q∗π(I − Pπ∗)h∗ . . . (using (1))
= Q∗π(Qπ − Pπ∗)h∗ . . . (using Q∗πQπ = Q∗π)
≥ −δ1 . . . (using (Qπ − Pπ∗)h∗ ≥ −δ1, Q∗π1 = 1).

Then, by optimality,
λ̃k ≥ λ̃(π) ≥ λ∗ − δ.
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Lemma 4.3. (Optimistic Sampling) Fix any vector h ∈ RS such that |hi − hi′ | ≤ D for any i, i′,
and any epoch k. Then, for every s, a, with probability 1− ρ

SA there exists at least one j such that

(Qj,ks,a)Th ≥ PTs,ah−O
(
D log2(T/ρ)

√
SA
T

)
.

Proof. For s, a with Nτk
s,a ≥ η, Qj,ks,a were generated using posterior sampling from Dirich-

let distribution Dirichlet(Mτk
s,a(i), i = 1, . . . , S). We use Proposition B.3 for optimism of a

Dirichlet posterior sample. Let’s verify the conditions applying for this proposition. We have

Nτk
s,a ≥ η =

√
TS
A + 12ωS2 ≥ 12ωS2. and ω = 720 log(n/ρ).

Therefore, applying Proposition B.3, with probability Ω(1/S), the jth sample Qj,ks,a satisfies the
following kind of optimism:

(Qj,ks,a)Th ≥ PTs,ah−O(
DS log2(n/ρ)

Nτk
s,a

).

Substituting Nτk
s,a ≥ η =

√
TS
A + 12ωS2 we get that every j satisfies the stated condition with

probability Ω(1/S).

For s, a with Nτk
s,a ≤ η, we used simple optimistic sampling. In Lemma B.1 we show for such s, a

the condition (Qj,ks,a)Th ≥ PTs,ah is satisfied by any j with probability 1/2S.

Therefore, given that the number of samples is ψ = CS log(SA/ρ) for some large enough constant
C, for every s, a, with probability 1− ρ

SA , there exists at least one sampleQj,ks,a satisfying the required
condition.

Notations We fix some notations for the rest of the section. Fix an epoch k, state and action
pair s, a, sample j. In below, we denote n = Nτk

s,a, ni = Nτk
s,a(i), pi = Ps,a(i), p̂i := ni

n , p̄i =
ni+ω
n+ωS , p̃i = Qj,ks,a(i), for i ∈ S.

B.1 Optimism for n ≤ η (Simple Optimistic Sampling)

When n < η, simple optimistic sampling is used, so that any sample vector p̃ was generated as

follows: we let p− = [p̂ − (
√

3p̂i log(4S)
n + 3 log(4S)

n )1]+, and let z be a random vector picked
uniformly at random from {11, . . . ,1S}, and set

p̃ = p− + (1−
∑
j p
−
j )z.

We prove the following lemmas for this sample vector.

Lemma B.1. For any fixed h ∈ [0, D]S , we have

p̃Th ≥ pTh,

with probability at least Ω(1/S).

Proof. Define δi := p̂i − pi (and hence
∑
i δi = 0). By multiplicative Chernoff bounds (Fact

4), with probability 1 − 1
2S , |δi| ≤

√
3p̂i log(4S)

n + 3 log(4S)
n . Also define ∆i := p̂i − p−i =

min

{√
3p̂i log(4S)

n + 3 log(4S)
n , p̂i

}
. Note that ∆i ≥ δi and

∑
i ∆i =

∑
i(p̂i − p

−
i ) = 1−

∑
i p
−
i .

With probability 1/S, z = 1i is picked such that hi = D, and (by union bound over all i) with

probability 1− S 1
2S = 1

2 , |δi| ≤
√

3 log(4S)
n + 3 log(4S)

n for every i. So with probability 1/2S:
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∑
i

p̃ihi =
∑
i

p−i hi +D(1−
∑
j

p−j ) =
∑
i

p−i hi +D
∑
j

∆j

=
∑
i

(p̂i −∆i)hi +D∆i =
∑
i

p̂ihi + (D − hi)∆i

≥
∑
i

p̂ihi + (D − hi)δi =
∑
i

(p̂i − δi)hi +Dδi

=
∑
i

pihi +D
∑
i

δi =
∑
i

pihi.

Using the same technique as above, we can also prove the following “pessimism” for these samples,
which will be used later, in bounding the diameter in Section D.

Lemma B.2 (Pessimism). When n < η, we have for any fixed h ∈ [0, D]S

p̃Th ≤ pTh,

with probability at least Ω(1/S).

Proof. Define δi,∆i as before. With probability 1/S, z = 1i is picked such that hi = 0, and again

with probability 1− S 1
2S = 1

2 , |δi| ≤
√

3 log(4S)
n + 3 log(4S)

n for every i. So with probability 1/2S:

∑
i

p̃ihi =
∑
i

p−i hi

=
∑
i

(p̂i −∆i)hi

≤
∑
i

(p̂i − δi)hi

=
∑
i

pihi.

B.2 Optimism for n > η (Dirichlet posterior sampling)

When n > η, Dirichlet posterior sampling is used so that p̃ is a random vector distributed as
Dirichlet(mp̄1, . . . ,mp̄S), where m = n+ωS

κ , p̄ = ni+ω
n+ωS . We prove an optimism property for this

sample vector. Following notations will be useful.

γi :=
pi(pi+1 + . . .+ pS)

(pi + . . .+ pS)
, ci := (hi −Hi+1), Hi+1 =

1∑S
j=i+1 pj

S∑
j=i+1

hjpj

γ̄i :=
p̄i(p̄i+1 + . . .+ p̄S)

(p̄i + . . .+ p̄S)
, c̄i := (hi − H̄i+1), H̄i+1 =

1∑S
j=i+1 p̄j

S∑
j=i+1

hj p̄j

where the states are indexed from 1 to S such that p̄1 ≤ · · · ≤ p̄S .

Proposition B.3. Assuming ω = 720 log(n/ρ) ≥ 613 log(2/ρ), n > 12ωS2, κ = 120 log(n/ρ) =
ω
6 , then with probability Ω(1/S)− 8Sρ,

p̃Th ≥ pTh−O(
DS log2(n/ρ)

n
).
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Proof. The proof of this proposition involves showing that with probaility Ω(1/S)−8Sρ, the random
quantity p̃Th exceeds its mean p̄Th enough to overcome the possible deviation of empirical estimate
p̄Th from the true value pTh. This involves a Dirichlet anti-concentration bound (Proposition A.1
and Lemma B.4) to lower bound p̃Th, and a concentration bound on empirical estimates p̂ (Lemma
C.3) to lower bound p̄Th which by definition is close to p̂Th.

In Lemma B.4, we show that with probability Ω(1/S)− 7Sρ,

(p̃− p̄)Th ≥ 0.188

√√√√∑
i<S

γic2i
m
−O(

DSω log(n/ρ)

n
).

Note that m = n+ωS
κ and so n

κ < m < 25n
24κ since n > 12ωS2. Then we have that

(p̃− p̄)Th ≥ 0.184

√
κ
∑
i

γic2i
n
−O(

DSω log(n/ρ)

n
).

We can also calculate

|(p̄− p̂)Th| = |
S∑
i=1

hi(
np̂i + ω

n+ ωS
− np̂i

n
)| = |

∑
i

hi(
ω(1− Sp̂i)
n+ ωS

)| ≤ ωDS

n+ ωS
≤ ωDS

n
.

Finally, from Lemma C.3 bounding the deviation of empirical estimates, we have that with probability
1− ρ,

|(p̂− p)Th| ≤ 2

√√√√log(n/ρ)
∑
i<S

γic2i
n

+ 2D
log(n/ρ)

n
.

Hence putting everything together we have that with probability Ω(1/S)− 8Sρ,

(p̃− p)Th = (p̃− p̄)Th+ (p̄− p̂)Th+ (p̂− p)Th
≥ (p̃− p̄)Th− |(p̄− p̂)Th| − |(p̂− p)Th|

≥ 0.184

√
κ
∑
i

γic2i
n
− 2

√√√√log(n/ρ)
∑
i<S

γic2i
n
−O(

DSω log(n/ρ)

n
)

≥ −O(
DS log2(n/ρ)

n
)

where the last inequality follows with ω = 720 log(n/ρ) and κ = 120 log(n/ρ).

Lemma B.4. Assume that h ∈ [0, D]S , and ω ≥ 613 log(2/ρ), n > 12ωS2, κ = ω
6 , and an ordering

of i such that p̄1 ≤ · · · ≤ p̄S . Then, with probability Ω(1/S)− 7Sρ,

(p̃− p̄)Th ≥ 0.188

√∑
i

γic2i
m
−O(

DSω log(n/ρ)

n
).

Proof. The proof is obtained by a modification to the proof of Proposition A.1, which proves a
similar bound but in terms of γ̄i’s and c̄i’s.

In the proof of that proposition, we obtain (refer to Equation (13)), with probability 1−Sρ (assuming
mp̄i ≥ 6),

(p̃− p̄)Th ≥
∑
i

(ỹi − ȳi)(hi − H̄i+1)(p̄i + · · ·+ p̄S)− 2DS log(2/ρ)

m

≥
∑
i

(ỹi − ȳi)(hi − H̄i+1)(p̄i + · · ·+ p̄S)−O(
DSω log(n/ρ)

n
)
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where ỹi := p̃i
p̃i+···+p̃S , ȳi := p̄i

p̄i+···+p̄S , H̃i+1 = 1∑S
j=i+1 p̃j

∑S
j=i+1 hj p̃j , H̄i+1 =

1∑S
j=i+1 p̄j

∑S
j=i+1 hj p̄j . Now, breaking up the term in the summation and using Lemma B.7 to

bound |Hi+1 − H̄i+1|(p̄i + · · · + p̄S) (since we have by assumption that ω ≥ 613 log(2/ρ) and
n > 12ωS2) and Lemma E.4 and Corollary E.7 to bound |ỹi − ȳi|, we get that for every i, with
probability 1− 4Sρ,

(p̃− p̄)Th−
∑
i

(ỹi − ȳi)(hi −Hi+1)(p̄i + · · ·+ p̄S) +O(
DSω log(n/ρ)

m
)

≥
∑
i

(ỹi − ȳi)(H̄i+1 −Hi+1)(p̄i + · · ·+ p̄S)

≥ −
∑
i

√
2 log(2/ρ)

m(p̄i + · · ·+ p̄S)

(
3D

√
log(n/ρ)

(p̄i + · · ·+ p̄S)

n
+ 4

(ωS + log(n/ρ))D

n

)

(∗) ≥ −
6DS

√
log(2/ρ) log(n/ρ)√

mn
−

4(ωS + log(n/ρ))D
√

2 log(2/ρ)

n
√
m

∑
i

1√
(p̄i + · · ·+ p̄S)

.

Recall that m = n+ωS
κ , so that for n > Sω, n ≥ mκ

2 = mω
12 ≥ m log(2/ρ), and the first term of (∗)

is at least:

−
6DS

√
log(2/ρ) log(n/ρ)√
m2 log(2/ρ)

= −
6DS

√
log(n/ρ)

m
= −O(

DSω log(n/ρ)

n
).

Then using Lemma B.5 and m = (n+ Sω)/κ > 6n/ω > 72S2, the second term in (∗) is at least:

−
8S(ωS + log(n/ρ))D

√
2 log(2/ρ)

n
√

72S2
= −O(

DSω log(n/ρ)

n
).

Then, applying Lemma A.4 (given mp̄i ≥ 6) for zi = (hi −Hi+1)(p̄i + · · · + p̄S), i = 1, . . . , S,
with probability Ω(1/S), ∑

i

(ỹi − ȳi)zi ≥
1

4

√∑
i

σ̄2
i z

2
i .

We substitute this in the above, with the observation∑
i

z2
i σ̄

2
i =

∑
i

(hi −Hi+1)2(p̄i + · · ·+ p̄S)2σ̄2
i =

∑
i

c2i p̄i(p̄i + . . . , p̄S)

m(p̄i + . . .+ p̄S) + 1
≥
∑
i

6

7

γ̄ic
2
i

m
.

So far we have that with probability Ω(1/S)− 4Sρ,

(p̃− p̄)Th ≥
√

6

4
√

7

√∑
i

γ̄ic2i
m
−O(

DSω log(n/ρ)

n
). (14)

Finally, we use Lemma B.6 with k = 14 (this requires ω ≥ 613 log(2/ρ)) to lower bound γ̄i by
1

1.51γi −O(ωSn ) to get with probability Ω(1/S)− 7Sρ,

(p̃− p̄)Th ≥ 0.188

√∑
i

γic2i
m
−O(

DSω log(n/ρ)

n
).

Lemma B.5. Let x ∈ Rn such that 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 and
∑
i xi = 1. Then

n∑
i=1

1√
xi + · · ·xn

≤ 2n.
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Proof. Define f(y) := 1√
xy+···+xn

for all y = 1, · · · , n. We prove that x∗ := ( 1
n ,

1
n , · · · ,

1
n )

achieves the maximum value. Consider any solution x′. Assume there exists some index pair i, j
with i < j and some ε > 0 such that x′i 6= x′j and increasing x′i by ε and decreasing x′j by ε preserves
the ordering of the indices. This strictly increases the objective, because f(k) strictly increases for
all i < k ≤ j and remains unchanged otherwise, and hence x′ is not an optimal solution. The only
case where no such index pair (i, j) exists is when every xi is equal- this is precisely the solution x∗.
Since

∑
i f(i) is a continuous functions over a compact set, it has a maximum, which therefore must

be attained at x∗.

This means
n∑
i=1

1√
xi + · · ·xn

≤
n∑
i=1

1√
x∗i + · · ·+ x∗n

=

n∑
i=1

√
n

i
≤
√
n

∫ n

i=0

1√
i
di = 2n.

Lemma B.6. Let A = 3 log( 2
ρ ) and ω ≥ 25

24k
2A. Also let n > 12ωS2. Then for any group G of

indices, with probability 1− ρ,

(1− 1

k
)
∑
i∈G

p̄i −
2ωS

n
≤
∑
i∈G

pi ≤ (1 +
1

k
)
∑
i∈G

p̄i +
2ωS

n
.

If in the definition of γ̄i, we use an ordering of i such that p̄S ≥ 1
S (e.g., if max p̄i is the last in the

ordering), then for all i, with probability 1− 3ρ,

γi ≤
(1 + 1

k )2

1− 1
k −

1
6

γ̄i +
2(1 + 1

k + 1
6 )

1− 1
k −

1
6

ωS

n
.

Proof. By multiplicative Chernoff-Hoeffding bounds (Fact 4), with probability 1− ρ,

|
∑
i

pi −
∑
i

p̂i| ≤
√
A
∑
i p̂i
n

+
A

n

where A = 3 log( 2
ρ ) so that using |

∑
i p̄i −

∑
i p̂i| ≤

ωS
n ,

|
∑
i

pi −
∑
i

p̄i| ≤
√∑

i p̄iA

n
+

√
AωS

n
+
A

n
+
ωS

n
≤
√∑

i p̄iA

n
+

2ωS

n
.

Now, for n > 12ωS2, np̄i = nnp̂i+ωn+ωS ≥
nω

n+ωS ≥
24ω
25 ≥ k

2A.

|
∑
i

pi −
∑
i

p̄i| ≤
∑
i

p̄i

√
A

n
∑
i p̄i

+
2ωS

n
≤
∑
i

p̄i

√
A

k2A
+

2ωS

n
≤ 1

k

∑
i

p̄i +
2ωS

n

so that ∑
i

pi ≤ (1 +
1

k
)
∑
i

p̄i +
2ωS

n
,
∑
i

pi ≥ (1− 1

k
)
∑
i

p̄i −
2ωS

n
.

For the second statement of the lemma, using what we just proved, we have that with probability
1− 3ρ,

γi =
pi(pi+1 + · · ·+ pS)

pi + · · ·+ pS
≤

(1 + 1
k )2p̄i(p̄i+1 + · · ·+ p̄S) +

2(1+ 1
k )ωS(p̄i+···+p̄S)

n + 4ω2S2

n2

(1− 1
k )(p̄i + · · ·+ p̄S)− 2ωS

n

.

Now, if indices i are ordered such that p̄S ≥ 1
S , then p̄i + · · ·+ p̄S ≥ 1

S for all i. Also, if n > 12ωS2,
we have the following bound on the denominator in above: (1 − 1

k )(p̄i + · · · + p̄S) − 2ωS
n ≥

(1− 1
k −

1
6 )(p̄i + · · ·+ p̄S), so that from above

γi ≤
(1 + 1

k )2

1− 1
k −

1
6

γ̄i +
2(1 + 1

k + 1
6 )

1− 1
k −

1
6

ωS

n
.
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Lemma B.7. For any fixed h ∈ RS , and i, let Ĥi = 1∑S
j=i p̂j

∑S
j=i hj p̂j , Hi = 1∑S

j=i pj

∑S
j=i hjpj ,

H̄i = 1∑S
j=i p̄j

∑S
j=i hj p̄j . Then if n ≥ 96, with probability 1− ρ,

|(H̄i −Hi)(p̄i + . . .+ p̄S)| ≤ 2D

√
log(n/ρ)

(pi + · · ·+ pS)

n
+ 3

(ωS + log(n/ρ))D

n
.

Moreover, if we also assume that ω ≥ 30 log(2/ρ) and n > 12ωS2, then with probability 1− 2ρ,

|(H̄i −Hi)(p̄i + . . .+ p̄S)| ≤ 3D

√
log(n/ρ)

(p̄i + · · ·+ p̄S)

n
+ 4

(ωS + log(n/ρ))D

n
.

Proof. For every t, k ≥ i, define

Zt,k =

(
hk1(st = k)− hk

pk
pi + · · ·+ pS

· 1(st ∈ {i, . . . , S})
)
1(st−1 = s, at−1 = a),

Zt =
∑
k≥i

Zt,k.

Then,∑τ
t=1 Zt
n

=
∑
k≥i

hkp̂k −
∑
k≥i

hk
pk

pi + · · ·+ pS
· (p̂i + . . .+ p̂S) = (Ĥi −Hi)(p̂i + . . .+ p̂S)

where we used Fact 1 for the last equality. Now, E[Zt|st−1, at−1] =
∑
k≥iE[Zt,k|st−1, at−1] = 0.

Also, we observe that for any t, Zt,k and Zt,j for any k 6= j are negatively correlated given the
current state and action:

E[Zt,kZt,j |st−1, at−1] = hkhjE[1(st = k)1(st = j)− 1(st = j)
pk

pi + · · ·+ pS
· 1(st ∈ {i, . . . , S})

−1(st = k)
pj

pi + · · ·+ pS
· 1(st ∈ {i, . . . , S})

+
pjpk

(pi + · · ·+ pS)2
· 1(st ∈ {i, . . . , S})]

= hkhjE[− 2pjpk
pi + · · ·+ pS

+
pkpj

(pi + · · ·+ pS)2
· 1(st ∈ {i, . . . , S})]

= hkhjE[− pjpi
pi + · · ·+ pS

]

≤ 0.

And,

E[

τ∑
t=1

Z2
t,k|st−1 = s, at−1 = a] = h2

k

t∑
τ=1

1(st−1 = s, at−1 = a)

(
pk −

p2
k

(pi + · · ·+ pS)2
(pi + · · ·+ pS)

)

= h2
k

τ∑
t=1

1(st−1 = s, at−1 = a)
pk(
∑
j≥i,j 6=k pj)

pi + · · ·+ pS

= nh2
k

pk(
∑
j≥i,j 6=k pj)

pi + · · ·+ pS

≤ nD2pk.

Therefore,
τ∑
t=1

E[Z2
t |st−1, at−1] ≤

τ∑
t=1

∑
k≥i

E[Z2
t,k|st−1, at−1] ≤ nD2(pi + · · ·+ pS).

Then, applying Bernstein’s inequality (refer to Corollary E.1) to bound |
∑τ
t=1 Zt|, we get the

following bound on 1
n

∑τ
t=1 Zt = (Ĥi −Hi)(p̂i + . . .+ p̂S) with probability 1− ρ:

|(Ĥi −Hi)(p̂i + . . .+ p̂S)| = | 1
n

τ∑
t=1

Zt| ≤ 2D

√
log(n/ρ)

(pi + · · ·+ pS)

n
+ 3D

log(n/ρ)

n
.
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Also,

|Ĥi − H̄i| = |
∑
k

p̂k
p̂i + · · ·+ p̂S

hk −
p̄k

p̄i + · · ·+ p̄S
hk| ≤

ωSD

n(p̂i + · · ·+ p̂S)
,

Combining,

|(H̄i −Hi)(p̂i + . . .+ p̂S)| ≤ 2D

√
log(n/ρ)

(pi + · · ·+ pS)

n
+ 3D

log(n/ρ)

n
+
ωSD

n
.

Replacing p̂i by p̄i,

|(H̄i −Hi)(p̄i + . . .+ p̄S)| ≤ 2D

√
log(n/ρ)

(pi + · · ·+ pS)

n
+ 3

(ωS + log(n/ρ))D

n

with probability 1− ρ.

Now, if we also have that ω ≥ 30 log(2/ρ) and n > 12ωS2, using lemma B.6 with k = 3 to replace
pi by p̄i, with probability 1− 2ρ,

|(H̄i −Hi)(p̄i + . . .+ p̄S)| ≤ 3D

√
log(n/ρ)

(p̄i + · · ·+ p̄S)

n
+ 4

(ωS + log(n/ρ))D

n
.

C Deviation bounds

Lemma 4.4. (Deviation bound) With probability 1− ρ, for all epochs k, sample j, all s, a

max
h∈[0,2D]S

(Qj,ks,a − Ps,a)Th ≤


O

(
D

√
log(SAT/ρ)

Nτk
s,a

+D
S log(SAT/ρ)

Nτk
s,a

)
, Nτk

s,a > η

O

(
D

√
S log(SAT/ρ)

Nτk
s,a

+D
S log(S)

Nτk
s,a

)
, Nτk

s,a ≤ η

Proof. For n > η, express the above as

max
h∈[0,2D]S

(Qj,ks,a − Ps,a)Th ≤ max
h∈[0,2D]S

(Qj,ks,a − P̄s,a)Th+ (P̄s,a − P̂s,a)Th+ (P̂s,a − Ps,a)Th

where P̄s,a =
M
τk
s,a(i)

M
τk
s,a

=
N
τk
s,a(i)+ω

N
τk
s,a+ωS

is the mean of Dirichlet(Mτk
s,a) distribution used to sample Qj,k,

and P̂s,a =
N
τk
s,a(i)

N
τk
s,a

. Now,

max
h∈[0,2D]S

(P̄s,a − P̂s,a)Th ≤ 2ωSD

Nτk
s,a

.

And, to bound the first and the last terms in above, we use Lemma C.1 and Lemma C.2 with union
bound for all S,A, ψ, k, to get the lemma statement for n > η.

For n < η, we use Lemma C.4 with a union bound for S,A, ψ, k, we get the lemma statement.

C.1 Dirichlet concentration

A similar result as the lemma below for concentration of Dirichlet random vectors was proven in
Osband and Van Roy [2016]. We include (an expanded version of) the proof for completeness.

Lemma C.1 (Osband and Van Roy [2016]). Let p̃ ∼ Dirichlet(mp̄). Let

Z := max
v∈[0,D]S

(p̃− p̄)T v.

Then, Z ≤ D
√

2 log(2/ρ)
m , with probability 1− ρ.
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Proof. Define disjoint events Ev, v ∈ [0, D]S in the sample space of Z as

Ev = {Z : Z = max
w∈[0,D]S

(p̃− p̄)Tw = (p̃− p̄)T v}.

Let f(v) be the probability of event Ev . (Here, ties are broken in arbitrary but fixed manner to assign
each Z to one of the Ev so that Ev are disjoint and f(v) integrate to 1).

Now, define a random variable Y distributed as follows: Y = Yv − E[Yv] with probability f(v),
where Yvs are Beta variables distributed as Yv ∼ Beta(m 1

D p̄
T v,m(1− 1

D p̄
T v)). We show that Y

is stochastically optimistic compared to Z.

We couple Y and Z as follows: when Z ∈ Ev, which is with probability f(v), we set Y is Yv. By
definition, under this event, Z = (p̃ − p̄)T v. By Dirichlet-Beta optimism (Lemma E.5), for any
v, DYv is stochastically optimistic compared to p̃T v. Now, since they have the same mean, from
equivalence condition for stochastic optimism (Condition 3 in Lemma 3 of Osband et al. [2014])

E[DYv − p̃T v|p̃T v] = 0

for all values of v, p̃T v. Since we coupled Y and Z so that Y is Yv − E[Yv] when Z ∈ Ev, we can
derive that for any v, and z ∈ Ev,

E[DY − Z|Z = z : z ∈ Ev] = E[DYv −DE[Yv]− Z |Z = z : z ∈ Ev]
= E[DYv −DE[Yv]− (p̃− p̄)T v | (p̃− p̄)T v]

= E[DYv − p̃T v | p̃T v] = 0.

This is true for all z, since every z ∈ Ev for some v, thus proving

DY �so Z.
LetX be distributed as Gaussian with mean 0 and variance 1

m . By Gaussian-Beta stochastic optimism
X �so Yv − E[Yv], which implies for any convex increasing u(·),

E[u(Y )] =

∫
v

E[u(Yv − E[Yv])f(v) ≤
∫
v

E[u(X)]f(v) = E[u(X)]

so that X �so Y , and

X �so Y �so
1

D
Z.

Therefore, we can use Corollary E.7 to bound Z by D
√

2 log(2/ρ)
m with probability 1− ρ.

C.2 Concentration of average of independent multinoulli trials

Below we study concentration properties of vector p̂ defined as the average of n independent
multinoulli trials with parameter p ∈ ∆S , i.e., p̂ =

∑n
j=1 xj , where xjs are iid random vectors, with

xij = 1 with probability pi.
Lemma C.2. Let p̂ be the average of n independent multinoulli trials with parameter p. Let

Z := max
v∈[0,D]S

(p̂− p)T v.

Then, Z ≤ D
√

2 log(1/ρ)
n , with probability 1− ρ.

Proof. Define disjoint events Ev, v ∈ [0, D]S in the sample space of Z as

Ev = {Z : Z = max
w∈[0,D]S

(p̂− p)Tw = (p̂− p)T v}.

Let f(v) be the probability of event Ev . (Here, ties are broken in arbitrary but fixed manner to assign
each Z to one of the Ev so that Ev are disjoint and f(v) integrate to 1).

Now, define a random variable Y distributed as follows: Y = Yv − E[Yv] with probability f(v),
where Yvs are independent Binomial variables distributed as Yv ∼ 1

nBinomial(n,
1
Dp

T v). We show
that Y is stochastically optimistic compared to Z.
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We couple Y and Z as follows: when Z ∈ Ev, which is with probability f(v), we set Y is Yv. By
definition, under this event, Z = (p̂− p)T v. By Multinomial-Binomial optimism (Lemma E.8 and
Corollary E.9), for any v, DYv is stochastically optimistic compared to p̂T v. Now, since they have
the same mean, from equivalence condition for stochastic optimism (Condition 3 in Lemma 3 of
Osband et al. [2014])

E[DYv − p̂T v|p̂T v] = 0

for all values of v, p̃T v. Since we coupled Y and Z so that Y is Yv − E[Yv] when Z ∈ Ev, we can
derive that for any v, and z ∈ Ev,

E[DY − Z|Z = z : z ∈ Ev] = E[DYv −DE[Yv]− Z |Z = z : z ∈ Ev]
= E[DYv −DE[Yv]− (p̂− p)T v | (p̂− p)T v]

= E[DYv − p̂T v | p̂T v] = 0.

This is true for all z, since every z ∈ Ev for some v, thus proving

DY �so Z.
Next, we bound Z using the stochastic optimism. First, let us express the distribution of Y in a more
convenient way. Let µv = 1

Dp
T v, µ =

∫
v
f(v)µv . Define

X =

n∑
j=1

Xj

where Xjs are iid random variables, distributed as follows: Xj takes value 1− µv with probability
f(v)µv and −µv w.p. f(v)(1 − µv), for v ∈ [0, D]d. Therefore, E[Xj ] =

∫
v
(1 − µv)f(v)µv −

µvf(v)(1− µv) = 0, and Xj ∈ [−1, 1]. We show that X and Y have the same distribution.

Since each Yv is Binomial(n, µv), we can write it as Yv =
∑n
j=1 Y

j
v where Y jv are independent

Bernoulli(µv) random variables. Define a random variable ṽ which is v with probability f(v). Then,
since Y is Yv − µv w.p. f(v),

Y ∼
∫
v

(Yv−µv)1(ṽ = v) =
1

n

∑
j

∫
v

(1−µv)1(ṽ = v, Y jv = 1)−µv1(ṽ = v, Y jv = 0) ∼ 1

n

∑
j

Xj .

Therefore,

X ∼ Y �so
1

D
Z

where X = 1
n

∑n
j=1X

j , is the sum of n mean 0, bounded [−1, 1], iid random variables. By
Hoeffding’s lemma, for any s ∈ R

E[esX
j

] ≤ e s
2

2 , so that, E[esnX ] ≤ ens
2

2 .

Using stochastic optimism E[u(Z/d)] ≤ E[u(Y )] = E[u(X)] for all convex increasing u(·), there-
fore for s > 0,

P (n
Z

D
> nt) ≤ E[esn

Z
D ]

esnt
≤ E[esnX ]

esnt
≤ ens

2

2 −snt.

Choosing s = t =
√

2 log(1/ρ)
n ,

P (
Z

D
>

√
log(1/ρ)

n
) ≤ e

−t2
2 < ρ.

Lemma C.3. Let p̂ ∈ ∆S be the average n independent multinoulli trials with parameter p ∈ ∆S .
Then, for any fixed h ∈ [0, D]S and n ≥ 96, with probability 1− ρ,

|(p̂− p)Th| ≤ 2

√√√√log(n/ρ)
∑
i<S

γic2i
n

+ 3D
log(2/ρ)

n
,

where γi = pi(pi+1+···+pS)
(pi+···+pS) , ci = hi −Hi+1, Hi+1 = 1∑S

j=i+1 pj

∑S
j=i+1 hjpj .
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Proof. For every t, i, define

Zt,i =

(
ci1(st = i)− ci

pi
pi + · · ·+ pS

· 1(st ∈ {i, . . . , S})
)
1(st−1 = s, at−1 = a),

Zt =
∑
i

Zt,i.

Then,∑τ
t=1 Zt
n

=
∑
i

cip̂i−
∑
i

cipi
pi + · · ·+ pS

·(p̂i+. . .+p̂S) =

S−1∑
i=1

(ŷi−yi)(p̂i+. . .+p̂S)ci = (p̂−p)Th

where we used Fact 1 for the last equality. Now, E[Zt|st−1, at−1] =
∑
iE[Zt,i|st−1, at−1] = 0.

Also, we observe that for any t, Zt,i and Zt,j for any i 6= j are independent given the current state
and action: (assume j > i w.l.o.g.)

E[Zt,iZt,j |st−1, at−1] = cicjE[1(st = i)1(st = j)− 1(st = j)
pi

pi + · · ·+ pS
· 1(st ∈ {i, . . . , S})

−1(st = i)
pj

pj + · · ·+ pS
· 1(st ∈ {j, . . . , S})

+
pjpi

(pj + · · ·+ pS)(pi + · · ·+ pS)
· 1(st ∈ {j, . . . , S})]

= cicjE[−1(st = j)
pi

pi + · · ·+ pS

+
pjpi

(pj + · · ·+ pS)(pi + · · ·+ pS)
· 1(st ∈ {j, . . . , S})]

= cicjE[− pjpi
pi + · · ·+ pS

+
pjpi

(pi + · · ·+ pS)
]

= 0.

Therefore,
τ∑
t=1

E[Z2
t |st−1, at−1] =

τ∑
t=1

∑
i

c2iE[Z2
t,i|st−1, at−1] =

∑
i

c2inγi,

where the last equality is obtained using the following derivation:

E[

τ∑
t=1

Z2
t,i|st−1 = s, at−1 = a] =

τ∑
t=1

1(st−1 = s, at−1 = a)

(
pi −

p2
i

(pi + · · ·+ pS)2
(pi + · · ·+ pS)

)

=

τ∑
t=1

1(st−1 = s, at−1 = a)
pi(pi+1 + · · ·+ pS)

pi + · · ·+ pS

= n
pi(pi+1 + · · ·+ pS)

pi + · · ·+ pS
= nγi.

Then, applying Bernstein’s inequality (refer to Corollary E.1) to bound |
∑τ
t=1 Zt|, we get the desired

bound on (p− p̂)Th = 1
n

∑τ
t=1 Zt.

C.3 Concentration of simple optimistic samples

Lemma C.4. Let p̃ = p− + (1 −
∑S
i=1 p

−
i )z where z be a random vector picked uniformly at

random from {11, . . . ,1S}, and p− = p̂−∆, ∆i = min

{√
3p̂i log(4S)

n + 3 log(4S)
n , p̂i

}
, then with

probability at least 1− ρ, for any D, we have

max
h∈[0,D]S

(p̃Th− pTh) ≤ O(D

√
S log(nS/ρ)

n
+
DS log(2S)

n
).
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Proof. By definition of p̃ and using Lemma C.2, with probability 1− ρ,

max
h∈[0,D]S

(p̃Th− pTh) ≤ (p̂Th− pTh) +D
∑
i

√
3p̂i log(4S)

n
+
∑
i

3D log(4S)

n

≤ 2D

√
2 log(1/ρ)

n
+D

√
S

3 log(4S)

n
+
DS log(4S)

n

= O(D

√
S log(4S/ρ)

n
+
DS log(4S)

n
).

D Diameter of the extended MDP M̃k

Lemma 4.1. Assume T ≥ CDA log2(T/ρ) for a large enough constant C. Then, with probability
1− ρ, for every epoch k, the diameter of MDP M̃k is bounded by 2D.

Proof. Using Lemma D.2, along with Lemma D.1 for h = Es, we obtain that the diameter of M̃k

is bounded by D/(1 − δ) for δ = O(D
√

log(1/ρ)
η + D log(T/ρ)

η )), where η =
√

TS
A . Therefore, if

T ≥ CDA log2(T/ρ), then η ≥ CDS log(T/ρ) ≥ CD2 log(1/ρ), making δ ≤ 1/2 for some large
enough constant C.

Lemma D.1. For every k, and any fixed h ∈ [0, D]S , with probability 1− ρ, there exists a sample
vector Qj,ks,a such that

Qj,ks,a · h ≤ Ps,a · h+O(D

√
log(1/ρ)

η
+DS

log(T/ρ)

η
)).

Proof. First consider s, a with Nτk
s,a ≥ η. For such s, a posterior sampling is used, and by Lemmas

C.1 and C.2,

Qj,ks,a · h ≤ Ps,a · h+O(D

√
log(1/ρ)

Nτk
s,a

+D
ωS

Nτk
s,a

) ≤ Ps,a · h+O(D

√
log(1/ρ)

η
+DS

log(T/ρ)

η
).

For s, a with Nτk
s,a ≤ η, we use a simple optimistic sampling. In Lemma B.2, we prove that under

such sampling Qj,ks,a · h ≤ Ps,a · h with probability 1/2S for every sample j. Then, since the number
of samples is Θ(S log(1/ρ)), we get that it holds for some j with probability 1− ρ.

Lemma D.2. Let Es ∈ RS+ be the vector of the minimum expected times to reach s from s′ ∈ S in
true MDPM, i.e., Ess′ = minπ T

π
s′→s. Note that Ess = 0. For any episode k, if for every s, a there

exists some j such that
Qj,ks,a · Es ≤ Ps,a · Es + δ, (15)

for some δ ∈ [0, 1), then the diameter of extended MDP M̃k is at most D
1−δ , where D is the diameter

of MDPM.

Proof. Fix a k. For brevity, we omit the superscript k in below.

Fix any two states s1 6= s2. We prove the lemma statement by constructing a policy π̃ for M̃ such
that the expected time to reach s2 from s1 is at most D

1−δ . Let π be the policy for MDPM for which
the expected time to reach s2 from s1 is at most D (sinceM has diameter D, such a policy exists).
Let E be the |S| − 1 dimensional vector of expected times to reach s2 from every state, except s2

itself, using π (E is the sub-vector formed by removing sth2 coordinate of vector Es2 where Es was
defined in the lemma statement. Note that Es2s2 = 0). By first step analysis, E is a solution of:

E = 1 + P †πE,
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where P †π is defined as the (S − 1)× (S − 1) transition matrix for policy π, with the (s, s′)th entry
being the transition probability Ps,π(s)(s

′) for all s, s′ 6= s2. Also, by choice of π, E satisfies

Es1 ≤ D.

Now, we define π̃ using π as follows: For any state s 6= s2, let a = π(s) and jth sample satisfies the
property (15) for s, a, Es2 , then we define π̃(s) := aj . Let Qπ̃ be the transition matrix (dimension
S × S) for this policy.

Qπ̃ defines a Markov chain. Next, we modify this Markov chain to construct an absorbing Markov
chain with a single absorbing state s2. Let Q†π̃ be the submatrix (S − 1)× (S − 1) submatrix of Qπ̃
obtained by removing the row and column corresponding to the state s2. Then Q′ is defined as (an
appropriate reordering of) the following matrix:

Q′π̃ =

[
Q†π̃ q
0 1

]
where q is an (S − 1)-length vector such that the rows of Q′π̃ sum to 1. Since the probabilities in Qπ̃
were drawn from Dirichlet distribution, they are all strictly greater than 0 and less than 1. Therefore
each row-sum of Q†π̃ is strictly less than 1, so that the vector q has no zero entries and the Markov
chain is indeed an absorbing chain with single absorbing state s2. Then we notice that (I −Q†π̃)−1 is
precisely the fundamental matrix of this absorbing Markov chain and hence exists and is non-negative
(see Grinstead and Snell [2012], Theorem 11.4). Let Ẽ be defined as the S − 1 dimensional vector of
expected time to reach s2 from s′ 6= s2 in MDP M̃k using π̃. Then, it is same as the expected time
to reach the absorbing state s2 from s′ 6= s2 in the Markov chain Q′π̃ , given by

Ẽ = (I − Q̄†π̃)−11.

Then using (15) (since Es2s2 = 0, the inequality holds for P †, Q†),

E = 1 + P †πE ≥ 1 +Q†π̃E − δ1 ⇒ (I −Q†π̃)E ≥ (1− δ)1. (16)

Multiplying the non-negative matrix (I −Q†π̃)−1 on both sides of this inequality, it follows that

E ≥ (1− δ)(I −Q†π̃)−11 = (1− δ)Ẽ

so that Ẽs1 ≤ 1
(1−δ)Es1 ≤

D
1−δ , proving that the expected time to reach s2 from s1 using policy π̃ in

MDP M̃k is at most D
1−δ .

E Useful deviation inequalities

Fact 3 (Bernstein’s Inequality, from Seldin et al. [2012] Lem 11/Cor 12). Let Z1, Z2, ..., Zn be a
bounded martingale difference sequence so that |Zi| ≤ K and E[Zi|Fi−1] = 0. Define Mn =∑n
i=1 Zi and Vn =

∑n
i=1 E[(Zi)

2|Fi−1]. For any c > 1 and δ ∈ (0, 1), with probability greater
than 1− δ, if √

ln 2ν
δ

(e− 2)Vn
≤ 1

K

then

|Mn| ≤ (1 + c)

√
(e− 2)Vn ln

2ν

δ
,

otherwise,

|Mn| ≤ 2K ln
2ν

δ
,

where

ν = d
ln (
√

(e−2)n

ln 2
δ

)

ln c
e+ 1.
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Corollary E.1 (to Bernstein’s Inequality above). Let Zi for i = 1, · · · , n, Mn, and Vn as above. For
n ≥ 96 and δ ∈ (0, 1), with probability greater than 1− δ,

|Mn| ≤ 2

√
Vn ln

n

δ
+ 3K ln

n

δ
.

Proof. Applying Bernstein’s Inequality above with c = 1 + 4
n , with probability greater than 1− δ,

|Mn| ≤ (1 + c)

√
(e− 2)Vn ln

2ν

δ
+ 2K ln

2ν

δ

≤ (1 + c)

√
(e− 2)Vn ln

n
4
3

δ
+ 2K ln

n
4
3

δ

≤ (1 + c)

√
(e− 2)

4

3
Vn ln

n

δ
+ 3K ln

n

δ

≤ 2

√
Vn ln

n

δ
+ 3K ln

n

δ

where

ν = d
ln (
√

(e−2)n

ln 2
δ

)

ln c
e+ 1 = dn

2
ln (

√
(e− 2)n

ln 2
δ

)e+ 1 ≤ n

2
ln (

√
(e− 2)n

ln 2
) + 2 ≤ 1

2
n

4
3 .

Fact 4 (Multiplicative Chernoff Bound, Kleinberg et al. [2008] Lemma 4.9). Consider n i.i.d. random
variables X1, · · · , Xn on [0, 1]. Let µ be their mean and let X be their average. Then for any α > 0
the following holds:

P (|X − µ| < r(α,X) < 3r(α, µ)) > 1− eΩ(α),

where r(α, x) =
√

αx
n + α

n .

More explicitly, we have that with probability 1− ρ,

|X − µ| <
√

3 log(2/ρ)X

n
+

3 log(2/ρ)

n
.

Fact 5 (Cantelli’s Inequality). Let X be a real-valued random variable with expectation µ and
variance σ2. Then P (X − µ ≥ λ) ≤ σ2

σ2+λ2 for λ > 0 and P (X − µ ≥ λ) ≥ 1− σ2

σ2+λ2 for λ < 0.

Fact 6 (Berry-Esseen Theorem). Let X1, X2, ..., Xn be independent random variables with E[Xi] =
0, E[X2

i ] = σ2
i > 0, and E[|Xi|3] = ρi <∞. Let

Sn =
X1 +X2 + ...+Xn√

σ2
1 + ...+ σ2

n

and denote Fn the cumulative distribution function of Sn and Φ the cumulative distribution function
of the standard normal distribution. Then for all n, there exists an absolute constant C1 such that

supx∈R|Fn(x)− Φ(x)| ≤ C1ψ1

where ψ1 = (
n∑
i=1

σ2
i )−1/2 max1≤i≤n

ρi
σ2
i

. The best upper bound on C1 known is C1 ≤ 0.56 (see

Shevtsova [2010]).
Fact 7 (Abramowitz and Stegun [1964] 26.5.21). Consider the regularized incomplete Beta function
Iz(a, b) (cdf) for the Beta random variable with parameters (a, b). For any z such that (a + b −
1)(1− z) ≥ 0.8, Iz(a, b) = Φ(y) + ε, with |ε| < 0.005 if a+ b > 6. Here Φ is the standard normal
CDF with

y =
3[w1(1− 1

9b )− w2(1− 1
9a )]

[
w2

1

b +
w2

2

a ]1/2
,

where w1 = (bz)1/3 and w2 = [a(1− z)]1/3.
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The following lemma uses the above fact to lower bound the probability of a Beta random variable to
exceed its mean by a quantity close to its standard deviation.

Lemma E.2 (Anti-concentration for Beta Random Variables). Let Fa,b denote the cdf of a Beta

random variable with parameter (a, b), with a ≥ 6, b ≥ 6. Let z = a
a+b +C

√
ab

(a+b)2(a+b+1) + C
a+b ,

with C ≤ 0.5. Then,
1− F(a,b)(z) ≥ 1− Φ(1)− 0.005 ≥ 0.15.

Proof. Let x = C
√

ab
(a+b+1) + C. Then, z = a+x

a+b ,w1 = (b(a + x)/(a + b))1/3 and w2 =

[a(b− x)/(a+ b))]1/3. Also, z ≤ 2C
√

ab
a+b . Also, (a+ b− 1)(1− z) ≥ (a+ b− 1)(1− a

a+b −

C
√

ab
(a+b)2(a+b+1) −

C
a+b ) = (a+ b− 1)( b

a+b −
C
a+b

√
ab

a+b+1 −
C
a+b ) ≥

a+b−1
a+b (b−C

√
ab

a+b+1 −
C
a+b ) ≥

11
12 (b−C

√
b− C

12 ) ≥ 0.8. Hence we can apply Fact 7 relating Beta with Normal. We bound
the numerator and denominator in the expression of y, to show that the relation Iz(a, b) ≤ Φ(y) + ε
holds for some y ≤ 1.

numerator(y) = 3[w1(1− 1

9b
)− w2(1− 1

9a
)]

= 3(
ab

a+ b
)

1
3 [(1 +

x

a
)

1
3 (1− 1

9b
)− (1− x

b
)

1
3 (1− 1

9a
)]

≤ 3(
ab

a+ b
)

1
3 [(1 +

x

3a
)(1− 1

9b
)− (1− x

3b
− 2x2

9b2
)(1− 1

9a
)]

= 3(
ab

a+ b
)

1
3 [(
b− a
9ab

) + (
x(a+ b)

3ab
)− (

2x

27ab
)] + 3(

ab

a+ b
)

1
3 [

2x2

9b2
(1− 1

9a
)]

≤ 3(
ab

a+ b
)

1
3 [(
b− a
9ab

) + (
x(a+ b)

3ab
)] + 3(

ab

a+ b
)

1
3 [

2x2

9b2
(1− 1

9a
)]

= (
ab

a+ b
)

1
3 (
a+ b

ab
)[(

b− a
3(a+ b)

) + x+
2x2

3b2
(1− 1

9a
)]

≤ (
ab

a+ b
)

1
3 (
a+ b

ab
)[(

b− a
3(a+ b)

) +
2x2

3b2
(1− 1

9a
) + C + C(

ab

a+ b
)

1
2 ]

≤ (
b− a

3
√
ab(a+ b)

+
4C2
√
ab

b2
√
a+ b

+
C
√
a+ b√
ab

+ C)(
ab

a+ b
)

5
6 (
a+ b

ab
)

≤ (
1

3
√

6
+

1

6
√

6
+

1

2
√

3
+

1

2
)(

ab

a+ b
)

5
6 (
a+ b

ab
).

In above, we used that C ≤ 1
2 and a, b ≥ 6. Similarly,

denominator(y) = [
w2

1

b
+
w2

2

a
]1/2

= (
ab

a+ b
)[

(1 + x
a )

2
3

b
+

(1− x
b )

2
3

a
]
1
2

≥ (
ab

a+ b
)

1
3 [

(1 + 2x
3a −

x2

9a2 )

b
+

(1− 2x
3b )

a
− x2

9a2
]
1
2

= (
ab

a+ b
)

1
3 [
a(1 + 2x

3a −
x2

9a2 ) + b(1− 2x
3b −

x2

9b2 )

ab
]
1
2

= (
ab

a+ b
)

1
3 (
a+ b

ab
(1− x2

9ab
))

1
2

≥ (
ab

a+ b
)

1
3 (
a+ b

ab
(1− 4C2

9(a+ b)
))

1
2

≥ (
ab

a+ b
)

1
3 (
a+ b

ab
(
107

108
))

1
2 .
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Hence we have that y ≤
1

3
√

6
+ 1

6
√

6
+ 1

2
√

3
+ 1

2√
107
108

≤ 1, so that Iz(a, b) ≤ φ(1) + ε for ε ≤ 0.005. The

lemma statement follows by observing that 1 − F(a,b)(z) = 1 − Iz(a, b) ≥ 1 − φ(1) − ε ≥
1− 0.845− 0.005 ≥ 0.15.

Definition 5. For any X and Y real-valued random variables, X is stochastically optimistic for Y if
for any u : R→ R convex and increasing E[u(X)] ≥ E[u(Y )].
Lemma E.3 (Gaussian vs Dirichlet optimism, from Osband et al. [2014] Lemma 1). Let Y = PTV

for V ∈ [0, 1]S fixed and P ∼ Dirichlet(α) with α ∈ RS+ and
∑S
i=1 αi ≥ 2. Let X ∼ N(µ, σ2)

with µ =
∑S
i=1 αiVi∑S
i=1 αi

, σ2 = (
∑S
i=1 αi)

−1, then X is stochastically optimistic for Y .

Lemma E.4 (Gaussian vs Beta optimism, Osband et al. [2014] Lemma 6). Let Ỹ ∼ Beta(α, β)

for any α, β > 0 and X ∼ N( α
α+β ,

1
α+β ). Then X is stochastically optimistic for Ỹ whenever

α+ β ≥ 2.
Lemma E.5 (Dirichlet vs Beta optimism, Osband et al. [2014] Lemma 5). Let y = pT v for some
random variable p ∼ Dirichlet(α) and constants v ∈ Rd and α ∈ N d. Without loss of generality,
assume v1 ≤ v2 ≤ · · · ≤ vd. Let α̃ =

∑d
i=1 αi(vi−v1)/(vd−v1) and β̃ =

∑d
i=1 αi(vd−vi)/(vd−

v1). Then, there exists a random variable p̃ ∼ Beta(α̃, β̃) such that, for ỹ = p̃vd + (1 − p̃)v1,
E[ỹ|y] = E[y].
Lemma E.6. If E[X] = E[Y ] and X is stochastically optimistic for Y , then −X is stochastically
optimistic for −Y .

Proof. By Lemma 3.3 in Osband et al. [2014], X stochastically optimistic for Y is equivalent to
having X =D Y + A + W with A ≥ 0 and E[W |Y + A] = 0 for all values y + a. Taking
expectation of both sides, we get that E[X] = E[Y ] + E[A] + E[W ] and since E[X] = E[Y ] = 0
and E[W ] = E[E[W |Y + A]] = 0 we get that E[A] = 0. Since A ≥ 0, A = 0. Also note that
E[W |Y = y] = 0 for all y.

Now we can show that −X is stochastically optimistic for −Y as follows: From above, −X =D

−(Y + A+W ) = −Y + (−W ). Then for all y′, E[−W | − Y = y′] = −E[W |Y = −y′] = 0 by
definition of W . Therefore, −X is stochastically optimistic for −Y .

Corollary E.7. Let Y be any distribution with mean µ such that X ∼ N(µ, σ2) is stochastically
optimistic for Y . Then with probability 1− ρ,

|Y − µ| ≤
√

2σ2 log(2/ρ).

Proof. For any s > 0, and t, and applying Markov’s inequality,

P (Y − µ > t) = P (Y > µ+ t) = P (esY > es(µ+t)) ≤ E[esY ]

es(µ+t)
.

By Definition 5, taking u(a) = esa, which is a convex and increasing function, E[esY ] ≤ E[esX ],
and hence

P (Y − µ > t) ≤ E[esX ]

es(µ+t)
=
eµs+

1
2σ

2s2

es(µ+t)
= e

1
2σ

2s2−st.

Since the above holds for all s > 0, using s = t
σ2 , P (Y − µ > t) ≤ e−

t2

2σ2 .

Similarly, for the lower tail bound, we have for any s > 0,

P (Y − µ < −t) = P (−Y > −µ+ t) = P (es(−Y ) > es(−µ+t)) ≤ E[es(−Y )]

es(−µ+t)
.

By Lemma E.6, −X is stochastically optimistic for −Y , so E[es(−Y )] ≤ E[es(−X)], and hence

P (Y − µ < −t) ≤ E[es(−X)]

es(−µ+t)
=
e−µs+

1
2σ

2s2

es(−µ+t)
= e

1
2σ

2s2−st.

Again letting s = t
σ2 , P (Y − µ < −t) ≤ e−

t2

2σ2 .
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Then, for t =
√

2σ2 log(2/ρ), we have that

P (|Y − µ| ≤
√

2σ2 log(2/ρ)) ≥ 1− ρ.

Lemma E.8 (Binomial, Multinomial). Let Ŷ = p̂T v where p̂ ∈ ∆S be distributed as multinomial
average with parameter n, p and fixed v ∈ Rd, where 0 ≤ vi ≤ D. Then, there exists a random
variable distributed as q̂ ∼ 1

nBinomial(n,
pTh
D ) such that, E[q̂|Ŷ ] = 1

D Ŷ .

Proof. Let Xj
i , j = 1, . . . , n denote the outcomes of the trials used to define p̂i, that is,

p̂i :=

n∑
j=1

Xj
i /n

where Xj
i , j = 1, . . . , n are distributed as Xj

i ∼Multivariate(p, 1).

For every i, define n i.i.d. variables Y ji , j = 1, . . . , n, where Y ji ∼ Bernoulli(vi/D), and is
independent of Xj

i . Define q̂ as:

q̂ =
1

n

∑
i

n∑
j=1

Xj
i Y

j
i /n

Let X = {Xi,j , i = 1, . . . , S, j = 1, . . . , n}. Then,

E[q̂|p̂T v, n] = E[E[q̂|X , p̂T v, n]|p̂T v, n]

= E[E[q̂|X , n]|p̂T v, n]

=
1

n
E[E[

∑
i,j

Xj
i Y

j
i |X , n]|p̂T v, n]

=
1

n
E[
∑
i,j

Xj
i E[Y ji ]|p̂T v, n]

=
1

n
E[
∑
i,j

Xj
i

vi
D
|p̂T v, n]

= p̂T v/D.

Also, nq̂ is a binomial random variable Binomial(n, 1
Dp

T v) since it is formed by sum of outcomes
of n trials

∑n
j=1 Z

j , where each trail Zj =
∑
iX

j
i Y

j
i is an independent Bernoulli trial: takes value

1 with probability
∑
i pivi/D.

Corollary E.9. For X = Dq̂, Y = p̂T v (with q̂ and p̂T v as defined in the previous lemma), X is
stochastically optimistic for Y .

Proof. We have
E[X − Y |Y ] = E[Dq̂ − p̂T v|p̂T v] = 0.

Then stochastic optimism follows from applying the optimism equivalence condition from Lemma 3
(Condition 3) of Osband et al. [2014].
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