
A Proof of Theorem 2

From Eq.(11), we have

KX

y=1

LOVA(f(x), y) =
1

K � 1

KX

y=1

X

y 6=y

`

�
gy(x)

�
+

KX

y=1

`

�
� gy(x)

�

=

KX

y=1

�
`

�
gy(x)

�
+ `

�
� gy(x)

��
= K.

LOVA(f(x), y) + LOVA(f(x), y) = `

�
gy(x)

�
+

1

K � 1

X

y 6=y

`

�
� gy(x)

�

+

1

K � 1

X

y0 6=y

`

�
gy0

(x)

�
+ `

�
� gy(x)

�
= 2,

KX

y=1

LPC

�
f(x), y

�
=

KX

y=1

X

y 6=y

`

�
gy(x)� gy(x)

�

=

K�1X

y=1

KX

y=y+1

⇣
`

�
gy(x)� gy(x)

�
+ `

�
gy(x)� gy(x)

�⌘
=

K(K � 1)

2

,

LPC(f(x), y) + LPC(f(x), y) =

X

y0 6=y

`

�
gy(x)� gy0

(x)

�
+

X

y0 6=y

`

�
gy0

(x)� gy(x)
�
= K � 1.

B Proof of Lemma 3

By definition, h(xi, yi) =
eLOVA(f(xi), yi) so that
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After rewriting eLOVA(f(xi), yi), we can know that
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è
(�gyi

(xi)),

and subsequently,

Rn(HOVA) 
1

K � 1

ESE�

2

4
sup

g1,...,gK2G
1

n

X

(xi,yi)2S
�i

X

y

è
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The first term is independent of yi and thus
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which means the first term can be bounded by K/(K � 1) · Rn(
è� G). The second term is more

involved. Let I(·) be the indicator function and ↵i = 2I(y = yi)� 1, then
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where we used that ↵i�i has exactly the same distribution as �i. This can be similarly bounded by
Rn(

è� G) and the second term can be bounded by K(K � 2)/(K � 1) ·Rn(
è� G).

As a result,
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according to Talagrand’s contraction lemma [19].

C Proof of Lemma 4

By definition,

Rn(HPC) = ESE�

2

4
sup

g1,...,gK2G
1

n

X

(xi,yi)2S
�i

0

@
X

y0 6=yi

è
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Using the proof technique for handling the second term in the proof of Lemma 3, we have
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due to the sub-additivity of the supremum.

Let
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then according to Talagrand’s contraction lemma [19],

EXE�

2

4
sup

gy,gy02G
1

n

X

xi2X
�i
è
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This proves that Rn(HPC)  2K(K � 1)L`Rn(G).

D Proof of Lemma 5

We are going to prove the case of LOVA; the other case is similar. We consider a single direction
supg1,...,gK2G( bR(f)�R(f)) with probability at least 1� �/2; the other direction is similar too.

Given the symmetric condition (11), it must hold that kLOVAk1 = 2 when g1, . . . , gK can be
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or equivalently, with probability at least 1� �/2,
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Since R(f) = E[ bR(f)], it is a routine work to show by symmetrization that [23]
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