
Maximum Margin Interval Trees
Supplementary material

Alexandre Drouin, Toby Dylan Hocking, François Laviolette

Contents
1 Section 3 - Problem 2

1.1 The effect of the margin hyperparameter . 2

2 Section 4 - Algorithm 3
2.1 Proof: Lemma 1 . 3
2.2 Proof: Optimality of the dynamic programming algorithm 4
2.3 Proof: Number of pointer moves for the linear hinge loss 5
2.4 Pseudocode and Implementation details . 7
2.5 What if the breakpoints are not all different? 8

3 Section 5 - Results 9
3.1 Protocol: Generating simulated data sets . 9
3.2 Protocol: Converting regression data sets to interval regression 9
3.3 Additional result: Benchmark results on more data sets 10
3.4 Additional result: Selected hyperparameter values for MMIT 12
3.5 Software versions . 14

Note to the reader: equations and figures that are unique to the supplementary material are prefixed with
”S.“, e.g., Equation (S.1). All other references refer to the main paper.

1

1 Section 3 - Problem

1.1 The effect of the margin hyperparameter

The margin (ε) hyperparameter of Maximum Margin Interval Trees has a regularizing effect,
which help prevents overfitting. This can be observed in Figure S.1, where the training and
testing set mean squared errors are shown as a function of the margin. It can be observed
that there exists a value of this hyperparameter for which the testing set error reaches a
minimum, while the training set error slightly increases.

Intuitively, the margin makes the model more robust to noise by enforcing that its predictions
must be at a certain distance of the training set interval limits, which are possibly noisy. This
effect, combined with those of other regularization hyperparameters, such as the maximum
depth of the decision tree and the minimum number of examples required for a leaf to be
partitioned, make for the full regularization of our algorithm. The complex trade-off between
these hyperparameters will be further studied in future work.

−10 −8 −6 −4 −2 0 2

log(ε)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
sq

u
a
re

d
er

ro
r

H3K36me3 AM immune FPOP

Train

Test

Figure S.1: Training and testing set mean squared errors for various margin sizes on the
H3K36me3_AM_immune_FPOP changepoint detection data set.

2

2 Section 4 - Algorithm

2.1 Proof: Lemma 1

Lemma 1. For any i ∈ {1, ..., t}, we have that pt,i+1(µ) = pt,i(µ) + ft,i(µ), where
ft,i(µ) = sk `[sk(µ− yk) + ε] for some k ∈ {1, ..., t} such that yk − skε = bt,i.

Proof. As described in Equation (9), the function pieces pt,i and pt,i+1 are separated by
the breakpoint bt,i. Since we assume that each of the hinge losses has a unique breakpoint
yj − sjε, ∀j ∈ {1, ..., t}, we have that bt,i corresponds to the transition between a zero and
non-zero state (or the converse) for a single hinge loss in the sum Pt. Denote this function
φ`(sk(µ− yk) + ε), where k ∈ {1, ..., t}. We have that bt,i = yk − skε.

Moreover, it follows from Equation (10) that:

pt,i(µ) =

t∑
j=1

`[sj(µ− yj) + ε] I[(sj = −1 ∧ bt,i−1 < yj + ε) ∨ (sj = 1 ∧ yj − ε < bt,i)] (S.1)

and

pt,i+1(µ) =

t∑
j=1

`[sj(µ−yj)+ ε] I[(sj = −1∧ bt,i < yj+ ε)∨ (sj = 1∧yj− ε < bt,i+1)]. (S.2)

There are two cases to consider: sk = −1 and sk = 1. If sk = −1, we have that pt,i+1(µ)−
pt,i(µ) = −`[sk(µ − yk) + ε] = sk `[sk(µ − yk) + ε], since I[bt,i−1 < yk + ε = bt,i] = 1, but
I[bt,i < yk + ε = bt,i] = 0. If sk = 1, we have that pt,i+1(µ)− pt,i(µ) = `[sk(µ− yk) + ε] =
sk `[sk(µ− yk) + ε], since I[yk − ε < bt,i = yk − ε] = 0, but I[yk − ε = bt,i < bt,i+1] = 1.

Hence, we have shown that pt,i+1(µ) − pt,i(µ) = sk `[sk(µ − yk) + ε] and thus pt,i+1(µ) =
pt,i(µ) + sk `[sk(µ− yk) + ε] for k ∈ {1, ..., t} such that yk − skε = bt,i.

3

2.2 Proof: Optimality of the dynamic programming algorithm

Theorem 1. At any time step (t) of the dynamic programming algorithm, we have that:

min
µ∈R

Pt(µ) = min
µ∈(bt,Jt−1,bt,Jt]

Mt(µ),

where Pt and the bt,i are defined at Equation (9), Jt is defined at Equation (14), and Mt is
defined at Equation (15).

Proof. Let t be the current time step of the dynamic programming algorithm, i.e., the number
of hinge losses in the sum Pt(µ). It follows from Equations (9) and (14) that the piece pt,Jt
contains a global minimum of Pt(µ). Hence, we have that

min
µ∈R

Pt(µ) = min
µ∈(bt,Jt−1,bt,Jt]

Pt(µ) = min
µ∈(bt,Jt−1,bt,Jt]

pt,Jt(µ). (S.3)

Moreover, it follows from a recursive application of Lemma 1 that, if jt < Jt, we have

pt,jt(µ) +

Jt−1∑
i=jt

ft,i(µ) = pt,jt+1(µ) +

Jt−1∑
i=jt+1

ft,i(µ) = · · · = pt,Jt(µ) (S.4)

and, similarly, if jt > Jt, we have pt,Jt(µ) = pt,jt(µ)−
∑jt−1
i=Jt

ft,i(µ).

Hence, by Equation (15), we have that Mt(µ) = pt,Jt(µ) and thus, by Equation (S.3), we
have that

min
µ∈(bt,Jt−1,bt,Jt]

Mt(µ) = min
µ∈R

Pt(µ). (S.5)

Therefore, the solution returned by the dynamic programming algorithm always corresponds
to a global minimum of the sum of hinge losses Pt.

4

2.3 Proof: Number of pointer moves for the linear hinge loss

Theorem 2. Assuming that all hinge losses are linear, i.e., that `(x) = x, the insertion of a
new hinge loss φ`(st(µ− yt) + ε) in the dynamic programming algorithm leads to a pointer jt
that is at most at distance one of the optimal minimum pointer Jt defined at Equation (14).

Proof. First, observe that, according to Equation (10), we have that the gradient of any
function piece pt,i with respect to µ ∈ R is constant and given by:

∇pt,i(µ) =
t∑

j=1

sj I[(sj = −1 ∧ bt,i−1 < yj + ε) ∨ (sj = 1 ∧ yj − ε < bt,i)]. (S.6)

This corresponds to the difference between the number of upper and lower interval limits for
which the hinge loss takes a non-zero value on the segment µ ∈ (bt,i−1, bt,i]. Hence, since
sj ∈ {−1,+1}, we have that the gradient of any function piece is a constant function whose
value is an integer.

Moreover, it follows from Equation (S.6) and the fact that bt,i < bt,i+1 that:

∇pt,i(µ) < ∇pt,i+1(µ), ∀µ ∈ R, i ∈ {1, ..., t}. (S.7)

Indeed, going from bt,i to bt,i+1, any function with sign sj = −1 can only stop contributing
negatively to the sum. Conversely, any function with sign sj = 1 can only start contributing
positively to the sum. Hence, we have that ∇pt,i(µ) ≤ ∇pt,i+1(µ), but since each bt,i
corresponds to a change in the total function Pt, we have that ∇pt,i(µ) = ∇pt,i+1(µ) is not
possible and thus, ∇pt,i(µ) < ∇pt,i+1(µ).

In addition, since Pt is a piecewise linear function, it is not differentiable at its breakpoints
(bt,i). However, the subdifferential of Pt at any bt,i is bounded by the gradient of the function
piece on its left (pt,i) and the one on its right (pt,i+1), which are constant. Hence, we have
the following subdifferential at any bt,i:

∂Pt(bt,i) = [∇pt,i(µ),∇pt,i+1(µ)]. (S.8)

Also, note that, if there exists a µ ∈ (bt,i−1, bt,i] such that Pt(µ) = minµ′ Pt(µ
′), we have

that:
0 ∈ ∂Pt(bt,i) = [∇pt,i(µ),∇pt,i+1(µ)]. (S.9)

Hence, by the definition of the minimum pointer Jt, given at Equation (14), we have that
0 ∈ ∂Pt(bt,Jt) and thus ∇pt,Jt(µ) ≤ 0. Moreover, we have that ∇pt,Jt+1(µ) ≥ 1, since Jt
points to the greatest breakpoint that has zero in its subdifferential and since the ∇pt,i(µ)
are constant functions with integer values.

Now, we must consider two cases: the one where the inserted hinge loss has sign st = −1
and the one where it has sign st = 1.

• Case st = 1: In this case, the pointer either remains unchanged or moves to the left.
The latter situtation only occurs when, after inserting the new hinge loss, we have
0 6∈ ∂Pt(bt,jt), which is only possible if yt − ε < bt−1,Jt−1 = bt,jt .

5

Observe that, according to Equation (S.6), the insertion of a new hinge loss with st = 1
can only increase the gradient of any segment by 1. Hence, if yt − ε < bt,jt , we have
that ∇pt,jt(µ) = ∇pt−1,Jt−1

(µ) + 1.

If the insertion results in ∇pt,jt(µ) ≤ 0, no pointer moves are required. However,
if we have ∇pt,jt(µ) = 1, we have that 0 6∈ ∂Pt(bt,jt) = [∇pt,jt(µ),∇pt,jt+1(µ)] =
[1,∇pt,jt+1(µ)]. Thus, there are no values in µ ∈ (bt,jt−1, bt,jt] that are minimizers
of Pt(µ) and the pointer must be moved left. It follows from Equation (S.7) that
∇pt,jt−1(µ) < 1 and thus ∇pt,jt−1(µ) ≤ 0. Hence, we have that 0 ∈ ∂Pt(bt,jt−1) =
[∇pt,jt−1(µ),∇pt,jt(µ)]. Thus, by moving the pointer to the left once, i.e. Jt = jt − 1,
we have that Jt is the largest value such that pt,Jt contains a minimum of Pt(µ) for µ ∈
(bt,Jt−1, bt,Jt], i.e., 0 ∈ ∂Pt(bt,Jt) = [∇pt,Jt(µ),∇pt,Jt+1(µ)] = [∇pt,jt−1(µ),∇pt,jt(µ)].

• Case st = −1: In this case, the pointer either remains unchanged or moves to the
right. The proof for this case is similar and left as an exercise to the reader.

6

2.4 Pseudocode and Implementation details

We propose to store each linear/quadratic function f(µ) = aµ2 + bµ + c in terms of its
three coefficients a, b, c ∈ R, where a = 0 for linear functions. Function sums can therefore
be implemented in constant O(1) time, by simply adding their coefficients (e.g., line 8 of
Algorithm 1). Note that, in Algorithm 1, B[J].breakpoint is the breakpoint at the pointer
J , i.e., bt,J in the notation of Equation (9).

We propose to store the set of breakpoints Bt using the map container of the C++ Standard
Template Library (B in Algorithm 1). It guarantees that the insertion of a breakpoint,
described at Equation (12), takes O(log t) time (line 6). The pointers jt and Jt can be
implemented using a map::iterator (J in Algorithm 1). Thus, the update rule given by
Equation (13) happens automatically when the new breakpoint is inserted – the variable J
is Jt−1 before the insert, and it becomes jt after the insert.

The update rules for Jt and Mt (Equations (14) and (15)) are implemented in the while
loop on lines 9–11 of Algorithm 1. Each iteration of the while loop is a constant O(1) time
operation. The MinInInterval sub-routine exploits the convexity of the cost function, and
returns TRUE if a global minimum occurs on the function piece M , i.e. pt,J in the notation
of Equation (9), whose limits are B[J − 1].breakpoint (i.e., bt,J−1) and B[J].breakpoint (i.e.,
bt,J). If no minimum occurs on this piece, the pointer J must be moved. If M is increasing
within the interval limits, the pointer should be moved left (line 10). Otherwise, it should be
moved right (line 11).

Once the pointer has been moved to the interval that contains the minimum, the Minimize
sub-routine returns an optimal prediction µ∗t and cost P ∗t (line 12) in constant O(1) time.

An open-source implementation of Algorithm 1 is available at https://git.io/mmit.

Algorithm 1 Dynamic programming algorithm for computing minimum total hinge loss.
1: Input: limits y ∈ Rn, signs s ∈ {−1, 1}, margin ε ∈ R.
2: Initialize: B ← map{}, J ← B.end(), M ← Coefs(0)
3: for data points t from 1 to n:
4: f ← Coefs[st`(st(µ− yt) + ε)]
5: b← yt − stε
6: B.insert(b, f)
7: if 0 < st(B[J].breakpoint− yt) + ε:
8: M ←M + Coefs[`(st(µ− yt) + ε)]
9: while !MinInInterval(M,B, J):

10: if Increasing(M): J ← J − 1; M ←M −B[J].function
11: else: M ←M +B[J].function; J ← J + 1
12: µ∗t , P

∗
t ← Minimize(M,B, J)

13: Output: µ∗ ∈ Rn, P ∗ ∈ Rn

7

https://git.io/mmit

2.5 What if the breakpoints are not all different?

In the paper, we assumed that all the hinge losses in the sum of Equation (8) had distinct
breakpoints (see Section 4.1). That is, we assumed that there were no interval limits with
the exact same type (upper or lower limit) and value. This is not a very strong assumption,
since the interval limits are real numbers (double precision on computers). However, it allows
to simplify the presentation of the algorithm.

In fact, considering that some breakpoints could be equal leads to a total function Pt
(Equation (9)) with more pieces (pt,i) than breakpoints (bt,i). Consequently, this complicates
the expressions of Equations (9 - 10) and Lemma 1. For example, in the statement of Lemma
1, the difference between pt,i+1 and pt,i would no longer be a single ft,i, but a sum of such
values.

Nevertheless, note that the implementation provided with this work handles the case where
some breakpoints are equal and the assumption is limited to the theoretical work.

8

3 Section 5 - Results

3.1 Protocol: Generating simulated data sets

Each of the simulated data set contains 200 learning examples, each represented by a vector
of 20 features (xi ∈ R20) and a target interval (yi = [yi, yi] ∈ R2

). The feature vectors were
generated by uniform random sampling in the range [0, 10]. Then, the target intervals were
generated by applying some function f : R → R to the first feature of each example (i.e.,
xi0 for the ith example), which we refer to as the signal feature. Specifically, ten values
were sampled from a normal distribution N (f(xi0), 0.3). The smallest value was used as the
interval’s lower limit (yi) and the maximum one as the interval’s upper limit (yi). Then,
a small vertical shift was added by sampling a value from N (0, 0.2) and adding it to both
interval bounds. Finally, with probability 20%, one of the interval bounds was removed to
simulate open interval. This therefore generates left, right and interval-censored data.

3.2 Protocol: Converting regression data sets to interval regression

Let S def
= {(xi, yi)}ni=1, with xi ∈ Rp and yi ∈ R, be a real-valued regression data set.

Moreover, let S′ def
= {(xi,yi)}ni=1, with xi ∈ Rp and yi = [yi, yi] ∈ R2

, be its corresponding
interval regression data set. The target intervals in S′ are generated by randomly sampling
from normal distributions centered on the target values in S. Specifically, in this work, for
any yi, 10 values were sampled from a normal distribution N (yi,

yi
5). The smallest value

was used as the interval’s lower limit (yi) and the maximum one as the interval’s upper limit
(yi). Then, a small vertical shift was added by sampling a value from N (0, yi10) and adding
it to both interval bounds. Finally, with probability 10%, one of the interval bounds was
removed to simulate open interval. The resulting data set S′ thus contains left, right and
interval-censored data, which is derived from the true data in S.

9

3.3 Additional result: Benchmark results on more data sets

Figure S.2 shows a comparison of the learning algorithms, including our MMITs, on a wide
variety of real and simulated data sets. The real data sets were taken from the work of Hocking
et al. (2013), Rigaill et al. (2013), and from a repository maintained by the Connectionist
Artificial Intelligence Laboratory (https://github.com/renatopp/arff-datasets). The
latter repository includes many data sets from the UCI repository (Lichman, 2013). The
simulated data sets are the three used in the paper. Note that the neuroblastoma changepoint
detection data set used in the paper corresponds to neuroblastomaProcessed in Figure S.2,
and that the histone one corresponds to H3K27ac-H3K4me3_TDHAM_BP_FPOP.

(See next page)

10

https://github.com/renatopp/arff-datasets

H3K36me3_TDH_immune_joint 18=n 33=p
lymphoma.tdh 23=n 258=p

neuroblastoma.chiba.tdh 29=n 258=p
H3K36me3_TDH_other_PDPA 32=n 48=p
H3K36me3_TDH_other_FPOP 40=n 30=p

lymphoma.mkatayama 41=n 258=p
sleep 51=n 7=p

vineyard 52=n 3=p
elusage 55=n 13=p

pollution 60=n 15=p
mbagrade 61=n 3=p

H3K4me3_TDH_other_joint 66=n 32=p
pyrim 74=n 27=p

auto93 82=n 62=p
H3K36me3_TDH_immune_FPOP 84=n 28=p
H3K36me3_TDH_immune_PDPA 84=n 45=p

baskball 96=n 4=p
echomonths 106=n 13=p

cloud 108=n 10=p
H3K4me3_TDH_immune_joint 117=n 26=p

fruitfly 125=n 8=p
veteran 137=n 13=p

neuroblastoma.dr.tdh 155=n 259=p
fishcatch 158=n 15=p
autohorse 159=n 59=p
autoprice 159=n 15=p

autoprice (2) 159=n 20=p
servo 167=n 19=p

servo (2) 167=n 19=p
triazines 186=n 60=p

lowbwt 189=n 23=p
wisconsin 194=n 32=p

pharynx 195=n 218=p
pwlinear 200=n 10=p

simulated.abs 200=n 20=p
simulated.linear 200=n 20=p

simulated.sin 200=n 20=p
cpu 209=n 36=p

machine.cpu 209=n 6=p
bodyfat 252=n 14=p

meta 264=n 54=p
pbc 276=n 29=p

breasttumor 286=n 40=p
H3K4me3_TDH_other_PDPA 290=n 44=p

cholesterol 299=n 26=p
cleveland 299=n 26=p

H3K4me3_XJ_immune_PDPA 318=n 45=p
neuroblastoma.bac 324=n 252=p

medulloblastoma.tdh 366=n 255=p
H3K4me3_TDH_immune_FPOP 378=n 28=p

autompg 392=n 25=p
autompg (2) 392=n 25=p

H3K36me3_AM_immune_FPOP 420=n 28=p
H3K36me3_AM_immune_PDPA 482=n 43=p

housing 506=n 14=p
housing (2) 506=n 14=p

sensory 576=n 36=p
strike 625=n 23=p

H3K4me3_TDH_immune_PDPA 724=n 44=p
H3K4me3_PGP_immune_PDPA 808=n 44=p

H3K27ac−H3K4me3_TDHAM_BP_joint 831=n 26=p
H3K4me3_TDH_other_FPOP 875=n 27=p

H3K27ac−H3K4me3_TDHAM_BP_FPOP 935=n 26=p
stock 950=n 9=p

neuroblastomaProcessed 3418=n 117=p

−7.5 −5.0 −2.5 0.0 2.5
Testing set log10(MSE)

D
at

a
se

t

Interval−CART

Constant

L1−Linear

MMIT−L

MMIT−S

TransfoTree

Figure S.2: Mean-squared error (and standard deviation) for the 5 cross-validation folds.
The data sets are sorted by decreasing number of examples.

11

3.4 Additional result: Selected hyperparameter values for MMIT

For each of the five cross-validation folds, the best hyperparameter values were chosen based
on the training data, by performing 10-fold cross-validation over a grid of possible values.

H
3K

27
ac

-H
3K

4m
e3

_T
D

H
A

M
_B

P
_F

P
O

P
H

3K
27

ac
-H

3K
4m

e3
_T

D
H

A
M

_B
P

_j
oi

nt
H

3K
36

m
e3

_A
M

_i
m

m
un

e_
FP

O
P

H
3K

36
m

e3
_A

M
_i

m
m

un
e_

P
D

P
A

H
3K

36
m

e3
_T

D
H

_i
m

m
un

e_
FP

O
P

H
3K

36
m

e3
_T

D
H

_i
m

m
un

e_
P

D
P

A
H

3K
36

m
e3

_T
D

H
_i

m
m

un
e_

jo
in

t
H

3K
36

m
e3

_T
D

H
_o

th
er

_F
P

O
P

H
3K

36
m

e3
_T

D
H

_o
th

er
_P

D
P

A
H

3K
4m

e3
_P

G
P

_i
m

m
un

e_
P

D
P

A
H

3K
4m

e3
_T

D
H

_i
m

m
un

e_
FP

O
P

H
3K

4m
e3

_T
D

H
_i

m
m

un
e_

P
D

P
A

H
3K

4m
e3

_T
D

H
_i

m
m

un
e_

jo
in

t
H

3K
4m

e3
_T

D
H

_o
th

er
_F

P
O

P
H

3K
4m

e3
_T

D
H

_o
th

er
_P

D
P

A
H

3K
4m

e3
_T

D
H

_o
th

er
_j

oi
nt

H
3K

4m
e3

_X
J_

im
m

un
e_

P
D

P
A

au
to

93
au

to
ho

rs
e

au
to

m
pg

au
to

m
pg

 (2
)

au
to

pr
ic

e
au

to
pr

ic
e

(2
)

ba
sk

ba
ll

bo
dy

fa
t

br
ea

st
tu

m
or

ch
ol

es
te

ro
l

cl
ev

el
an

d
cl

ou
d

cp
u

ec
ho

m
on

th
s

el
us

ag
e

fis
hc

at
ch

fru
itf

ly
ho

us
in

g
ho

us
in

g
(2

)
lo

w
bw

t
ly

m
ph

om
a.

m
ka

ta
ya

m
a

ly
m

ph
om

a.
td

h
m

ac
hi

ne
.c

pu
m

ba
gr

ad
e

m
ed

ul
lo

bl
as

to
m

a.
td

h
m

et
a

ne
ur

ob
la

st
om

a.
ba

c
ne

ur
ob

la
st

om
a.

ch
ib

a.
td

h
ne

ur
ob

la
st

om
a.

dr
.td

h
ne

ur
ob

la
st

om
aP

ro
ce

ss
ed pb

c
ph

ar
yn

x
po

llu
tio

n
pw

lin
ea

r
py

rim
se

ns
or

y
se

rv
o

se
rv

o
(2

)
si

m
ul

at
ed

.a
bs

si
m

ul
at

ed
.li

ne
ar

si
m

ul
at

ed
.s

in
sl

ee
p

st
oc

k
st

rik
e

tri
az

in
es

ve
te

ra
n

vi
ne

ya
rd

w
is

co
ns

in

10

8

6

4

2

0

lo
g 1

0(
)

Selected margin values (1e-10 means 0.)

Zero value
mmit.linear.hinge
mmit.squared.hinge

Figure S.3: Margin values (ε) for each of the five cross-validation folds.

H
3K

27
ac

-H
3K

4m
e3

_T
D

H
A

M
_B

P
_F

P
O

P
H

3K
27

ac
-H

3K
4m

e3
_T

D
H

A
M

_B
P

_j
oi

nt
H

3K
36

m
e3

_A
M

_i
m

m
un

e_
FP

O
P

H
3K

36
m

e3
_A

M
_i

m
m

un
e_

P
D

P
A

H
3K

36
m

e3
_T

D
H

_i
m

m
un

e_
FP

O
P

H
3K

36
m

e3
_T

D
H

_i
m

m
un

e_
P

D
P

A
H

3K
36

m
e3

_T
D

H
_i

m
m

un
e_

jo
in

t
H

3K
36

m
e3

_T
D

H
_o

th
er

_F
P

O
P

H
3K

36
m

e3
_T

D
H

_o
th

er
_P

D
P

A
H

3K
4m

e3
_P

G
P

_i
m

m
un

e_
P

D
P

A
H

3K
4m

e3
_T

D
H

_i
m

m
un

e_
FP

O
P

H
3K

4m
e3

_T
D

H
_i

m
m

un
e_

P
D

P
A

H
3K

4m
e3

_T
D

H
_i

m
m

un
e_

jo
in

t
H

3K
4m

e3
_T

D
H

_o
th

er
_F

P
O

P
H

3K
4m

e3
_T

D
H

_o
th

er
_P

D
P

A
H

3K
4m

e3
_T

D
H

_o
th

er
_j

oi
nt

H
3K

4m
e3

_X
J_

im
m

un
e_

P
D

P
A

au
to

93
au

to
ho

rs
e

au
to

m
pg

au
to

m
pg

 (2
)

au
to

pr
ic

e
au

to
pr

ic
e

(2
)

ba
sk

ba
ll

bo
dy

fa
t

br
ea

st
tu

m
or

ch
ol

es
te

ro
l

cl
ev

el
an

d
cl

ou
d

cp
u

ec
ho

m
on

th
s

el
us

ag
e

fis
hc

at
ch

fru
itf

ly
ho

us
in

g
ho

us
in

g
(2

)
lo

w
bw

t
ly

m
ph

om
a.

m
ka

ta
ya

m
a

ly
m

ph
om

a.
td

h
m

ac
hi

ne
.c

pu
m

ba
gr

ad
e

m
ed

ul
lo

bl
as

to
m

a.
td

h
m

et
a

ne
ur

ob
la

st
om

a.
ba

c
ne

ur
ob

la
st

om
a.

ch
ib

a.
td

h
ne

ur
ob

la
st

om
a.

dr
.td

h
ne

ur
ob

la
st

om
aP

ro
ce

ss
ed pb

c
ph

ar
yn

x
po

llu
tio

n
pw

lin
ea

r
py

rim
se

ns
or

y
se

rv
o

se
rv

o
(2

)
si

m
ul

at
ed

.a
bs

si
m

ul
at

ed
.li

ne
ar

si
m

ul
at

ed
.s

in
sl

ee
p

st
oc

k
st

rik
e

tri
az

in
es

ve
te

ra
n

vi
ne

ya
rd

w
is

co
ns

in

0

100

200

300

400

500

600

700

M
in

 s
am

pl
es

 s
pl

it

Selected min_samples_split values

mmit.linear.hinge
mmit.squared.hinge

Figure S.4: Minimum number of examples required to split a leaf, for each of the five
cross-validation folds.

12

H
3K

27
ac

-H
3K

4m
e3

_T
D

H
A

M
_B

P
_F

P
O

P
H

3K
27

ac
-H

3K
4m

e3
_T

D
H

A
M

_B
P

_j
oi

nt
H

3K
36

m
e3

_A
M

_i
m

m
un

e_
FP

O
P

H
3K

36
m

e3
_A

M
_i

m
m

un
e_

P
D

P
A

H
3K

36
m

e3
_T

D
H

_i
m

m
un

e_
FP

O
P

H
3K

36
m

e3
_T

D
H

_i
m

m
un

e_
P

D
P

A
H

3K
36

m
e3

_T
D

H
_i

m
m

un
e_

jo
in

t
H

3K
36

m
e3

_T
D

H
_o

th
er

_F
P

O
P

H
3K

36
m

e3
_T

D
H

_o
th

er
_P

D
P

A
H

3K
4m

e3
_P

G
P

_i
m

m
un

e_
P

D
P

A
H

3K
4m

e3
_T

D
H

_i
m

m
un

e_
FP

O
P

H
3K

4m
e3

_T
D

H
_i

m
m

un
e_

P
D

P
A

H
3K

4m
e3

_T
D

H
_i

m
m

un
e_

jo
in

t
H

3K
4m

e3
_T

D
H

_o
th

er
_F

P
O

P
H

3K
4m

e3
_T

D
H

_o
th

er
_P

D
P

A
H

3K
4m

e3
_T

D
H

_o
th

er
_j

oi
nt

H
3K

4m
e3

_X
J_

im
m

un
e_

P
D

P
A

au
to

93
au

to
ho

rs
e

au
to

m
pg

au
to

m
pg

 (2
)

au
to

pr
ic

e
au

to
pr

ic
e

(2
)

ba
sk

ba
ll

bo
dy

fa
t

br
ea

st
tu

m
or

ch
ol

es
te

ro
l

cl
ev

el
an

d
cl

ou
d

cp
u

ec
ho

m
on

th
s

el
us

ag
e

fis
hc

at
ch

fru
itf

ly
ho

us
in

g
ho

us
in

g
(2

)
lo

w
bw

t
ly

m
ph

om
a.

m
ka

ta
ya

m
a

ly
m

ph
om

a.
td

h
m

ac
hi

ne
.c

pu
m

ba
gr

ad
e

m
ed

ul
lo

bl
as

to
m

a.
td

h
m

et
a

ne
ur

ob
la

st
om

a.
ba

c
ne

ur
ob

la
st

om
a.

ch
ib

a.
td

h
ne

ur
ob

la
st

om
a.

dr
.td

h
ne

ur
ob

la
st

om
aP

ro
ce

ss
ed pb

c
ph

ar
yn

x
po

llu
tio

n
pw

lin
ea

r
py

rim
se

ns
or

y
se

rv
o

se
rv

o
(2

)
si

m
ul

at
ed

.a
bs

si
m

ul
at

ed
.li

ne
ar

si
m

ul
at

ed
.s

in
sl

ee
p

st
oc

k
st

rik
e

tri
az

in
es

ve
te

ra
n

vi
ne

ya
rd

w
is

co
ns

in

0

5

10

15

20
M

ax
 d

ep
th

Selected max_depth values

mmit.linear.hinge
mmit.squared.hinge

Figure S.5: Maximum tree depth for each of the five cross-validation folds.

13

3.5 Software versions

To ensure the reproducibility of our results, we list the versions of the software that was used
to compare our algorithm to other methods:

1. Maximum margin interval trees:

• mmit v1.1.1 (Python package)

2. Transformation trees:

• trft v0.2-1 (R package)

• partykit v1.2-0 (R package)

3. Interval-CART:

• sklearn v0.18.1 (Python package)

14

References
Hocking, T. D., Schleiermacher, G., Janoueix-Lerosey, I., Boeva, V., Cappo, J., Delattre,

O., Bach, F., and Vert, J.-P. (2013). Learning smoothing models of copy number profiles
using breakpoint annotations. BMC Bioinformatics, 14(1), 164.

Lichman, M. (2013). UCI machine learning repository.

Rigaill, G., Hocking, T., Vert, J.-P., and Bach, F. (2013). Learning sparse penalties for
change-point detection using max margin interval regression. In Proc. 30th ICML, pages
172–180.

15

	Section 3 - Problem
	The effect of the margin hyperparameter

	Section 4 - Algorithm
	Proof: Lemma 1
	Proof: Optimality of the dynamic programming algorithm
	Proof: Number of pointer moves for the linear hinge loss
	Pseudocode and Implementation details
	What if the breakpoints are not all different?

	Section 5 - Results
	Protocol: Generating simulated data sets
	Protocol: Converting regression data sets to interval regression
	Additional result: Benchmark results on more data sets
	Additional result: Selected hyperparameter values for MMIT
	Software versions

