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1 Section 3 - Problem

1.1 The effect of the margin hyperparameter

The margin (ε) hyperparameter of Maximum Margin Interval Trees has a regularizing effect,
which help prevents overfitting. This can be observed in Figure S.1, where the training and
testing set mean squared errors are shown as a function of the margin. It can be observed
that there exists a value of this hyperparameter for which the testing set error reaches a
minimum, while the training set error slightly increases.

Intuitively, the margin makes the model more robust to noise by enforcing that its predictions
must be at a certain distance of the training set interval limits, which are possibly noisy. This
effect, combined with those of other regularization hyperparameters, such as the maximum
depth of the decision tree and the minimum number of examples required for a leaf to be
partitioned, make for the full regularization of our algorithm. The complex trade-off between
these hyperparameters will be further studied in future work.
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Figure S.1: Training and testing set mean squared errors for various margin sizes on the
H3K36me3_AM_immune_FPOP changepoint detection data set.
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2 Section 4 - Algorithm

2.1 Proof: Lemma 1

Lemma 1. For any i ∈ {1, ..., t}, we have that pt,i+1(µ) = pt,i(µ) + ft,i(µ), where
ft,i(µ) = sk `[sk(µ− yk) + ε] for some k ∈ {1, ..., t} such that yk − skε = bt,i.

Proof. As described in Equation (9), the function pieces pt,i and pt,i+1 are separated by
the breakpoint bt,i. Since we assume that each of the hinge losses has a unique breakpoint
yj − sjε, ∀j ∈ {1, ..., t}, we have that bt,i corresponds to the transition between a zero and
non-zero state (or the converse) for a single hinge loss in the sum Pt. Denote this function
φ`(sk(µ− yk) + ε), where k ∈ {1, ..., t}. We have that bt,i = yk − skε.

Moreover, it follows from Equation (10) that:

pt,i(µ) =

t∑
j=1

`[sj(µ− yj) + ε] I[(sj = −1 ∧ bt,i−1 < yj + ε) ∨ (sj = 1 ∧ yj − ε < bt,i)] (S.1)

and

pt,i+1(µ) =

t∑
j=1

`[sj(µ−yj)+ ε] I[(sj = −1∧ bt,i < yj+ ε)∨ (sj = 1∧yj− ε < bt,i+1)]. (S.2)

There are two cases to consider: sk = −1 and sk = 1. If sk = −1, we have that pt,i+1(µ)−
pt,i(µ) = −`[sk(µ − yk) + ε] = sk `[sk(µ − yk) + ε], since I[bt,i−1 < yk + ε = bt,i] = 1, but
I[bt,i < yk + ε = bt,i] = 0. If sk = 1, we have that pt,i+1(µ)− pt,i(µ) = `[sk(µ− yk) + ε] =
sk `[sk(µ− yk) + ε], since I[yk − ε < bt,i = yk − ε] = 0, but I[yk − ε = bt,i < bt,i+1] = 1.

Hence, we have shown that pt,i+1(µ) − pt,i(µ) = sk `[sk(µ − yk) + ε] and thus pt,i+1(µ) =
pt,i(µ) + sk `[sk(µ− yk) + ε] for k ∈ {1, ..., t} such that yk − skε = bt,i.
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2.2 Proof: Optimality of the dynamic programming algorithm

Theorem 1. At any time step (t) of the dynamic programming algorithm, we have that:

min
µ∈R

Pt(µ) = min
µ∈(bt,Jt−1,bt,Jt ]

Mt(µ),

where Pt and the bt,i are defined at Equation (9), Jt is defined at Equation (14), and Mt is
defined at Equation (15).

Proof. Let t be the current time step of the dynamic programming algorithm, i.e., the number
of hinge losses in the sum Pt(µ). It follows from Equations (9) and (14) that the piece pt,Jt
contains a global minimum of Pt(µ). Hence, we have that

min
µ∈R

Pt(µ) = min
µ∈(bt,Jt−1,bt,Jt ]

Pt(µ) = min
µ∈(bt,Jt−1,bt,Jt ]

pt,Jt(µ). (S.3)

Moreover, it follows from a recursive application of Lemma 1 that, if jt < Jt, we have

pt,jt(µ) +

Jt−1∑
i=jt

ft,i(µ) = pt,jt+1(µ) +

Jt−1∑
i=jt+1

ft,i(µ) = · · · = pt,Jt(µ) (S.4)

and, similarly, if jt > Jt, we have pt,Jt(µ) = pt,jt(µ)−
∑jt−1
i=Jt

ft,i(µ).

Hence, by Equation (15), we have that Mt(µ) = pt,Jt(µ) and thus, by Equation (S.3), we
have that

min
µ∈(bt,Jt−1,bt,Jt ]

Mt(µ) = min
µ∈R

Pt(µ). (S.5)

Therefore, the solution returned by the dynamic programming algorithm always corresponds
to a global minimum of the sum of hinge losses Pt.
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2.3 Proof: Number of pointer moves for the linear hinge loss

Theorem 2. Assuming that all hinge losses are linear, i.e., that `(x) = x, the insertion of a
new hinge loss φ`(st(µ− yt) + ε) in the dynamic programming algorithm leads to a pointer jt
that is at most at distance one of the optimal minimum pointer Jt defined at Equation (14).

Proof. First, observe that, according to Equation (10), we have that the gradient of any
function piece pt,i with respect to µ ∈ R is constant and given by:

∇pt,i(µ) =
t∑

j=1

sj I[(sj = −1 ∧ bt,i−1 < yj + ε) ∨ (sj = 1 ∧ yj − ε < bt,i)]. (S.6)

This corresponds to the difference between the number of upper and lower interval limits for
which the hinge loss takes a non-zero value on the segment µ ∈ (bt,i−1, bt,i]. Hence, since
sj ∈ {−1,+1}, we have that the gradient of any function piece is a constant function whose
value is an integer.

Moreover, it follows from Equation (S.6) and the fact that bt,i < bt,i+1 that:

∇pt,i(µ) < ∇pt,i+1(µ), ∀µ ∈ R, i ∈ {1, ..., t}. (S.7)

Indeed, going from bt,i to bt,i+1, any function with sign sj = −1 can only stop contributing
negatively to the sum. Conversely, any function with sign sj = 1 can only start contributing
positively to the sum. Hence, we have that ∇pt,i(µ) ≤ ∇pt,i+1(µ), but since each bt,i
corresponds to a change in the total function Pt, we have that ∇pt,i(µ) = ∇pt,i+1(µ) is not
possible and thus, ∇pt,i(µ) < ∇pt,i+1(µ).

In addition, since Pt is a piecewise linear function, it is not differentiable at its breakpoints
(bt,i). However, the subdifferential of Pt at any bt,i is bounded by the gradient of the function
piece on its left (pt,i) and the one on its right (pt,i+1), which are constant. Hence, we have
the following subdifferential at any bt,i:

∂Pt(bt,i) = [∇pt,i(µ),∇pt,i+1(µ)]. (S.8)

Also, note that, if there exists a µ ∈ (bt,i−1, bt,i] such that Pt(µ) = minµ′ Pt(µ
′), we have

that:
0 ∈ ∂Pt(bt,i) = [∇pt,i(µ),∇pt,i+1(µ)]. (S.9)

Hence, by the definition of the minimum pointer Jt, given at Equation (14), we have that
0 ∈ ∂Pt(bt,Jt) and thus ∇pt,Jt(µ) ≤ 0. Moreover, we have that ∇pt,Jt+1(µ) ≥ 1, since Jt
points to the greatest breakpoint that has zero in its subdifferential and since the ∇pt,i(µ)
are constant functions with integer values.

Now, we must consider two cases: the one where the inserted hinge loss has sign st = −1
and the one where it has sign st = 1.

• Case st = 1: In this case, the pointer either remains unchanged or moves to the left.
The latter situtation only occurs when, after inserting the new hinge loss, we have
0 6∈ ∂Pt(bt,jt), which is only possible if yt − ε < bt−1,Jt−1 = bt,jt .
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Observe that, according to Equation (S.6), the insertion of a new hinge loss with st = 1
can only increase the gradient of any segment by 1. Hence, if yt − ε < bt,jt , we have
that ∇pt,jt(µ) = ∇pt−1,Jt−1

(µ) + 1.

If the insertion results in ∇pt,jt(µ) ≤ 0, no pointer moves are required. However,
if we have ∇pt,jt(µ) = 1, we have that 0 6∈ ∂Pt(bt,jt) = [∇pt,jt(µ),∇pt,jt+1(µ)] =
[1,∇pt,jt+1(µ)]. Thus, there are no values in µ ∈ (bt,jt−1, bt,jt ] that are minimizers
of Pt(µ) and the pointer must be moved left. It follows from Equation (S.7) that
∇pt,jt−1(µ) < 1 and thus ∇pt,jt−1(µ) ≤ 0. Hence, we have that 0 ∈ ∂Pt(bt,jt−1) =
[∇pt,jt−1(µ),∇pt,jt(µ)]. Thus, by moving the pointer to the left once, i.e. Jt = jt − 1,
we have that Jt is the largest value such that pt,Jt contains a minimum of Pt(µ) for µ ∈
(bt,Jt−1, bt,Jt ], i.e., 0 ∈ ∂Pt(bt,Jt) = [∇pt,Jt(µ),∇pt,Jt+1(µ)] = [∇pt,jt−1(µ),∇pt,jt(µ)].

• Case st = −1: In this case, the pointer either remains unchanged or moves to the
right. The proof for this case is similar and left as an exercise to the reader.
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2.4 Pseudocode and Implementation details

We propose to store each linear/quadratic function f(µ) = aµ2 + bµ + c in terms of its
three coefficients a, b, c ∈ R, where a = 0 for linear functions. Function sums can therefore
be implemented in constant O(1) time, by simply adding their coefficients (e.g., line 8 of
Algorithm 1). Note that, in Algorithm 1, B[J ].breakpoint is the breakpoint at the pointer
J , i.e., bt,J in the notation of Equation (9).

We propose to store the set of breakpoints Bt using the map container of the C++ Standard
Template Library (B in Algorithm 1). It guarantees that the insertion of a breakpoint,
described at Equation (12), takes O(log t) time (line 6). The pointers jt and Jt can be
implemented using a map::iterator (J in Algorithm 1). Thus, the update rule given by
Equation (13) happens automatically when the new breakpoint is inserted – the variable J
is Jt−1 before the insert, and it becomes jt after the insert.

The update rules for Jt and Mt (Equations (14) and (15)) are implemented in the while
loop on lines 9–11 of Algorithm 1. Each iteration of the while loop is a constant O(1) time
operation. The MinInInterval sub-routine exploits the convexity of the cost function, and
returns TRUE if a global minimum occurs on the function piece M , i.e. pt,J in the notation
of Equation (9), whose limits are B[J − 1].breakpoint (i.e., bt,J−1) and B[J ].breakpoint (i.e.,
bt,J ). If no minimum occurs on this piece, the pointer J must be moved. If M is increasing
within the interval limits, the pointer should be moved left (line 10). Otherwise, it should be
moved right (line 11).

Once the pointer has been moved to the interval that contains the minimum, the Minimize
sub-routine returns an optimal prediction µ∗t and cost P ∗t (line 12) in constant O(1) time.

An open-source implementation of Algorithm 1 is available at https://git.io/mmit.

Algorithm 1 Dynamic programming algorithm for computing minimum total hinge loss.
1: Input: limits y ∈ Rn, signs s ∈ {−1, 1}, margin ε ∈ R.
2: Initialize: B ← map{}, J ← B.end(), M ← Coefs(0)
3: for data points t from 1 to n:
4: f ← Coefs[st`(st(µ− yt) + ε)]
5: b← yt − stε
6: B.insert(b, f)
7: if 0 < st(B[J ].breakpoint− yt) + ε:
8: M ←M + Coefs[`(st(µ− yt) + ε)]
9: while !MinInInterval(M,B, J):

10: if Increasing(M): J ← J − 1; M ←M −B[J ].function
11: else: M ←M +B[J ].function; J ← J + 1
12: µ∗t , P

∗
t ← Minimize(M,B, J)

13: Output: µ∗ ∈ Rn, P ∗ ∈ Rn
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2.5 What if the breakpoints are not all different?

In the paper, we assumed that all the hinge losses in the sum of Equation (8) had distinct
breakpoints (see Section 4.1). That is, we assumed that there were no interval limits with
the exact same type (upper or lower limit) and value. This is not a very strong assumption,
since the interval limits are real numbers (double precision on computers). However, it allows
to simplify the presentation of the algorithm.

In fact, considering that some breakpoints could be equal leads to a total function Pt
(Equation (9)) with more pieces (pt,i) than breakpoints (bt,i). Consequently, this complicates
the expressions of Equations (9 - 10) and Lemma 1. For example, in the statement of Lemma
1, the difference between pt,i+1 and pt,i would no longer be a single ft,i, but a sum of such
values.

Nevertheless, note that the implementation provided with this work handles the case where
some breakpoints are equal and the assumption is limited to the theoretical work.
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3 Section 5 - Results

3.1 Protocol: Generating simulated data sets

Each of the simulated data set contains 200 learning examples, each represented by a vector
of 20 features (xi ∈ R20) and a target interval (yi = [yi, yi] ∈ R2

). The feature vectors were
generated by uniform random sampling in the range [0, 10]. Then, the target intervals were
generated by applying some function f : R → R to the first feature of each example (i.e.,
xi0 for the ith example), which we refer to as the signal feature. Specifically, ten values
were sampled from a normal distribution N (f(xi0), 0.3). The smallest value was used as the
interval’s lower limit (yi) and the maximum one as the interval’s upper limit (yi). Then,
a small vertical shift was added by sampling a value from N (0, 0.2) and adding it to both
interval bounds. Finally, with probability 20%, one of the interval bounds was removed to
simulate open interval. This therefore generates left, right and interval-censored data.

3.2 Protocol: Converting regression data sets to interval regression

Let S def
= {(xi, yi)}ni=1, with xi ∈ Rp and yi ∈ R, be a real-valued regression data set.

Moreover, let S′ def
= {(xi,yi)}ni=1, with xi ∈ Rp and yi = [yi, yi] ∈ R2

, be its corresponding
interval regression data set. The target intervals in S′ are generated by randomly sampling
from normal distributions centered on the target values in S. Specifically, in this work, for
any yi, 10 values were sampled from a normal distribution N (yi,

yi
5 ). The smallest value

was used as the interval’s lower limit (yi) and the maximum one as the interval’s upper limit
(yi). Then, a small vertical shift was added by sampling a value from N (0, yi10 ) and adding
it to both interval bounds. Finally, with probability 10%, one of the interval bounds was
removed to simulate open interval. The resulting data set S′ thus contains left, right and
interval-censored data, which is derived from the true data in S.
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3.3 Additional result: Benchmark results on more data sets

Figure S.2 shows a comparison of the learning algorithms, including our MMITs, on a wide
variety of real and simulated data sets. The real data sets were taken from the work of Hocking
et al. (2013), Rigaill et al. (2013), and from a repository maintained by the Connectionist
Artificial Intelligence Laboratory (https://github.com/renatopp/arff-datasets). The
latter repository includes many data sets from the UCI repository (Lichman, 2013). The
simulated data sets are the three used in the paper. Note that the neuroblastoma changepoint
detection data set used in the paper corresponds to neuroblastomaProcessed in Figure S.2,
and that the histone one corresponds to H3K27ac-H3K4me3_TDHAM_BP_FPOP.

(See next page)
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H3K36me3_TDH_immune_joint   18=n  33=p
lymphoma.tdh   23=n 258=p

neuroblastoma.chiba.tdh   29=n 258=p
H3K36me3_TDH_other_PDPA   32=n  48=p
H3K36me3_TDH_other_FPOP   40=n  30=p

lymphoma.mkatayama   41=n 258=p
sleep   51=n   7=p

vineyard   52=n   3=p
elusage   55=n  13=p

pollution   60=n  15=p
mbagrade   61=n   3=p

H3K4me3_TDH_other_joint   66=n  32=p
pyrim   74=n  27=p

auto93   82=n  62=p
H3K36me3_TDH_immune_FPOP   84=n  28=p
H3K36me3_TDH_immune_PDPA   84=n  45=p

baskball   96=n   4=p
echomonths  106=n  13=p

cloud  108=n  10=p
H3K4me3_TDH_immune_joint  117=n  26=p

fruitfly  125=n   8=p
veteran  137=n  13=p

neuroblastoma.dr.tdh  155=n 259=p
fishcatch  158=n  15=p
autohorse  159=n  59=p
autoprice  159=n  15=p

autoprice (2)  159=n  20=p
servo  167=n  19=p

servo (2)  167=n  19=p
triazines  186=n  60=p

lowbwt  189=n  23=p
wisconsin  194=n  32=p

pharynx  195=n 218=p
pwlinear  200=n  10=p

simulated.abs  200=n  20=p
simulated.linear  200=n  20=p

simulated.sin  200=n  20=p
cpu  209=n  36=p

machine.cpu  209=n   6=p
bodyfat  252=n  14=p

meta  264=n  54=p
pbc  276=n  29=p

breasttumor  286=n  40=p
H3K4me3_TDH_other_PDPA  290=n  44=p

cholesterol  299=n  26=p
cleveland  299=n  26=p

H3K4me3_XJ_immune_PDPA  318=n  45=p
neuroblastoma.bac  324=n 252=p

medulloblastoma.tdh  366=n 255=p
H3K4me3_TDH_immune_FPOP  378=n  28=p

autompg  392=n  25=p
autompg (2)  392=n  25=p

H3K36me3_AM_immune_FPOP  420=n  28=p
H3K36me3_AM_immune_PDPA  482=n  43=p

housing  506=n  14=p
housing (2)  506=n  14=p

sensory  576=n  36=p
strike  625=n  23=p

H3K4me3_TDH_immune_PDPA  724=n  44=p
H3K4me3_PGP_immune_PDPA  808=n  44=p

H3K27ac−H3K4me3_TDHAM_BP_joint  831=n  26=p
H3K4me3_TDH_other_FPOP  875=n  27=p

H3K27ac−H3K4me3_TDHAM_BP_FPOP  935=n  26=p
stock  950=n   9=p

neuroblastomaProcessed 3418=n 117=p
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Figure S.2: Mean-squared error (and standard deviation) for the 5 cross-validation folds.
The data sets are sorted by decreasing number of examples.
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3.4 Additional result: Selected hyperparameter values for MMIT

For each of the five cross-validation folds, the best hyperparameter values were chosen based
on the training data, by performing 10-fold cross-validation over a grid of possible values.
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Figure S.3: Margin values (ε) for each of the five cross-validation folds.
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Figure S.4: Minimum number of examples required to split a leaf, for each of the five
cross-validation folds.
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Figure S.5: Maximum tree depth for each of the five cross-validation folds.
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3.5 Software versions

To ensure the reproducibility of our results, we list the versions of the software that was used
to compare our algorithm to other methods:

1. Maximum margin interval trees:

• mmit v1.1.1 (Python package)

2. Transformation trees:

• trft v0.2-1 (R package)

• partykit v1.2-0 (R package)

3. Interval-CART:

• sklearn v0.18.1 (Python package)
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