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Abstract

This is the supplementary material for the paper titled “Min-Max Propagation”.

1 Functions f that are Easy to Minimize

Here we address the issues of minimizing f(x) subject to a given set of constraints, fixing values
of certain xis. There are several forms of f for which this evaluation is easy. We explain some
examples.

Functions of the form f(x) =
∑

i αixi. In the simplest case, where αi = 1, we are counting the
number of variables set to one. Therefore, the minimum is obtained by setting all unconstrained
variables to zero. The value obtained is equal to the number of constrained variables already fixed
to one. With positive coefficients, again, the minimum is obtained by setting all the unconstrained
variables to zero, and the value obtained is the weighted sum of the constrained variables fixed to one.
Thus, generally, unconstrained variables are fixed to zero if their coefficient is positive, and to one if
it is negative. The value obtained is the weighted sum of all coefficients whose variables are fixed to
one, constrained and unconstrained.

Functions of the form f(x) = g (
∑

i αixi). These can be solved if g is either monotonically
increasing or monotonically decreasing. In the former case, all unconstrained variables with positive
coefficients are set to zero. All unconstrained variables with negative coefficients are set to one. The
value is found by calculating the corresponding g value. In the latter case, all unconstrained variables
with positive coefficients are set to one, and all unconstrained variables with negative coefficients are
set to zero.

2 Additional Results

2.1 Sum-Product Reduction vs. Min-Max Propagation

Fig. 1 shows the number of iterations for each of the head-to-head min-max results reported in the
paper.

2.2 Additional Results for Identical Machines Problems

We compare min-max propagation (with different decimation procedures) against LPT on a set of
benchmark experiments designed in (Gupta and Ruiz-Torres, 2001) for the identical machine version
of the problem – i.e. a task has the same processing time on all machines (pn = p1n = p2n = .. =
pMn).

In total there are four families our benchmark experiments, as shown in Table 1, where for each
family all combinations of specified number of jobs N , machines M , and distributions from which
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Figure 1: Performance of different methods on Erdos-Renyi graphs.Top: N=10, Bottom: N=100,
Left: K=4, Middle: K=6, Right: K=8.

M N Dist
E1 3,4,5 2M,3M,5M U(1,20), U(20,50)
E2 2,3,4,6,8,10 10,30,50,100 U(100,800)
E3 3,5,8,10 3M+1,3M+2,4M+1, U(1,100),U(100,200)

4M+2, and 5M+2
E4 2 9 U(1,20), U(20,50), U(50,100),

3 10 U(100,200), U(100,800)

Table 1: Set of benchmark experiments for identical machines makespan minimization.

the jobs are drawn are tested. The only exception to this is E4 where the M = 2, N = 9 combination
is tested separately from the M = 3, N = 10. For all experiments the processing times are drawn
from a uniform distribution with varying bounds.

The experiments are designed to set different difficulties of the problem. For example, E1 and E4
are designed to test small problem instances. In contrast, E2 and E3 are setup such as to test larger
instance. For all experiments, the performance number reported is the ratio of the makespan achieved
by the method being tested to a lower bound LB computed as:

LB = max

(
max
1≤i≤n

pn,

N∑
n=1

pn/M

)
. (1)

Table 2 shows the scenario where min-max propagation performs best against the LPT algorithm.
We see that this scenario involves large instances. From this table, we also see that max-support
decimation almost always outperforms the other decimation schemes. From the additional results in
Tables 3 to 7, we see that our framework does not perform as well on small instances.

2.3 Additional Results for Unrelated Machines Problem

We test the min-max propagation with max-support decimation against a more difficult version of
the problem: the unrelated machine model, where each job has a different processing time on each
machine. Specifically, we compare our method against that of (Vinyals et al., 2013) which also
uses distributive law for min-max inference to solve a load balancing problem. However, that paper
studies a sparsified version of the unrelated machines problem where tasks are restricted to a subset
of machines (i.e. they have infinite processing time for particular machines). Nevertheless, we can
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M N LPT Min-Max Prop Min-Max Prop Min-Max Prop
(Random Dec.) (Max-Support Dec.) (Min-Value Dec.)

3

10 1.127 1.124 1.078 1.071
11 1.067 1.106 1.083 1.076
13 1.098 1.112 1.031 1.044
14 1.052 1.054 1.069 1.056
16 1.083 1.041 1.048 1.047
17 1.040 1.057 1.048 1.032

5

16 1.162 1.173 1.098 1.099
17 1.123 1.178 1.097 1.082
21 1.113 1.108 1.055 1.062
22 1.092 1.116 1.084 1.057
26 1.102 1.070 1.062 1.053
27 1.073 1.075 1.044 1.048

8

25 1.178 1.183 1.091 1.128
26 1.144 1.167 1.079 1.112
33 1.135 1.144 1.081 1.093
34 1.117 1.132 1.071 1.086
41 1.112 1.117 1.055 1.077
42 1.094 1.109 1.079 1.074

10

31 1.184 1.168 1.110 1.105
32 1.165 1.186 1.109 1.111
41 1.138 1.183 1.077 1.088
42 1.124 1.126 1.074 1.090
51 1.112 1.131 1.077 1.081
52 1.102 1.100 1.051 1.076

Table 2: Makespan minimization experiment 3 with U(100,200). Min-max ratio to a lower bound
(lower is better) obtained by LPT with 4/3-approximation guarantee versus min-max propagation
using different decimation procedures. N is the number of jobs and M is the number of machines. In
this setting, all jobs have the same run-time across all machines.

M N LPT Min-Max Prop Min-Max Prop Min-Max Prop
(Random Dec.) (Max-Support Dec.) (Min-Value Dec.)

3
6 1.115 1.197 1.132 1.140
9 1.052 1.098 1.069 1.090
15 1.015 1.057 1.035 1.050

4
8 1.083 1.242 1.128 1.178
12 1.048 1.116 1.072 1.089
20 1.024 1.052 1.036 1.049

5
10 1.122 1.230 1.144 1.186
15 1.051 1.127 1.089 1.102
25 1.019 1.061 1.029 1.053

Table 3: Makespan minimization experiment 1 with U(1,20).
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M N LPT Min-Max Prop Min-Max Prop Min-Max Prop
(Random Dec.) (Max-Support Dec.) (Min-Value Dec.)

3
6 1.048 1.111 1.082 1.087
9 1.038 1.063 1.057 1.069
15 1.012 1.126 1.042 1.044

4
8 1.055 1.191 1.103 1.111
12 1.024 1.135 1.071 1.074
20 1.006 1.079 1.050 1.048

5
10 1.049 1.134 1.091 1.116
15 1.021 1.142 1.080 1.112
25 1.007 1.064 1.053 1.053

Table 4: Makespan minimization experiment 1 with U(20,50).

N M LPT Min-Max Prop Min-Max Prop Min-Max Prop
(Random Dec.) (Max-Support Dec.) (Min-Value Dec.)

10

2 1.011 1.018 1.022 1.022
3 1.045 1.053 1.047 1.035
4 1.089 1.145 1.108 1.092
6 1.103 1.252 1.132 1.182
8 1.027 1.135 1.043 1.046

10 1.000 1.000 1.000 1.000

30

2 1.001 1.010 1.006 1.006
3 1.004 1.046 1.014 1.015
4 1.017 1.067 1.016 1.024
6 1.015 1.073 1.032 1.062
8 1.042 1.155 1.054 1.098

10 1.041 1.223 1.073 1.128

50

2 1.000 1.004 1.004 1.004
3 1.006 1.038 1.007 1.010
4 1.010 1.038 1.011 1.014
6 1.019 1.066 1.029 1.041
8 1.022 1.091 1.044 1.047

10 1.017 1.157 1.073 1.067

100

2 1.000 1.003 1.001 1.001
3 1.004 1.007 1.004 1.003
4 1.000 1.022 1.008 1.007
6 1.005 1.057 1.024 1.016
8 1.010 1.070 1.065 1.022

10 1.004 1.063 1.107 1.038

Table 5: Makespan minimization experiment 2.
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M N LPT Min-Max Prop Min-Max Prop Min-Max Prop
(Random Dec.) (Max-Support Dec.) (Min-Value Dec.)

3

10 1.040 1.065 1.059 1.063
11 1.038 1.079 1.040 1.041
13 1.023 1.045 1.039 1.050
14 1.021 1.062 1.059 1.044
16 1.016 1.050 1.029 1.033
17 1.013 1.034 1.024 1.030

5

16 1.031 1.129 1.075 1.104
17 1.038 1.116 1.066 1.112
21 1.032 1.122 1.078 1.078
22 1.028 1.106 1.035 1.059
26 1.017 1.101 1.065 1.038
27 1.018 1.093 1.049 1.050

8

25 1.036 1.141 1.078 1.121
26 1.045 1.202 1.082 1.155
33 1.029 1.126 1.049 1.097
34 1.038 1.087 1.061 1.088
41 1.020 1.081 1.068 1.071
42 1.021 1.130 1.049 1.069

10

31 1.057 1.211 1.116 1.154
32 1.050 1.144 1.107 1.148
41 1.028 1.133 1.103 1.102
42 1.026 1.164 1.073 1.114
51 1.020 1.119 1.035 1.070
52 1.013 1.122 1.042 1.075

Table 6: Makespan minimization experiment 3 with U(1,100).

M,N U(,) LPT Min-Max Prop Min-Max Prop Min-Max Prop
(Random Dec.) (Max-Support Dec.) (Min-Value Dec.)

2,9

U(1,20) 1.016 1.036 1.026 1.026
U(20,50) 1.062 1.048 1.028 1.028
U(1,100) 1.017 1.016 1.034 1.034

U(50,100) 1.072 1.055 1.042 1.042
U(100,200) 1.073 1.051 1.055 1.055
U(100,800) 1.028 1.027 1.026 1.026

3,10

U(1,20) 1.031 1.127 1.057 1.076
U(20,50) 1.103 1.095 1.052 1.075
U(1,100) 1.033 1.096 1.039 1.048

U(50,100) 1.142 1.120 1.083 1.068
U(100,200) 1.127 1.133 1.083 1.094
U(100,800) 1.049 1.056 1.061 1.078

Table 7: Makespan minimization experiment 4.
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Mode Dist
Uncorrelated (Mode 0) N(100, 10)

Machine correlated N(αi, 10) where αi ∼ U(50, 100)
(Mode 1) and αi is different for each machine

Machine/Task N(βk + αi, 10)
correlated where αi, βk ∼ U(50, 100), αi is different for each machine,
(Mode 2) and βi is different for each job

Table 8: Processing time generation for unrelated machine makespan minimization.

Mode N/M (Vinyals et al., 2013) Min-Max Prop

0
10 0.94(0.01) 0.92(0.01)
15 0.93(0.00) 0.90(0.02)

1
10 0.92(0.00) 0.87(0.05)
15 0.89(0.00) 0.82(0.02)

2
10 0.87(0.00) 0.85(0.05)
15 0.85(0.00) 0.85(0.04)

Table 9: Makespan minimization with M=40. Min-max ratio (LP relaxation to that) of min-max
propagation versus same for the method of (Vinyals et al., 2013) (higher is better). Mode 0, 1 and 2
corresponds to uncorrelated, machine correlated and machine-task correlated respectively.

still compare their results to what we can achieve using min-max propagation using infinite-time
constraints.

We use the same problem setup with three different ways of generating the processing times (uncorre-
lated, machine correlated, and machine/task correlated) and compare our answers to IBM’s CPLEX
solver exactly as the authors do in that paper (where a high ratio is better). Table 8 shows a summary
of the processing time generation for each of the different ways (note that all normal distributions are
bounded at the low end to have a minimum of 10).

Tables 9 to 11 show the results. Here again, min-max propagation works best for large instances.

Mode N/M (Vinyals et al., 2013) Min-Max Prop

0
10 0.94(0.01) 0.93(0.00)
15 0.94(0.00) 0.89(0.03)

1
10 0.90(0.00) 0.87(0.01)
15 0.87(0.01) 0.85(0.02)

2
10 0.87(0.01) 0.89(0.03)
15 0.87(0.01) 0.79(0.09)

Table 10: Makespan minimization with M=60.
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Mode N/M (Vinyals et al., 2013) Min-Max Prop

0
5 0.93(0.03) 0.95(0.01)
10 0.94(0.01) 0.93(0.01)
15 0.94(0.00) 0.90(0.01)

1
5 0.90(0.01) 0.86(0.07)
10 0.90(0.00) 0.88(0.00)
15 0.87(0.01) 0.73(0.03)

2
5 0.81(0.01) 0.89(0.01)
10 0.81(0.01) 0.89(0.01)
15 0.78(0.01) 0.86(0.01)

Table 11: Makespan minimization with M=80.
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