
Training Quantized Nets: A Deeper Understanding
Appendices

Here we present proofs of the lemmas and theorems presented in the main paper, as well as some additional
experimental details and results.

A Proof of Lemma 1
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B Proof of Theorem 1

Proof. From the update rule (6), we get:
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where rt denotes the quantization used on the t-th iteration. Subtracting by the optimal w?, taking norm, and
taking expectation conditioned on wt, we get:
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where we use the bounded variance assumption, E[rt] = 0, and Lemma 1. Using the assumption that F is
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Re-arranging the terms, and taking expectation we get:
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Using Jensen’s inequality, we have:
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C Proof of Theorem 2

Proof. From the update rule (6), we have,
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D Proof of Theorem 3
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Assuming the domain has finite diameter D, and observing that the quantization error for BC-SGD can always
be upper-bounded as krtk 
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F Proof of Theorem 5
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and so ˜T
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G Proof of Theorem 6

Proof. Given some distribution ⇡ over the states of the markov chain, and some set A of states, let [⇡]
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and so for some ↵ the inequality (10) is violated. This is a contradiction because it was assumed M
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H Additional Experimental Details & Results

H.1 Neural Net Architecture & Training Details

We train image classifiers using two types of networks, VGG-like CNNs [24] and Residual networks [25], on
CIFAR-10/100 [31] and ImageNet 2012 [26]. VGG-9 on CIFAR-10 consists of 7 convolutional layers and 2 fully
connected layers. The convolutional layers contain 64, 64, 128, 128, 256, 256 and 256 of 3⇥3 filters respectively.
There is a Batch Normalization and ReLU after each convolutional layer and the first fully connected layer. The
details of the architecture are presented in Table 2. VGG-BC is a high-capacity network used for the original BC
method [5], which contains 6 convolutional layers and 3 linear layers. We use the same architecture as in [5]
except using softmax and cross-entropy loss instead of SVM and squared hinge loss, respectively. The details
of the architecture are presented in Table 3. ResNets-56 has 55 convolutional layers and one linear layer, and
contains three stages of residual blocks where each stage has the same number of residual blocks. We also create
a wide ResNet-56 (WRN-56-2) that doubles the number of filters in each residual block as in [32]. ResNets-18
for ImageNet has the same description as in [25].

The default minibatch size is 128. However, the big-batch SR-ADAM method adopts a large minibatch size (512
for WRN-56-2 and ResNet-18 and 1024 for other models). Following [5], we do not use weight decay during
training. We implement all models in Torch7 [33] and train the quantized models with NVIDIA GPUs.

Similar to [3], we only quantize the weights in the convolutional layers, but not linear layers, during training.
Binarizing linear layers causes some performance drop without much computational speedup. This is because
fully connected layers have very little computation overhead compared to Conv layers. Also, for state-of-the-art
CNNs, the number of FC parameters is quite small. The number of params of Conv/FC layers for CNNs in Table
1 are (in millions): VGG-9: 1.7/1.1, VGG-BC: 4.6/9.4, ResNet-56: 0.84/0.0006, WRN-56-2: 3.4/0.001, ResNet-
18: 11.2/0.5. While the VGG-like nets have many FC parameters, the more efficient and higher performing
ResNets are almost entirely convolutional.

Table 2: VGG-9 on CIFAR-10.

layer type kernel size input size output size
Conv_1 3⇥ 3 3 ⇥ 32⇥ 32 64 ⇥ 32⇥ 32

Conv_2 3⇥ 3 64 ⇥ 32⇥ 32 64 ⇥ 32⇥ 32

Max Pooling 2⇥ 2 64 ⇥ 32⇥ 32 64 ⇥ 16⇥ 16

Conv_3 3⇥ 3 64 ⇥ 16⇥ 16 128⇥ 16⇥ 16

Conv_4 3⇥ 3 128⇥ 16⇥ 16 128⇥ 16⇥ 16

Max Pooling 2⇥ 2 128⇥ 16⇥ 16 128⇥ 8 ⇥ 8

Conv_5 3⇥ 3 128⇥ 8 ⇥ 8 256⇥ 8 ⇥ 8

Conv_6 3⇥ 3 256⇥ 8 ⇥ 8 256⇥ 8 ⇥ 8

Conv_7 3⇥ 3 256⇥ 8 ⇥ 8 256⇥ 8 ⇥ 8

Max Pooling 2⇥ 2 256⇥ 8 ⇥ 8 256⇥ 4 ⇥ 4

Linear 1⇥ 1 1⇥ 4096 1⇥ 256

Linear 1⇥ 1 1⇥ 256 1⇥ 10

Table 3: VGG-BC for CIFAR-10.

layer type kernel size input size output size
Conv_1 3⇥ 3 3 ⇥ 32⇥ 32 128⇥ 32⇥ 32

Conv_2 3⇥ 3 128⇥ 32⇥ 32 128⇥ 32⇥ 32

Max Pooling 2⇥ 2 128⇥ 32⇥ 32 128⇥ 16⇥ 16

Conv_3 3⇥ 3 128⇥ 16⇥ 16 256⇥ 16⇥ 16

Conv_4 3⇥ 3 256⇥ 16⇥ 16 256⇥ 16⇥ 16

Max Pooling 2⇥ 2 256⇥ 16⇥ 16 256⇥ 8 ⇥ 8

Conv_5 3⇥ 3 256⇥ 8 ⇥ 8 512⇥ 8 ⇥ 8

Conv_6 3⇥ 3 512⇥ 8 ⇥ 8 512⇥ 8 ⇥ 8

Max Pooling 2⇥ 2 512⇥ 8 ⇥ 8 512⇥ 4 ⇥ 4

Linear 1⇥ 1 1⇥ 8192 1⇥ 1024

Linear 1⇥ 1 1⇥ 1024 1⇥ 1024

Linear 1⇥ 1 1⇥ 1024 1⇥ 10

H.2 Convergence Curves

The convergence curves for training and testing errors reported in Table 1 are shown in Figure 6.

17



(a) VGG-9 on CIFAR-10 (b) VGG-BC on CIFAR-10 (c) ResNet-56 on CIFAR-10

(d) WSN-56-2 on CIFAR-10 (e) ResNet-56 on CIFAR-100 (f) ResNet-18 on ImageNet 2012

Figure 6: Training and testing errors of different training methods for VGG-9, VGG-BC, ResNet-56, Wide-
ResNet-56-2 and ResNet-18. The solid line is the training error and the dashed line is the testing error.

H.3 Weight Initialization and Learning Rate

For experiments on SR-Adam and R-Adam, the weights of convolutional layers are intitialized with random
Rademacher (±1) variables. The authors of BC [5] adopt a small initial learning rate (0.003) and it takes 500
epochs to converge. It is observed that large binary weights (� = 1) will generate small gradients when batch
normalization is used [34], hence a large learning rate is necessary for faster convergence. We experiment with a
larger learning rate (0.01) and find it converges to the same performance within 160 epochs, comparing with 500
epochs in the original paper [5].

H.4 Weight Decay

Figure 7 shows the effect of applying weight decay to BC-ADAM. As shown in Figure 7(a), BC-ADAM
with 1e-5 weight decay yields worse performance compared to zero weight decay. Applying weight decay in
BC-ADAM will shrink w

r

to 0, as well as increase the distance between w
b

and w
r

. Figure 7(b) and 7(c) shows
the distance between w

b

and w
r

during training. With 1e-5 weight decay, the average weight difference between
w

b

and w
r

approaches 1, which indicates w
r

is close to zero. Weight decay cannot “decay” the weight of SR as
kw

b

k2 is the same for all binarized networks.

(a) WD=1e-5 vs WD=0 (b) |wt

b

� wt

r

|, WD=1e-5 (c) |wt

b

� wt

r

|, WD=0

Figure 7: The effect of weight decay (WD) on BC-ADAM for training VGG-BC. The y-axis of (b) and (c) is the
averaged weight difference between the binary weights w

b

and the real-valued weights w
r

, i.e., 1
d

kwt

b

� wt

r

k1.
where d is the number of weights in w

b

.
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