
APPENDIX: Uprooting and Rerooting Higher-Order Graphical Models

In this Appendix, we provide:

• In §9, proofs of results appearing in the main paper, split into:
– §9.1 Proofs of results from §4: Recovery of inference tasks
– §9.2 Proofs of results from §5: Even k-potentials
– §9.3 Proofs of results from §6: Sherali-Adams relaxations.

• In §10, additional experimental details and results.

Notation. A model M [G(V,E), (θE)E∈E ] uproots to M+[G+(V +, E+, (θE+)E+∈E+ ], where
G+ = ∇G. Given a model M with hyperedges E ∈ E and potentials (θE)E∈E , we adopt the
convention that in the uprooted model M+, each E+ = E ∪ {0} and each θE+ is the uprooted version
of the respective θE , as given in Definition 2.

For a set S, we write #S = |S| for its cardinality. For example, #{1, 2, 3} = 3.

9 Proofs of results from the main paper

9.1 Proofs of results from §4: Recovery of inference tasks

Proposition 5 (Recovering the partition function) Given a model M [G(V,E), (θE)E∈E ] with
partition function Z as in (1), the partition function Z+ of the uprooted model M+ is twice Z, and
the partition function of each rerooted model Mi is exactly Z, for any i ∈ V .

Proof. Recall that for the model M , we have

Z =
∑

xV ∈{0,1}V
exp

(∑
E∈E

θE(xE)

)
.

Writing Z+ for the partition function of M+, by definition we have

Z+ =
∑

xV ∪{0}∈{0,1}V ∪{0}

exp

( ∑
E+∈E+

θE+(xE∪{0})

)

=
∑

xV ∈{0,1}V
exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)
+

∑
xV ∈{0,1}V

exp

( ∑
E+∈E+

θE+(x0 = 1, xE)

)

=
∑

xV ∈{0,1}V
exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)
+

∑
xV ∈{0,1}V

exp

( ∑
E+∈E+

θE+(x0 = 1, xE)

)

=
∑

xV ∈{0,1}V
exp

(∑
E∈E

θE(xE)

)
+

∑
xV ∈{0,1}V

exp

(∑
E∈E

θE(xE)

)
= 2Z ,

as required. Now, given i ∈ V , and noting that M+ is also the uprooting of the model Mi,
it immediately follows from the above that the partition function associated with Mi is Z, as
required.

Proposition 6 (Recovering MAP configurations) From M+: xV is an arg max for p iff (x0 =
0, xV ) is an arg max for p+ iff (x0 = 1, xV ) is an arg max for p+. From a rerooted model Mi:
(xV \{i}, xi = 0) is an arg max for p iff (x0 = 0, xV \{i}) is an arg max for pi; (xV \{i}, xi = 1) is an
arg max for p iff (x0 = 1, xV \{i}) is an arg max for pi.

Proof. From M+: we simply note that by construction of the uprooted potentials, for any xV ∈
{0, 1}V we have ∑

E∈E
θE(xE) =

∑
E∈E

θ+E+(xE , x0 = 0) =
∑
E∈E

θ+E+(xE , x0 = 1),
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from which the claim immediately follows.

From Mi: we have

pi(xV \{i}, x0) ∝ p+(xV \{i}, x0, xi = 0) ,

which implies that

(xV ∪{0}\{i}) ∈ arg max pi ⇐⇒ (xV ∪{0}\{i}, xi = 0) ∈ arg max p+

⇐⇒ (xV ∪{0}\{i}, xi = 1) ∈ arg max p+

⇐⇒
{

(xV \{i}, xi = 0) ∈ arg max p if x0 = 0

(xV \{i}, xi = 1) ∈ arg max p if x0 = 1.

Proposition 7 (Recovering marginals) For a subset ∅ 6= U ⊆ V , we can recover from M+:

p(xU ) = p+(x0 = 0, xU ) + p+(x0 = 1, xU ) = 2p+(x0 = 0, xU ) = 2p+(x0 = 1, xU ).

To recover from a rerooted Mi: (i) For any i ∈ V \ U , p(xU ) = pi(x0 = 0, xU ) + pi(x0 = 1, xU ).

(ii) For any i ∈ U , p(xU ) =

{
pi(x0 = 0, xU\{i}) xi = 0

pi(x0 = 1, xU\{i}) xi = 1.

Proof. Let xU ∈ {0, 1}U . Observe that

p(xU ) =
1

Z

∑
xV \U

exp

(∑
E∈E

θE(xE)

)

=
1

Z

∑
xV \U

exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)

=
1

2Z

∑
xV \U

exp

( ∑
E+∈E+

θE+(x0 = 0, xE)

)
+
∑
xV \U

exp

( ∑
E+∈E+

θE+(x0 = 1, xE)

)
= p+(x0 = 0, xU ) + p+(x0 = 1, xU ) = 2p+(x0 = 0, xU ) = 2p+(x0 = 1, xU ) .

We next demonstrate recovery from a rerooted model Mi. Let Vi = V ∪ {0} \ {i}. By the definition
of rerooting and symmetry of M+, pi(xVi

) = p+(xVi
|xi = 0) = p+(xVi

|xi = 1). Further,
p+(xi = 0) = p+(xi = 1) = 1

2 for any i = 0, 1, . . . , n.

Case (i) i ∈ V \ U . Following the argument above, we obtain

p(xU ) = p+(x0 = 0, xU ) + p+(x0 = 1, xU )

= p+(x0 = 0, xU , xi = 0) + p+(x0 = 0, xU , xi = 1)

+ p+(x0 = 1, xU , xi = 0) + p+(x0 = 1, xU , xi = 1)

=
1

2

[
p+(x0 = 0, xU |xi = 0) + p+(x0 = 0, xU |xi = 1)

]
+

1

2

[
p+(x0 = 1, xU |xi = 0) + p+(x0 = 1, xU |xi = 1)

]
=

1

2

[
p+(x0 = 0, xU |xi = 0) + p+(x0 = 1, xU |xi = 1)

]
+

1

2

[
p+(x0 = 0, xU |xi = 1) + p+(x0 = 1, xU |xi = 0)

]
= pi(x0 = 0, xU ) + pi(x0 = 1, xU ).

Case (ii) i ∈ U . Now we have

p(xU ) = p+(x0 = 0, xU ) + p+(x0 = 1, xU )

=
1

2

[
p+(x0 = 0, xU |xi = 0) + p+(x0 = 0, xU |xi = 1)

]
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+
1

2

[
p+(x0 = 1, xU |xi = 0) + p+(x0 = 1, xU |xi = 1)

]
=

{
pi(x0 = 0, xU\{i}) if xi = 0

pi(x0 = 1, xU\{i}) if xi = 1.

9.2 Proofs of results from §5: Even k-potentials

Proposition 10 (All pure potentials are essentially even potentials) Let k ≥ 2, and |U | = k. If
θU :{0, 1}U→ R is a pure k-potential then θU must be an affine function of the even k-potential, i.e.
∃ a, b ∈ R s.t. θU (xU ) = a1[ |{i ∈ U |xi = 1}| is even] + b.

Proof. It is sufficient to demonstrate that if, for two configurations xU , yU ∈ {0, 1}U , we have∑
i∈U xi =

∑
i∈U yi mod 2, then θU (xU ) = θU (yU ), since this demonstrates that θU depends on

its input argument only through the quantity 1#{i∈U |xi=1} is even , and since this only takes on two
possible values, θU may be expressed as an affine function of this indicator.

To demonstrate the claim above, it is sufficient to show that if xU ∈ {0, 1}U , and i, j ∈ V are two
distinct indices, and Fij(xU ) ∈ {0, 1}U denotes the configuration obtained from xU by flipping
coordinates i and j, then θU (xU ) = θU (Fij(xU )). This is sufficient since given xU , yU ∈ {0, 1}U
with

∑
i∈U xi =

∑
i∈U yi mod 2, it is possible to obtain yU from xU by iteratively flipping pairs of

distinct variables.

Let Fi(xU ) denote the configuration obtained from xU by flipping xi. By the uniform marginalization
property, we have

p(xU ) + p(Fi(xU )) = p(Fj(xU )) + p(Fij(xU ))

and

p(Fi(xU )) + p(Fij(xU )) = p(xU ) + p(Fj(xU )) .

Subtracting these equations from one another yields

p(xU ) = p(Fij(xU )) .

Taking logarithms of this equations yields θU (xU ) = θU (Fij(xU )), as required.

Proposition 11 (Even k-potentials form a basis) For a finite set U , the set of even k-potentials(
1[ |{i ∈ W |Xi = 1}| is even]

)
W⊆U , indexed by subsets W ⊆ U , forms a basis for the vector

space of all potential functions θ : {0, 1}U → R.

Proof. We show that the indicators (1[#{i ∈W |xi = 1} is even])W⊆U form a basis for the vector
space of functions R{0,1}U ; we interpret the indicator corresponding to the empty set as being the
constant function equal to 1. Given this, we then note that P({0, 1}U ) is a convex subset of an
affine subspace of R{0,1}U of co-dimension 1, and that the indicator corresponding to the empty set is
orthogonal to this affine subspace. This is then sufficient to show that for any probability distribution
µ ∈P({0, 1}U ), there is a unique set of parameters (ηW )∅6=W⊆U such that

µ(xU ) =
∑

∅6=W⊆U

ηW1[#{i ∈W |xi = 1} is even] ,

as required.

To demonstrate that (1[#{i ∈ W |xi = 1} is even])W⊆U form a basis for the vector space of
functions R{0,1}U , we first note that it has the correct number of elements to form a basis, and it is
therefore sufficient to either demonstrate that it is a spanning set, or that it is a linearly independent
set; we take the latter approach.

Suppose we have a collection of coefficients (αW )W⊆U such that∑
W⊆U

αW1[#{i ∈W |xi = 1} is even] = 0 .
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Given a subset X ⊆ U , note that we have(
1[#{i ∈ X|xi = 1} is even]−1[#{i ∈ X|xi = 1} is odd]

)
·( ∑

W⊆U

αW1[#{i ∈W |xi = 1} is even]
)

= 0

=⇒
∑
W⊆U

αW
∑

x∈{0,1}U

(
1[#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is even]

− 1[#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is odd]

)
= 0.

(6)

Considering the summand above for a fixed subset W ⊆ U , note that if W = X , then the result
of summing over all configurations xU ∈ {0, 1}U is 2|U |−1. However, if W 6= X , the result of the
sum is 0. From this it immediately follows that αX = 0, and the proof of linear independence is
complete. An elegant perspective which demonstrates that the sum concerned above evaluates to 0
is to view {0, 1}U as a vector space over the finite field with 2 elements F2, with addition defined
componentwise. In this case, the set {x ∈ {0, 1}U |#{i ∈ W |xi = 1}} is exactly the kernel of
the linear form {0, 1}U 3 x 7→

∑
i∈W xi ∈ F2 (where the addition is to be interpreted modulo 2).

Considering the linear form {x ∈ {0, 1}U |#{i ∈W |xi = 1}} 3 x 7→
∑
i∈X xi ∈ F2, we observe

that the two sets

{x ∈ {0, 1}U |#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is even} and

{x ∈ {0, 1}U |#{i ∈W |xi = 1} is even,#{i ∈ X|xi = 1} is odd},
are the preimage of 0 ∈ F2 and 1 ∈ F2 under this linear form, respectively. Therefore, if the linear
form is surjective, the two sets have the same size, and since they are clearly disjoint, the relevant
term of (6) evaluates to 0. To see that the form is surjective, recall that by assumption X 6= W . If
X \W is non-empty, then surjectivity is demonstrated by changing a single coordinate corresponding
to an index in X \W . If X \W is empty, then W \X is non-empty, and by simultaneously chaning
a coordinate in W \X and X , surjectivity is demonstrated.

9.3 Proofs of results from §6: Sherali-Adams relaxations

Theorem 17. For a hypergraph G = (V,E), and integer r such that maxE∈E |E| ≤ r ≤ |V |, there
is an affine score-preserving bijection

Lr(G)
Uproot

�
RootAt0

L̃0
r+1(∇G) .

Proof. The structure of the proof is as follows. We first construct the uprooting map Uproot, which
we will denote by Ψ : Lk(G)→ L̃0

k+1(∇G) for notational convenience, and show that it is bijective
by exhibiting its double-sided inverse, RootAt0, which we will denote by Φ : L̃0

k+1(∇G)→ Lk(G).
We then directly show that this bijection is affine and score-preserving.

To construct Ψ, let µ ∈ Lk(G), and define

Ψ(µ) = µ+ = (µ+
U ) U⊆V
|U\{0}|≤k

∈ L̃0
k+1(∇G)

as follows. We begin defining the measures µ+
U for subsets U not including the additional element

0 ∈ V + in the suspension graph; let U ⊆ V with |U | ≤ k. We define the ‘symmetrized’ measures

µ+
U (xU ) =

1

2

[
µU (xU ) + µU (xU )

]
∀xU ∈ {0, 1}U . (7)

Now turning our attention to subsets that do contain the new element 0 ∈ V +, we writeU+ = U∪{0},
and define:

µ+
U+(xU+) =

{
1
2µU (xU ) if x0 = 0
1
2µU (xU ) if x0 = 1

∀xU+ ∈ {0, 1}U
+

. (8)
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We define µ{0}(x0) to take value 1/2 for x0 = 0 and x0 = 1. We have now defined the entire
collection of probability measures µ+. Note that by construction, each individual measure in the
collection is flipping-invariant, and by observing the form of Equations (7) and (8), we observe that
the map is affine. We now demonstrate consistency of these measures. Let W ⊂ U ⊆ V ∪ {0}. We
aim to demonstrate

µ+
W (xW ) =

∑
yU∈{0,1}U
yW=xW

µ+
U (yU ) (9)

There are three cases to consider: (i) W 6⊆ V (i.e. both subsets contain 0), (ii) U ⊆ V (i.e. neither
subset contains 0), (iii) 0 ∈ U, 0 6∈ W . In the first two cases, the marginalization consistency
condition of Equation (9) follows immediately from the definitions in Equations (7) and (8), and
recalling the consistency of the collection of measures µ. For case (iii), we write U = A ∪ {0} for
A ⊂ V and directly calculate:∑

yU∈{0,1}U
yW=xW

µ+
U (yU ) =

∑
yU∈{0,1}U
yW=xW
y0=0

1

2
µA(yA) +

∑
yU∈{0,1}U
yW=xW
y0=1

1

2
µA(FA(yA))

=
∑

yA∈{0,1}A
yW=xW

1

2
µA(yA) +

∑
yA∈{0,1}A
yW=xW

1

2
µA(FA(yA))

=
∑

yA∈{0,1}A
yW=xW

µ+
A(yA) ,

so µ+
U and µ+

A are consistent. The consistency of µ+
U and µ+

W then follows from case (ii). Having
checked consistency, we have verified that the map Ψ : Lk(G)→ L̃0

k+1(∇G) is well-defined. We
now exhibit its inverse. Given η ∈ L̃0

k+1(∇G), we define Φ(η) = µ = (µU )|U |≤k ∈ Lk(G) as
follows. Given U ⊆ V , |U | ≤ k, write U+ = U ∪ {0}, and define

µU (xU ) = ηU+(x0 = 0, xU ) + ηU+(x0 = 1, xU )

We now directly show that for µ ∈ Lk(G), we have Φ(Ψ(µ)) = µ. We take |U | ≤ k, and note that
from our definitions of Ψ and Φ, we have for all xU ∈ {0, 1}U that

Φ(Ψ(µ))U (xU ) = µ+
U (xU , x0 = 0) + µ+

U (xU , x0 = 1) =
1

2
µU (xU ) +

1

2
µU (xU ) = µU (xU ) .

Now let µ ∈ L̃0
k+1(G). We demonstrate that µ′′ = Ψ(Φ(µ)) = µ. First, for U ⊆ V , |U | ≤ k, we

have

Ψ(Φ(µ))U (xU ) =
1

2

(
µ+
U (xU ) + µ+

U (xU )
)

=
1

2

(
µU∪{0}(xU , x0 = 0) + µU∪{0}(xU , x0 = 1)

+ µU∪{0}(xU , x0 = 0) + µU∪{0}(xU , x0 = 1)
)

=
1

2
(µU (xU ) + µU (xU ))

= µU (xU ) ,

where in the final equality we have used the flipping-invariance of µU . Secondly, for U ⊆ V , write
U+ = U ∪ {0}, and note

Ψ(Φ(µ))U+(xU+) =
1

2
µ+
U (xU )1[x0 = 0] +

1

2
µ+
U (xU )1[x0 = 1]

=
1

2
(µU+(xU , x0 = 0) + µU+(xU , x0 = 1))1[x0 = 0]

+
1

2

(
µU+(xU , x0 = 0) + µU+(xU ), x0 = 1)

)
1[x0 = 1]
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=
1

2

(
µU+(x+U ) + µU+(xU+)

)
1[x0 = 0]

+
1

2
(µU+(xU+) + µU+(xU+)))1[x0 = 1]

= µU+(xU+) ,

where again in the final equality we have used the flipping-invariance of µU+ .

Finally, to see that the map is score-preserving, let (θE)E∈E be a collection of potentials defining a
model on G = (V,E). Then for any µ+ ∈ L0

k+1(G), note that we have∑
E∈E

EXE∪{0}∼µ+
E∪{0}

[
θE∪{0}(XE∪{0})

]
=
∑
E∈E

∑
xE+∈{0,1}E+

θC+(xC+)µ+
E+(xE+)

=
∑
E∈E

 ∑
xE+∈{0,1}E

+

x0=0

θE+(xE+)µ+
E+(xE+) +

∑
xE+∈{0,1}E

+

x0=1

θE+(xE+)µ+
E+(xE+)



=
∑
E∈E

 ∑
xE+∈{0,1}E

+

x0=0

θE(xE)
1

2
µE(xE) +

∑
xE+∈{0,1}E

+

x0=1

θE(xE)
1

2
µE(xE)


=
∑
E∈E

∑
xC∈{0,1}C

θE(xE)µE(xE)

=
∑
E∈E

EXE∼µE [θE(XE)] ,

as required.

Lemma 19. If Lr is universally rooted for hypergraphs of maximum hyperedge degree p < r with
p even, then Lr is also universally rooted for r-admissible hypergraphs with maximum degree p+ 1.

Proof. The key observation is that given some set of variables xU of size p + 1, if we have a set
of flipping-invariant probability measures on {0, 1}W for each subset W ⊆ U of size p which are
consistent, then by Proposition 11, then a flipping-invariant probability measure over {0, 1}U is
specified by one additional parameter. The parameter corresponds to the even potential U , and is
given by

P(|{i ∈ U |xi = 1}| is even)

But since p+ 1 is odd, and we require the measure to be flipping-invariant, the only possible value for
this parameter must be 1/2. Moreover, taking the parameter to be 1/2 must yield a valid distribution
over {0, 1}U , as we assumed that the measures on each of {0, 1}W (W ⊆ U , |W | = p) were
consistent.

This demonstrates that given a hypergraphGwith maximum hyperedge degree p+1, we can construct
a new hypergraph G′ = (V,E′), with the same vertex set as G, and hyperedge set defined by

E′ = {E ∈ E||E| ≤ p} ∪ {U ⊂ V |U ⊆ E ∈ E, |E| = p+ 1 , |U | = p}

From our argument above, we have Lr(G) is in affine bijection with Lr(G′), and since G′ has
maximum hyperedge degree p, the statement of the lemma follows.

Theorem 20. L3 is universally rooted.
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Proof. We observe that it is straightforward to extend the analysis in the Appendix of [19] to
demonstrate that for any hypergraph of maximum hyperedge degree 2, there exists a score-preserving
affine bijection between L3(G) and each of its rerootings. We now combine this with the observation
of Lemma 19, taking p = 2, from which the statement of the theorem immediately follows.

Theorem 21. L3 is unique in being universally rooted. Specifically, for any integer r > 1 other
than r = 3, we constructively demonstrate a hypergraph G = (V,E) with |V | = r + 1 variables for
which L̃0

r+1(∇G) 6= L̃ir+1(∇G) for any i ∈ V .

Proof. For each k 6= 3, we shall constructively demonstrate a model M on hypergraph G as stated
such that the LP relaxation over Lk(G) is not tight for M but the LP relaxation over Lk(∇G \ {i})
is tight for every rerooted model Mi, i ∈ V .

Case 1: k is even. Let G = (V,E), with V = {1, . . . , k + 1}, and E the set of all subsets of V of
size k. Consider a model with the following set of potentials on this hypergraph:

θE(xE) = −1[#{i ∈ E|xi = 1} is even] ∀E ∈ E . (10)

The optimum score for a configuration xV ∈ {0, 1}V is −1. We show this by demonstrating (i) that
the optimum is at most -1 (which is all we need here), then (ii) that the optimum is at least -1. For (i):
Toward contradiction, assume that there exists a configuration that does not activate any of the θE
potentials, i.e. all k-clusters have an odd number of 1s. Pick one of the k-clusters and call it S. Since
k ≥ 2 is even, S contains at least one variable set to 0, call it x, and at least one set to 1, call it y.
Now V has k + 1 variables consisting of S together with one more variable z. If z = 0 then consider
the k-cluster T = S \ {y} ∪ {z}. If z = 1 then let T = S \ {x} ∪ {z}. In either case, T has an even
number of 1s, contradiction. For (ii): Consider the setting x1 = 1 with all other variables set to 0. All
k-clusters including x1 are inactive. There is just one k-cluster not including x1, and this k-cluster
has no 1s thus its potential is active. Hence, this configuration achieves a score of −1.

However, the set of pseudomarginal distributions in Lk(G) below attains a score of 0:

µE(xE) =
1

k

∑
i∈E

δxi=1,xE\{i}=0 ∀E ∈ E .

Now observe that when this model is uprooted, we have the hypergraph ∇G = (V +, E), where
V + = {0} ∪ V , and the hyperedge set E+ = E as before with the same set of potentials as in (10),
by Lemma 12. Therefore, rerooting at a variable i ∈ {1, . . . , k + 1} will result in a graphical model
on the graph∇G \ {i} with vertices {0, 1, . . . , k+ 1} \ {i}, and hyperedges given by one hyperedge
of size k (the original hyperedge which did not include i), which is {1, . . . , k + 1} \ {i}, along with
all subsets of {1, . . . , k + 1} \ {i} of size k − 1. In particular, the model consists of potentials over
the set of k variables {1, . . . , k + 1} \ {i}, and the variable X0 is independent from the rest of the
variables, with symmetric distribution on its state space {0, 1}. Therefore, the polytope Lk(∇G\{i})
is tight for this potential since it is effectively a model over k variables, proving the claim.

Case 2: k ≥ 5 is odd. Let k ≥ 5 be odd, and again let G = (V,E), with V = {1, . . . , k + 1}, this
time letting E be the set of all subsets of V of size k − 1 (an even number). Consider the following
set of potentials on this hypergraph

θE(xE) = −1[#{i ∈ E|xi = 1} is even] ∀E ∈ E .

We note that the polytope Lk(G) is not tight for this polytope, by considering the following set of
pseudomarginals over hyperedges of G:

µE(xE) =
1

k
δxi=0∀i∈E +

1

k

∑
i∈E

δxi=1,xE\{i}=0 ∀E ∈ E .

These are valid pseudomarginals in Lk(G), as the following distributions over k-clusters are consistent
and marginalize down to the distributions over hyperedges:

µU (xU ) =
1

k

∑
i∈U

δxi=1,xU\{i}=0 ∀U ⊆ V , |U | = k .
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Note that the score of this set of pseudomarginals is∑
E∈E
−µE(#{i ∈ E|xi = 1} is even) = −

(
k + 1

k − 1

)
1

k
= −k + 1

2

We now argue that this exceeds the maximum score obtainable by a configuration xV ∈ {0, 1}V ,
demonstrating non-tightness of Lk(G) for this model. To see this, let ` ∈ {0, . . . , k + 1} be the
number of non-zero coordinates of xV . We count the number of subsets U of {1, . . . , k + 1} of size
k − 1 for which xU has an even number of non-zero coordinates, and show that this is greater than
(k + 1)/2, leading to a score less than −(k + 1)/2. The number of such subsets is given by:

b`/2c∑
p=0

(
`

2p

)(
k + 1− l
k − 1− 2p

)
=


(k + 1)(k − 1)/2 ` = 0(
`
`−2
)(
k+1−l
k+1−l

)
+
(
`
`

)(
k+1−l
k−1−`

)
= `(`−1)

2 + (k+1−`)(k−`)
2 ` 6= 0 even(

`
`−1
)

+
(
k+1−`
k−`

)
= k + 1 ` odd.

For ` odd and ` = 0 the conclusion is clear, and for ` even and non-zero, we observe that the quadratic
expression in ` above is minimized at ` = (k + 1)/2 (which is an integer, as k is odd), and takes the
value (k2 − 1)/4, which is greater than (k + 1)/2 for all odd k ≥ 5 (though the two values are equal
for k = 3).

Now observe that when this model is uprooted and subsequently rerooted at a new variable i ∈ V , we
obtain a model on k + 1 variables, but with the variable X0, introduced by uprooting, independent
from the rest. Therefore, the model is effectively over only k variables, and hence it follows that
Lk(∇G \ {i}) is tight for this rerooting, proving the claim.

10 Additional Experimental Details and Results

In this section, we expand on the Experiments Section 7 of the main paper to provide:

• §10.1: Model structures and parameters used for libDAI
• §10.2: How we fit constants of the clamp selection heuristics
• §10.3: Additional experimental results

– §10.3.1: Timings
– §10.3.2: MAP inference
– §10.3.3: Marginals
– §10.3.4: Higher-order potentials over clusters of 5 and 6 variables
– §10.3.5: Comparison of our heuristics to the maxtW heuristic used in [19]
– §10.3.6: Larger models

• §10.4: Additional discussion

10.1 Model structures and parameters used for libDAI

In this section we give further information about the model structures used in our experiments, as
well as the methods of approximate inference used. All potentials are pure k-potentials, as in §5,
which for brevity we may write simply as a k-potential.

Complete graphs For complete graph experiments, there is a pure k-potential for each subset of k
variables, for k = 1, 2, 3, 4.

Grids All grids are square and toroidal. There is a 1-potential for each variable, and a 2-potential for
each edge of the graph. There is a 3-potential for each possible “L-shaped” connected subgraph of
size 3 (any of the four possible orientations), and a 4-potential for each cycle of size 4.

Potentials In our experiments, unless otherwise specified, the default is that all pure 2- and 4-
potential coefficients are drawn independently from Unif([−8, 8]) distributions, while all pure 1-
and 3-potential coefficients are set to 0. Using the notation of Section 7, in each experiment a
parameter Wmax is varied, and the default distribution of one class of pure potentials (either 1-, 2-,
3-, or 4-potentials) is overrided from the default specification to be replaced by coefficients from a
Unif([−Wmax,Wmax]) distribution.

LibDAI settings In all cases, we use the junction tree algorithm with Hugin updates for exact
inference. For approximate marginal inference, we use the LibDAI HAK implementation of [4], with
precise parameters passed to MATLAB given by:
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'[doubleloop=1,clusters=BETHE,init=UNIFORM,tol=1e-9,maxiter=10000]'.

For approximate marginal inference, we use the LibDAI BP loopy belief propagation implementation,
with precise parameters passed to MATLAB given by:

'[inference=MAXPROD,updates=SEQFIX,logdomain=1,tol=1e-9,maxiter=10000,damping=0.0]'

10.2 How we fit constants of the clamp selection heuristics

In this section we give further details of how the K and G heuristics used in our experiments were
fitted, expanding on the explanation given in Section 7. Using the notation developed in Section 7,
the family of heuristics we consider maximize the following measure

clamp-heuristic-measure(i) =
∑

i∈E:|E|=2

c2 tanh |t2aE |+
∑

i∈E:|E|=4

c4 tanh |t4aE | , (11)

over i ∈ V +, and are parametrized by the four scalars t2, c2, t4, c4. We first note that 11 is over-
parametrized (since we are interested only in ranking the scores for each variable in M+), so we take
c2 = 1. To fit the heuristic, we used gradient-free optimisation. For the K heuristic, we generated
a collection of graphical models on K8, and constructed a fitness function over the remaining
parameters t2, c4, t4, given by the average ranking of the rerooting selected by the heuristic for logZ
estimation across our collection of complete graphs.

We then initialized the parameters t2 = 0, c4 = 1, t4 = 0, and performed a local exploration of the
parameter space dictated by a Gaussian random walk, updating our parameter settings when they led
to an improvement in the value of the fitness function.

The G heuristic was constructed similarly, instead using a collection of grids to define the fitness
function.

The precise values of the fitted heuristics are given below:

K-heuristic-measure(i) =
∑

i∈E:|E|=2

c2 tanh |0.051aE |+
∑

i∈E:|E|=4

0.091 tanh |1.482aE |,

G-heuristic-measure(i) =
∑

i∈E:|E|=2

c2 tanh |0.019539aE |+
∑

i∈E:|E|=4

0.3788 tanh |0.033997aE |.

The heuristic of [19], maxtW , applied only to pairwise models, and in the notation of our paper, was
given by the following clamping score measure:

clamp-heuristic-measure(i) =
∑

i∈E:|E|=2

tanh |1
2
aE |. (12)

Recognizing that the benefits of our heuristics appeared somewhat robust to exact parameter choice,
when we extended analysis to 6-potentials in §10.3.4, we extended our K heuristic by eye (without
fitting to any data, and before examining the results for higher order models), and explore a variant
on the G heuristic. We used the following measures:

K-heuristic-measure(i) =
∑

i∈E:|E|=2

tanh |0.2aE |+
∑

i∈E:|E|=4

1

3
tanh |1.2aE |+

∑
i∈E:|E|=6

1

5
tanh |3aE |,

G-heuristic-measure(i) =
∑

i∈E:|E|=4

|aE |.

10.3 Additional experimental results

We provide the following:

• §10.3.1: Timings
• §10.3.2: MAP inference
• §10.3.3: Marginals
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• §10.3.4: Higher-order potentials over clusters of 5 and 6 variables
• §10.3.5: Comparison of our heuristics to the maxtW heuristic used in [19]
• §10.3.6: Larger models

In all plots, if the red curve for the K heuristic is not visible, it coincides with the green curve for the
G heuristic. We use consistent legends across all plots.

10.3.1 Timings

Times in seconds to run marginal inference (i.e. estimating logZ and marginals) using libDAI are
shown in Figure 3. Inference for rerooted models took a similar amount of time as for the original
model. We caution against relying heavily on the accuracy of these timings since we made no attempt
to optimize our code for speed, and we ran our inference algorithms in a cluster environment beyond
our control.

Time/sec to run marginal inference for K8 complete hypergraphs (fully connected) on 8 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 3: Average time to perform marginal inference using libDAI over 20 runs. If not shown, Wmax max
coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. Best and worst refer to
the rerootings which ex post gave the lowest error in estimating logZ. See §10.3.1.

10.3.2 MAP inference

Results are shown in Figure 4. We observe here that rerooting does not help much when 1-pots are
varied, but can provide great benefit for the other cases shown. The K heuristic (which was trained
on complete graphs like the one we analyze here) performs well in all settings. Curiously, the G
heuristic (which was trained only on grids) performs well when 2-pots or 4-pots are varied, but not
when 3-pots are varied (though even here it does no worse than the original rooting). We aim to
explore this further in future work.

Error in estimating MAP score for K8 complete hypergraphs (fully connected) on 8 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 4: Average error in estimating MAP score using libDAI over 20 runs. If not shown, Wmax max
coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. Best and worst refer to
the rerootings which ex post gave the lowest error in estimating logZ. See §10.3.2.

10.3.3 Marginals

Results are shown in Figure 5. Our models were selected to present an interesting range of problems
for partition function estimation, which led to marginals often being challenging to estimate. Still,
results for marginal inference were often improved by rerooting.

We note that another natural way to estimate marginals is as the ratio of a clamped partition function to
the original partition function. Since we have seen good evidence that rerooting can help significantly
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with partition function estimation, it is reasonable to hope that in future work, we may observe
significant benefits to marginal inference via this approach by using rerooting.

Error in estimating 1-marginals for K8 complete hypergraphs (fully connected) on 8 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 5: Average `1 error in estimating marginals (minimal representation corresponding to pure k-potentials,
see §5) using libDAI over 20 runs. If not shown, Wmax max coefficients for pure k-potentials are 0 for k = 1, 8
for k = 2, 0 for k = 3, 8 for k = 4. Best and worst refer to the rerootings which ex post gave the lowest error in
estimating logZ. See §10.3.3.

10.3.4 Higher-order potentials over clusters of 5 and 6 variables

Results for a complete hypergraph K8 on 8 variables, this time with potentials up to order 6, are
shown in Figure 6. In all cases, rerooting using our heuristics is very helpful.

Error in estimating logZ (left) and MAP score (right) for K8 hypergraphs on 8 variables with potentials up to order 6.

vary Wmax for 5-pots vary Wmax for 6-pots vary Wmax for 5-pots vary Wmax for 6-pots

Figure 6: Average error in estimating logZ (left) and MAP score (right) using libDAI over 20 runs. If not
shown, Wmax max coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. Best
and worst refer to the rerootings which ex post gave the lowest error in estimating logZ. See §10.3.4.

10.3.5 Comparison of our heuristics to the maxtW heuristic used in [19]

Results for a complete graph K8 on 8 variables, this time with potentials only up to order 2, are
shown in Figure 7. We have added the earlier maxtW heuristic used in [19], which using our notation
corresponds to setting t2 = 1

2 in (5). Note that for the pairwise models considered here, the clamp
heuristic constants for potentials of order higher than 2 are irrelevant.

We observe that our K and G heuristics (which were fit on different models with potentials up to
order 4, so here are out of sample) achieve similar performance to the earlier maxtW heuristic, in fact
yielding slightly better results. This is encouraging evidence for robustness of the simple form of
heuristic score (5).

10.3.6 Larger models

Results for a complete hypergraph K10 on 10 variables (potentials up to order 4) are shown in Figure
8. Results are qualitatively similar to those for smaller models in §7 of the main paper.

10.4 Additional discussion

When discussing pure k-potentials in §5, we observed that for a pure k-potential (which we showed
must essentially be an even k-potential) with k an even number, θE(xE) = θE(xE). This means that
the coefficient of any such k-potential is invariant with respect to a flipping of all variables of the
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Average abs(error) in logZ for K8 complete pairwise graphs (fully connected) on 8 variables:
adding earlier maxtW heuristic for comparison (our K and G heuristics coincide on these runs).

vary Wmax for 1-pots vary Wmax for 2-pots

Figure 7: Error in estimating logZ for random pairwise models with various pure k-potentials over 20 runs. If
not shown, Wmax max coefficients for pure k-potentials are 8 for k = 1, and 8 for k = 2. K and G heuristics
coincide. See §10.3.5.

Average abs(error) in logZ for K10 complete hypergraphs (fully connected) on 10 variables.

vary Wmax for 1-pots vary Wmax for 2-pots vary Wmax for 3-pots vary Wmax for 4-pots

Figure 8: Error in estimating logZ for random models with various pure k-potentials over 20 runs. If not
shown, Wmax max coefficients for pure k-potentials are 0 for k = 1, 8 for k = 2, 0 for k = 3, 8 for k = 4. See
§10.3.6.

model (whereas the if k is an odd number, the coefficient will flip sign). Hence for k even, the sign of
the coefficient may be regarded as a fundamental property of the potential.

When k = 2 this sign dicatates the submodularity or supermodularity of the 2-potential. If all
potentials are pure 2-potentials with positive coefficients, then the model is regular or ferromagnetic
and typically admits easier inference.

For higher k, this is no longer true. However, note that still if we represent a model’s potentials in
terms of pure k-potentials, and all have k even with a positive coefficient, then the model is special in
the sense that:

• The configurations of all 0s and all 1s must be mode configurations, typically with signifi-
cantly higher probabilities than others.

• Inference will typically be relatively straightforward.
• If the model is rerooted, then this will effectively clamp all variables close to 0 or 1 and the

error of approximate inference should be low.
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