
Notation Explanation Default value (if exists)
Data Constants

T Recording length
C Total number of channels
N Number of detected spikes
t

n

Temporal location of spike n

c

n

Index of the main channel of spike n

C

eff

Number of neighboring channels (including the main channel)
G Number of representative points after the Coreset algorithm

Data structures
V 2 RT⇥C Recording
Xn 2 RR⇥C Voltage trace (waveform) of spike n

mn 2 [0, 1]

C Masking vector for spike n

Yn 2 RP⇥C

Xn mapped to the feature (PCA) space
x

nc

,y

nc

c

th column of X
n

,Y

n

m

nc

c

th entry of m
m

˜

Xn, ˜xnc

,

˜

Yn, ˜ync

Virtual data distribution of X
n

,x

nc

,Y

n

,y

nc

P 2 RT⇥C Probability output of NN
Wk 2 RR⇥C Template of cluster k
m

w

k

2 {0, 1}C Mask of cluster k

Parameters
R Temporal window size of spike 1.5 ms
R

0 Half of window size
P Per channel dimension of data in PCA domain 3
⌧ probability threshold for NN detection P 0.5

✓

w

, ✓
s

weak and strong threshold for masking F

�1

�

2
,P

(0.5), F

�1

�

2
,P

(0.9)

F

�1

�

2
,df

Inverse CDF of Chi-squared Distribution with df d.f.

K

++

Number of Clusters in Kmeans++ for Coreset 10
D

max

Distance threshold for Coreset 2F

�1

�

2
,PC

eff

(0.9)

m

0

,�

0

,W0, v0 Prior parameters for the DP-GMM Normal-Whishart 0, 0.01,

1

v0
I

P

, P + 2

↵

0

Prior parameter for beta dist. in stick-breaking in DP-GMM 1

s

max

Maximum shift allowance for template merging 0.5 ms
✓

1

threshold on cosine angle in template merging 0.85
✓

2

threshold on size in template merging 0.6
Table S1: Summary table of notation used within the manuscript.

A Notation

The following notation is employed: scalars are lowercase italicized letters, e.g. x, constants such
as max indices are represented by uppercase italicized letters, e.g. N , vectors are bolded lowercase
letters, e.g. x, and matrices are bolded uppercase letters, e.g. X. Major notations used in the paper
are summarized in Table S1.

B Additional results

In this section, we first provide the performance metrics on the other three sets of 49-channel
recordings of the primate retina referenced from Section 3.3. Next, we describe how limiting the
temporal duration of the data effects performance.
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Figure S1: Comparison of performance on the other three 49 channel datasets from primate
retina. Each row corresponds to one of the three additional datasets. Figures on the left depict stability
metric and what percentage of total discovered clusters are above the chosen stability threshold on
the x axis. Figures on the right depict the true positive accuracies with respect to partial ground truth
and how many discovered clusters are above the chosen true positive accuracy.

B.1 Results on Three Additional Real 49-Electrode Sets of Data

The summary performance metrics for the three additional recordings of the primate retina are
reported in Figure S1. Note that YASS outperforms the other methods, especially in terms of stability
of the clusters. This is due to YASS providing both more stable clusters and fewer total clusters in
general.

B.2 Effect of Each Module on YASS’s Performance

The state-of-the-art performance of YASS is the result of advances in many stages of a complete
pipeline. To understand the effect of each module, the performance of altering single stages of YASS is
measured. Specifically, YASS is broken down by (i) replacing the Neural Network detection algorithm
with SpikeDetekt [24], skipping (ii) outlier triaging, and skipping (iii) the coreset construction. The
results are shown in Figure S2. As shown, altering these stages downgrades the overall performance
of YASS.
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Figure S2: Accuracy comparison to incomplete YASS This plot shows the same metrics as the right
panel of Figure 3. However, it compares to versions of YASS with single stages altered. Here, YASS
refers to the full pipeline, and the other approaches are as described in Section B.2. As illustrated,
every part of YASS contributes to the overall performance.

B.3 Accuracy with Respect to Data Length

The effect of using a partial recording to estimate waveform templates is investigated further. The
summary is described in the left and right panels of Figure S3. To illustrate the effect, the full
recording is randomly subsetted by the specified length. Waveform templates are estimated using
information only from the subset. Accuracy loss becomes insignificant with more than 20% of the
full length on a 30 minute dataset.

Furthermore, the scalability of YASS is demonstrated in the bottom panel of Figure S3. As illustrated,
the main parts of the full pipeline, coreset and clustering, scale almost linearly.

B.4 When Data Exceeds Memory

Large recordings exceed the memory capacity of typical workstations. This issue in handled in
the preprocessing and spike detection by temporally partitioning the recording and processing each
temporal subsection individually. Afterwards, the divide and conquer approach from Section 2.7
significantly reduces the memory requirement by reducing the number of waveforms and their spatial
extent. If the memory limits are still exceeded due to extremely long recordings, data are randomly
subsetted and postprocessed.

Another possible approach is that, following the result of Section B.3, data can be processed partially
up to the point where it does not exceed memory. Once the templates are estimated based on the
partial recording, deconvolution should handle spikes from the remainder of recording. We have not
yet needed to implement this approach, however.

C Additional details on the Detection Algorithm

C.1 Relationships to Existing Detection Algorithms

The goal of a detection algorithm within a spike sorting pipeline is to extract (unsorted) action
potentials from the raw electrophysiological signal to use as inputs for a downstream clustering
algorithms. It is crucial for the subsequent steps of the pipeline that the detected action potentials
cover all present neural shapes with few false positives, where false positives here are defined as either
noise events, collisions (two or more waveforms simultaneously occurring in time or space), or poorly
aligned spikes. Historically, most research labs have used a simple voltage threshold to determine
whether a section of signal should be considered an action potential [29], but many other decision
rules have been considered, such as the nonlinear energy operator [32] and wavelet thresholding [50].

Most proposed detection rules above operated on a single channel at a time (although Bayesian
optimal detection has been used on multiple channels [8, 33]). A simple approach that works either
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Figure S3: Using only a portion of data to estimate templates. (Top) YASS is tested on two sets
of recording with 49 channels and 30 minutes length from the retinal cells. Only a portion of data
is randomly extracted and templates are estimated. As shown, extracting only 5-10 minutes was
enough to produce similar performance as on the full dataset. (Bottom) The scalability of YASS is
shown. As shown, the coreset and clustering algorithms are roughly linear in computational costs
with increasing time.

for a single channel or for many channels is simply to use template matching [4]. However, template
matching requires having templates that are specific to the recording of interest in advance and does
not allow much variability in spike shape. Even in a repeated experiment setting, small changes in the
environment, such as shift in electrodes, would change the shape of templates, rendering previously
obtained templates unusable. This viewpoint is taken in several approaches, such as [28, 12, 36].
Despite the appeal of these approaches, they are often computationally expensive and difficult to
combine with state-of-the-art clustering approaches.

With the increasing popularity of dense MEAs, more complex rules have been proposed to utilize
information from all channels simultaneously, such as SpikeDetekt [24]. We note that our method-
ology is structured in a modular way, such that our pipeline can easily adopt any of these existing
methods. However, we also advocate for the development of data-driven approaches. In many cases
the same device types have been reused for many experiments, and there exists a large collection of
example data where false positives and true positives have been thoroughly assessed and curated. In
these cases, we will propose a novel approach based on recent advances in deep learning to learn
efficient, real-time detection algorithms. This is in contrast to many existing approaches where
features are hand-tuned (e.g. threshold, NEO, SpikeDetekt).

There have been some previous data-driven efforts to train a detection algorithm. For example, [25]
used hand-curated results from previous sorts to train a neural network, but this was used to classify
waveforms rather than as a pure detection method. Furthermore, [45] trained a support vector machine
to detect spikes in a simulated recording that provided improvements over a threshold method. Our
approach is down a similar line, where we use both previous hand-curated results and synthetic data
to train a neural network that dramatically improves the detection quality, as demonstrated in Figure
S5.

While this approach is dependent on existing training data and may not be practical everywhere, we
emphasize that our pipeline gives state-of-the-art or near state-of-the-art results conditioned on the
spike detection method. When curated training data exists (which is true for many research labs),
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though, this approach will learn features necessary for detection from the data, and we demonstrate
that it can significantly improve performance in real data problems. It dramatically reduces the
amount of false positives for the same level of true spikes. More importantly, by detecting only well
isolated spikes and aligning them properly, it improves the quality of the feature extraction and the
signal-to-noise ratio.

C.2 Neural Network Training Data

The training data for the neural network is constructed from hybrid synthetic and real data based on
previous sorts. Training labels used for the training data generation are either defined from a full
deconvolution pipeline or a hand-curated effort to validate results. The form of the data is assumed
as follows: we have N

train

time series on a single electrode, where x

n

2 RR

n reflects the noisy
voltage signal and y 2 {0, 1}Rn is a binary time series where the value “1” denotes the presence of a
well-isolated action potential (i.e. no collisions). We assume that R

n

>> R, where R is the length of
an action potential. The neural network training uses a binary scheme, where any background signals
are considered to be false, and the clean spikes are considered to be true.

It is likely that previous sorts do not reflect a perfect ground truth. They may contain false negatives
and poorly aligned spikes, which could lead to the creation of faulty training set. As an alternative,
synthetic spikes can be constructed from the previous sorts [49, 43]. Therefore, the data used to train
the neural network is constructed by a simple method to augment the training set which requires that
the mean of clusters must resemble the shape of spikes based upon the procedure in [37]. First, a
“noise” training set can be obtained from the noise floor, which is determined by using a low amplitude
threshold so that it excludes most of spikes. As a low threshold is used, it is rescaled to match the
real noise level presented in the recording. An augmented spike is constructed by superimposing real
noise onto randomly-scaled templates. The augmented spikes are randomly placed with the limitation
that all spikes must be isloated. This encourages the network to not learn to detect collided spikes,
acting as a weak form of triaging. This way, spikes are well aligned and also vary in amplitude.

A potential concern is that the proposed augmentation method may not work well if noise is highly
correlated with the spikes, as is believed to be the case in cortical data. Certainly, this issue also exists
in the retinal dataset we evaluate on here to some extent. Therefore, based on our experience with
retinal data, our hope is that the method will be effective more generally; however, for now this is an
empirical question.

C.3 Neural Network Structure

The architecture of the detection network is a fully convolutional neural network with two hidden
layers (see [17] for a background on neural networks). There are K

1

, K
2

, and K

3

filters of length
R

1

, R
2

, and R

3

, respectively, in each of the convolutional filter banks. In our experiment, R
1

= R,
which corresponds to 2 milliseconds (K

1

= 60 for 30kHz recording) and R

2

, R

3

= 5. K
1

, K
2

, and
K

3

are set to 10, 5, and 1 respectively. The input at the first layer is the electrophysiological time
series on a single channel, and the output is the binary labels. Rectified linear unit nonlinearities
(ReLU) are used at each hidden layer except for the last layer, which uses a sigmoid nonlinearity
�(x) = exp(x)/(1 + exp(x)) to map the probability to [0, 1]. The model was regularized by adding
an l

2

penalty on the filter weights. The network is learned by minimizing the cross-entropy loss using
the Adam update rule [26].

C.4 Detection using the Neural Network

After the neural network has been learned, it is applied in a channel-wise manner to transform the
recorded voltages V 2 RT⇥C into a matrix of probabilities P 2 [0, 1]

T⇥C . An event (isolated spike
or collision) is declared if the maximum value of P is above the detection threshold ⌧ in a local
temporal area. In our experiments, ⌧ is set to 0.5.

Each returned waveform includes R0
=

R�1

2

samples before and after the spike time (corresponding
to 1 ms). For each n of the N detections, let t

n

and c

n

be temporal location and spatial location
of the waveform. Each spike is then defined as X

n

2 RR⇥C , where the c

th channel is defined
x

nc

= (V

t

n

�R

0
,c

, . . . , V

t

n

+R

0
,c

). Spatial overlaps are handled in a subsequent step, discussed in
Section 2.3.
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Figure S4: Illustration of the Neural Network Detection (Left) The 10 learned filters in the
first convolutional layer of the 2-class single-channel neural network. (Right) The neural network
transforms a neural recording (Top) into probabilities of spikes (Bottom). Locations of isolated spikes
clearly have high probabilities.
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Figure S5: Receiver Operating Characteristic (ROC) curve for Neural Network Detection and
SpikeDetekt. The left panel shows the ROC curve for a cluster with SNR 1.4 and the right panel
shows for a cluster with SNR 2.3. Note that instead of the false positive rate, the number of false
positive spikes are used for comparison.

C.5 Empirical Performance and Scalability

The proposed detection algorithm is empirically tested and compared to SpikeDetekt [24] on
simulated data with high noise level using ViSAPy. Since spikes with high enough energy are
captured well, cluster-specific ROC curves are plotted. As shown in Figure S5, using the neural
network for detection dramatically reduces the number of false positives while keeping the number
of true positives reasonably high.

The SNR is defined as ||Template||
2

/�

p|Template|, where Template is the mean of all wave-
forms in the cluster at its highest energy channel and � is the noise standard deviation. |Template| is
the number of bins in the template. The true positive rate is defined as the percentage of events that
are detected with spatial and temporal alignment to the ground truth. All other events are defined as
false spikes.

When the trained neural network is applied, the algorithm scales linearly with the time duration of the
sample and the number of channels. As an example of the computational needs of applying this step,
on a 5 minute recording of 49 channels, the proposed detection algorithm requires 6 seconds on a
single NVIDIA Titan X GPU. Training the network is more time consuming, but not a computational
bottleneck. For a 512 channel recording used in our experiments (described in Section 3), the training
process required 2 minutes on the same GPU. Compared to the total spike sorting time, as discussed
in Section 3.3, training the network is a reasonable cost that quickly becomes trivial as the algorithm
is applied to more and more datasets.
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D Additional Details on Feature Extraction and Masking

The data dimensionality of each spike increases linearly with the number of channels, which naively
poses huge computational challenges and renders real-time analysis of large MEAs infeasible.
Therefore, it is necessary to utilize spatial locality: a given neuron will appear strongly on only a
subset of neighboring electrodes. This spatial locality is constructed by restricting detected waveforms
to nearby channels via a sparse masking vector, {m

n

} = [m

n1

, . . . ,mnC] 2 [0, 1]

C , as in [24]. This
masking vector should be 1 on channels where the neural waveform is reasonably strong (i.e. only
the local area), and 0 otherwise. Once the sparse representation is used, the waveform only needs to
be considered on channels where the mask is 1, dramatically reducing the effective dimensionality.
The effective dimensionality is then dependent on the spatial density of the array and not its total
size, so increasing the size of the array does not alter the effective dimensionality. This is a crucial
consideration for computational efficiency in many steps of the pipeline, where there is a linear (or
worse) scaling with the effective dimensionality.

The construction of the sparse masking vector follows from [24]. First, note that in the feature space a
channel that does not have waveform signal present (i.e. a “noise” channel) is expected to follow the
normal distribution N (0, I

P

). This distribution follows from the assumption of whitened background
noise. Therefore, the task is to decide whether the signal on each channel is simply a noise event or
not. Using a “strong" and “weak" threshold, ✓

s

and ✓

w

, respectively, each mask entry for waveform
n in each channel c is determined based on the norm of the power in the feature space, given by

m

nc

=

8
><

>:

1 if ||y
n,c

||
2

> ✓

s

0 if ||y
n,c

||
2

< ✓

w

||y
n,c

||�✓

w

✓

s

�✓

w

otherwise
.

Note that there is additional spatial connectivity considered in [24], which is ignored here. In our
empirical results, there was no additional benefit to considering spatial connectivity and it added
significant extra computational time.

To facilitate efficient inference, the detected waveforms are represented by a “virtual” data distribution,
where {˜X

n

} = [x̃

n1

, . . . , x̃nC], which is given by

x̃

nc

=

⇢
x

nc

with probability m

nc

N (0, I

R

) with probability 1�m

nc

.

Thus, virtual data are given by a mixture of either the original value or a draw from the noise
distribution. R is the temporal length of each waveform. Remarkably, the virtual data distribution
allows trivial updates during the clustering stage whenever m

nc

is 0 [24]. This is crucial to make
the computational costs in the DP-GMM scale linearly with the number of electrodes and the length
of the recording, as discussed in Section 2.6. The same approach is used to construct a virtual data
distribution in the feature space, which would be used in the clustering algorithm.

E Additional details on the Coreset Construction

There is significant prior work on how to develop a set of representative points that make up a
coreset [19, 13]. These prior works developed rigorous approaches with statistical guarantees on
representation fidelity. After the development of the coreset, the clustering algorithm is then run
on the summary data in time that scales with the size of the coreset, G rather than the raw data
size. However, in practice, we found the resulting G to not be large enough to provide reasonable
guarantees. Furthermore, following existing strategies with a smaller number of representative points
empirically failed to provide coverage over all clusters, as shown in Figure S6.

Thus we provide a simple alternative method to construct the coreset that empirically worked well
to capture all visible clusters. The procedure begins by first running K-means++ [1] based on the
Euclidean distance with a predefined number of clusters, K

++

. The running time of this step is
O(dK

++

N) if we assume constant iterations, as is common [1, 3]. d here represents the complete
dimensionality of each point, which is CP without considering the effect of the masking vector.
To finish the construction of the coreset, if any center in k-means has a associated point that is
unacceptably far away (determined by a threshold D

max

), each cluster is recursively partitioned by
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Figure S6: Illustration of coreset construction. Simulated data from Gaussian Mixture models.
Four different clusters are clearly visible. (Left) Coreset from [2]. The red points are the coreset
and their size represents the weight. It is clear that the cluster shapes will not be well represented by
the existing coreset method. (Right) Coreset from the proposed method. The sizes of red diamonds
represent the weights and the circles are two times standard deviations of each group. As all points
contribute to the coreset, the shape of cluster will be well preserved.

Algorithm S1 Constructing the Coreset of Representative Points
[representativeWaveforms, sufficientStatistics] coresetConstruction(cleanWaveforms)
Input: cleanWaveforms are given by X = {x

n

}
n=1,...,N

2 Rd

Algorithmic Settings: Distance threshold D

max

, number of splits K, and the maximum
iteration number I

max

, distance function D(·, ·)
Output: Representative waveforms and their sufficient statistics
Apply coreset (below) to partition the data
Return: centroids (representativeWaveforms) and sufficient statistics of each entry in the partition

Support function: {X
1

, . . . } = coreset(X , D

max

,K)

% Run initial partition
{X

1

, . . . } = Kmeans++(X ,K, I

max

)

% Recursively split partitions that are too diffuse
for k = 1, . . . ,K do

if max(D(X
k

,mean(X
k

))) > D

max

then
{X

k1

, . . . } = coreset(X
k

, D

max

,K)

end if
end for
Gather all partitions and reconstruct into {X

1

, . . . }
for k = 1, . . . do

X
k

= {xk

n

}
n=1,...,N

k

2 Rd

sufficientStatistics =
�P

N

k

n=1

x

k

n

,

P
N

k

n=1

(x

k

n

)

T

(x

k

n

)

�

end for

reapplying K-means++. At the end, only sufficient statistics, mean and covariance of each partition,
need to be passed on to DP-GMM described in the next section. The details of this recursive strategy
are shown in Algorithm S1.

Unfortunately, this approach is infeasible to run on all channels simultaneously. To address this
problem, data are partitioned based on their primary channels (the channel with the highest energy),
and only the waveform data on the primary channel and its neighbors are used to construct the coreset.
Algorithm S1 is then applied on each set (primary channel) in the partition. These approach reduces
the complexity of the primary K-means++ call to O(PC

eff

K

++

N

c

), where C

eff

is the number of
neighboring channels and N

c

is the number of waveforms in the cth partition. Note that K
++

is set to
a smaller value when applied to a single channel, providing a large source of computational savings.
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F Additional details on the Dirichlet process Gaussian mixture model
(DP-GMM)

One of the biggest issues with using GMMs for clustering is that the appropriate number of mixture
components k (the number of visible distinct neural signals) is unknown a priori. A common
approach is to fit a GMM with varying values of k and then perform model selection through the
Akaike Information Criterion or the Bayesian Information Criterion [24, 44].

A contrasting approach is the Dirichlet Process Gaussian Mixture Model (DP-GMM), which defines a
prior over k. There is a rich literature on inferring k using either Markov chain Monte Carlo methods
or variational inference; see [48, 9] for previous spike sorting applications. Here, we will first set up
the DP-GMM and describe a split-merge Variational inference method to learn the model based on
[21]. We will then describe how to alter these algorithms to work with our coreset to facilitate fast
and scalable inference. All GMM approaches require inference over a non-convex log-likelihood,
where finding optimal parameters is non-trivial. The split-merge approach empirically improves
efficiency and finds improved local solutions through efficient search of the parameter space.

When the GMM formulation is used to analyze multiple channels simultaneously, certain modifica-
tions need to be made for both statistical and computational considerations. Following [24], we fit a
mixture model on the virtual masked data {˜Y

n

} = [ỹ

n1

, . . . , ỹnC], instead of the actual data {Y
n

}.
This allows the mixture model to use the localized nature of the data, which can dramatically reduce
computations. Second, following [9, 24], we define the covariance structure in the GMM between
channels to be 0. This step reduces the number of parameters to estimate in the covariance matrix to
O(C) from O(C

2

).

This full model can be represented succinctly using a stick-breaking formulation of mixture weights
[22] and a Normal-Wishart prior for each cluster and electrode. The assignment variable z

n

denotes
which cluster the nth waveform is assigned to. Letting k define the cluster index, the full generative
process of this model is

ỹ

nc

| {µkc,⇤kc}
k=1,...

, z

n

⇠ N(µ

z

n

c

,⇤

�1

z

n

c

), z

n

⇠ Discrete(w),

{µ
kc

,⇤

k

} ⇠ NW(m

0

,�

0

,W

0

, v

0

), w

k

= b

k

Q
k�1

`=1

(1� b

`

), b

k

⇠ Beta(1,↵
0

).

We note that if the mean and precision are known for a cluster, then inference for the optimal
placement of a waveform exactly follows traditional GMM approaches. Second, we note that the
stick-breaking formulation on w is such that the sum of the probabilities goes to 1 as k !1. While
this has nice theoretical properties, this is a practically difficult representation, typically requiring
the use of a Chinese Restaurant Process formulation [34] or adaptive methods such as Retrospective
Sampling [10]. In practice, it is common to simply truncate the maximum value K at a high value.

We alternatively perform inference in this model via by adapting the Variational Bayesian (VB)
split-merge approach of [21], which dynamically chooses this truncation level K, to utilize our
coreset representation. The key idea of the split-merge approach is based on two moves. First, the
merge, or cluster death, will combine two clusters if there is not sufficient statistical evidence to
support distinct clusters. Vice versa, the split, or cluster birth, will take a cluster that represents an
inhomogeneous waveform population and split it into multiple clusters (or neurons).

The first step in the mathematical formulation of this approach is to define approximate posterior
forms. Letting ⇥ = {µ

kc

,⇤

kc

}
k=1,...,K,c=1,...,C

, this is given by

q(z,⇥,b) = (1)
hQ

N

n=1

q(z

n

|r̂
n1

, ..., r̂

nK

)

i hQ
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k=1
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Q
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ˆ
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), a delta function at a particular point. The use of a delta function on the
precision is non-standard and breaks the mean-field formulation, but allows us to provide an option
to enforce a minimum variance. Enforcing that the minimum cluster variance does not go below
the known background variance can improve robustness is certain situations; however, it comes
with an increase in computational costs, so the algorithm default is to not use a minimum variance.
Precedence of this approximation in VB inference can be found in [21]. Because the DP has infinite
mixture components, we implicitly assume that q(z

n

= k) = 0 8k > K. The variational parameters
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Algorithm S2 Overview of the DPMM procedure on a Coreset.
Input: G sufficient statistics for each group, t

g

, g = 1, . . . , G

Initialize: number of clusters, K(0), global parameters, ✓
k

, and local parameters for each group
and cluster, r̂

g,k

, suff. stat. for each group and cluster, S(0)

g,k

=

P
G

g=1

r̂

g,k

t

g

¯

S

k

=

P
G

g=1

S

(0)

g,k

for i=1,. . . do
Randomly pick a cluster k, split it into K

0
+ 1 clusters, yielding K

(i�1)

+K

0 clusters
for g=1,. . . , G do

Update r̂

g,k

and S

(i)

g,k

end for
Update ✓

k

, for k = 1, · · · ,K(i�1)

+K

0 using S

(i)

g,k

Calculate ˜L(q)(i)
Merge clusters if resulting ˜L(q) is lower than ˜L(q)(i). Let K(i)  K

(i�1)

+K

0 be the resulting
number of clusters
end for

are learned to minimize the KL-divergence between the true posterior and the variational distribution,
which maximizes the Evidence Lower Bound Objective (ELBO), given by

˜L(q) = EỸ|Y
⇥
E
q

⇥
log p(

˜

Y, z,⇥, b)� log q(z,⇥, b)

⇤⇤
. (2)

Compared to the typical ELBO used in [21], we have an expectation over ˜

Y|Y given by the masking
approach. While this initially seems like it increases the complexity of the variational updates, the
expectation over the mask will simply lead to a linear multiplicative factor when calculating updates.
Hence, since the mask is typically 0, this allows great speedups by allowing sparse updates and
reduces overfitting.

If the minimum variance constraint is set, then it is necessary to solve argmax

˜

⇤

kc

��

2
minI

˜L(q) given
the other parameters. Fortunately, a simple procedure can give the optimal solution. Succinctly, the
MAP value from the standard variational update on the Wishart distribution is projected to the feasible
set on its singular values. The projection is performed by taking the SVD, setting the projected
singular values to the minimum of itself and �

2

min

, and reconstructing. It is straightforward to prove
that this update is optimal on the feasible set. A detailed mathematical description of this update
and how the standard updates from [21] change is given in the following section. This step gives a
modest reduction in overfitting and improves stability at the expense of additional computation.

As discussed in previous sections, running on all data points can lead to slow and redundant computa-
tions, so we want to modify the existing VB structure to utilize computations only on the coreset. In
mixture models of exponential families, the mean-field parameters for the approximate posterior are
determined completely by additive sufficient statistics. Therefore, when working with a coreset, each
representative point can store the sufficient statistics of its members that can easily be used when
updating variational parameters. Importantly, despite using only a computationally-friendly small set
of representative points, these representative points allow the sufficient statistics from each member
point to be included in posterior estimates. Specifically, the G representative points, {Yg

n

}, their
masks, {mg

n

}, and their sufficient statistics, t
g

= t({Yg

n

}, {mg

n

}) for the G representative points
n = 1, . . . , N

g

, g = 1, . . . , G can be passed to the clustering algorithm to be used in the updates.

Once the ELBO is set up and modified to address masked data and representative points, there is a
principled way to choose whether splitting or merging clusters is appropriate. We use the approach of
[21], where following an update based off of the coreset, the algorithm proposes splits and merges to
search for an optimal point. We give a high-level description of this in Algorithm S2, and further
mathematical details in Section F.1.

The default hyperparameter settings used in this algorithm are shown in Table S1, of which the most
important are the hyperparameter for the stick-breaking parameter and the hyperparameters for the
Normal-Wishart prior. The stick-breaking parameter was set to 1; however, similar performances
were obtained from 10

�1 to 10

1. The hyperparameters for the Normal-Wishart were set such that the
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expected covariance of the cluster matches the background noise signal (e.g. I) with a non-informative
mean.

F.1 Additional Mathematical Details

The variational parameters are chosen to (locally) minimize the KL-divergence between the posterior
distribution and variational distribution, which is equivalent to maximizing the evidence lower bound
(ELBO). However, as the virtual data, {˜Y}, is not directly observed, the expected value of L(q) given
{Y

n

} is maximized. Accordingly, the following objective function is optimized:

˜L(q) = EỸ|Y
⇥
E
q

⇥
log p(

˜

Y, z, µ,⇤, b)� log q(z, µ,⇤, b)

⇤⇤

The local parameters given global parameters are updated as:
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], the global parameters are updated as following:
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Updating ˆ
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is a two-step process. ˆ⇤
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Then, let ˆ

W

k

= Ak⌃kB
T
k , which is a singular value decomposition. The second update is

(⌃k)ii =

⇢
1 if (⌃k)ii > 1

(⌃k)ii if (⌃k)ii  1

It ensures that the variance of each component is bigger than 1 as the variance is the sum of cluster
variance and noise variance, which is one.

To further simplify the process, the independence of data across the channels can be assumed. Then,
the covariance matrix of cluster has a block-diagonal shape and the cluster shape in each channel can
be estimated separately using the above update. This is reasonable assumption as spatially whitened
data is used.

The split and merge steps are conceptually the same as in [21], but adjusted to use the coreset.

G Addditional details on the Divide and Conquer approach

Because of the method used to divide the data in the divide-and-conquer step, it is possible that the
same neuron may have templates and clusters under different spatial subsets. Furthermore, the GMM
approach may overcluster due to model mismatch (e.g. non-Gaussianity of the clusters). Therefore, it
is necessary to merge the templates prior to the deconvolution step.

The templates are constructed as follows. After the clustering process, each spike X

n

has been
associated with one of K clusters, which is denoted by an assignment variable, z

n

2 {1, . . . ,K}.
Then, let W

k

2 RR⇥C be defined as the mean of each cluster defined as mean({X
n

|z
n

= k}),
which is taken with respect to the original data rather than the virtual data distribution. In addition, a
binary mask is defined for each cluster by m

w

k

2 {0, 1}C , where

m

w

kc

=

⇢
1, mode({m

nc

|z
n

= k}) > ✓

mask

w

0, otherwise
.
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Algorithm S3 Template Merging
templates mergeTemplates({clusterAssignments

i

}
i=1,...

, {representativeWaveforms
i

}
i=1,...

)

Algorithmic Settings: Maximum shift allowance s

max

2 N, thresholds, ✓
1

, ✓

2

2 (0, 1), number of
clusters, K, temporal length of waveform, R, number of channels, C.
Input: clusterAssignments are given by {z

n

}
n=1,...,N

2 {1, . . . ,K} and representativeWaveforms
are given by {Xs

n

}
n=1,...,N,s=�s

max

,...,s

max

2 RC⇥R, waveforms shifted by s from its center.
Output: templates

% Get templates with all shifts
for k = 1, . . . ,K do

W

s

k

= mean({Xs

n

|z
n

= k})
w

k

= |{Xs

n

|z
n

= k}|
end for

Initialize: Undirected Graph G with K nodes and 0 Edges
for k

1

, k

2

= 1, . . . ,K do
% shift that maximizes the cosine of two templates
s

0
= argmax

s

cosineDist(W

0

k1
,W

s

k2
)

if cosineDist(W

0

k1
,W

s

0

k2
) < ✓

1

and ✓

2

<

||W0
ck1

||2
||Ws

0
ck2

||2
<

1

✓2
, c = 1, . . . , C then

Add edge on (k

1

, k

2

)

end if
end for
Using strongly connected components on G [42], templates are grouped into K

0 groups.
For k = 1, . . . ,K

0, new template ˜

W

k

, is the mean of properly shifted templates in each group
weighted by w

k

.

The mode on this continuous distribution is estimated by the peak of a kernel density estimate. ✓mask

w

is set to 0.5. Given template masks, templates can be localized by considering channels with only
non-zero mask entries. Template merging is performed based on two criteria, the angle and the
amplitude of templates. When two templates are in fact the same neuron, the template waveforms
should have a similar shape and their amplitudes should approximately match. To determine whether
the waveforms have a similar shape, typically the cosine distance is used; however, the cosine distance
is greatly affected when templates are not temporally aligned. Therefore, the “angle” is calculated
as the cosine distance on the best alignment between two templates. After the similarity check, an
undirected graph can be created by considering each template as a node and constructed edges based
off of similarity. Once the graph is obtained, strongly connected components are computed using
Tarjan’s algorithm [42] to group templates. Then, new templates are created by taking the mean of
each group. The pseudocode to perform this merging is shown in Algorithm S3.

H Constructing a proxy to ground truth for a real dataset

It is notoriously difficult to obtain ground truth data for large-scale extracellular recordings of neural
activity with MEAs. However, in rare cases, sufficiently strong anatomical and functional priors are
available for the tissue under study and make it possible to hand-curate the outcome of a sorting
pipeline, resulting in an acceptable partial proxy to ground truth on these data.

The data we used to construct such a proxy consisted of 30 minutes of extracellular recordings of the
peripheral primate retina, obtained ex-vivo using a high-density 512-channel recording array [30].
During the half-hour recording, the retina was stimulated with spatio-temporal white noise in which
a lattice of square pixels were updated randomly and independently of one another over time. The
intensity of each display primary at each pixel location was chosen from a binary distribution at each
refresh, yielding a stimulus with chromatic variation.

The reference set of spike times was manually assembled as follows. Events whose amplitude
exceeded 4 times the RMS noise on each electrode were detected, aligned to the time of peak
deviation from baseline using cubic spline interpolation for sub-sample alignment, and noise-whitened.
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Principal component analysis was performed on the collection of events detected on each electrode
and the surrounding 6 electrodes, and the collection of events was clustered using a variation of
the Ng-Jordan-Weiss spectral clustering algorithm [35, 52]. The hyper-parameters of the clustering
algorithm were sweeped, resulting in a large collection of candidate neurons. Candidate neurons
whose spike train exhibited significant violations of the refractory period were rejected.

Reference neurons were then identified on the basis of their light response properties. Anatomical and
functional priors guarantee that classes of retinal ganglion cells in the primate retina tile the visual
field uniformly, forming well-coordinated mosaics [11]. After calculating the spike-triggered average
response of each neuron, cells were therefore separated in unique functional types, corresponding to
the ON and OFF midget cells, ON and OFF parasol cells, ON and OFF upsilon cells, small bistratified
cells, and polyaxonal amacrine cells. For each cell detected more than once in a mosaic, only the cell
with the largest spike count was kept. All cells with physiological properties incompatible with the
anatomical and functional priors of the primate retina were discarded from the analysis, resulting in a
final collection of unique reference neurons of known cell types (n = 355), as well as a few neurons
whose physiological properties were consistent with yet unreported cell types (n = 31).

Note that, by construction, this gold standard database includes a collection of trusted spike shapes
and times, but we do not claim that this analysis captures every single true spikes from this recording;
indeed, we expect that the dataset includes a number of unlabeled small or collided spikes.

I Relationship to existing pipelines

Prior to the clustering stage, several important preprocessing steps take place. Filtering with wavelets
[47] can improve sorting performance; however, we chose to use a bandpass Butterworth filter [29]
because it is used in most academic and commercial implementations, such as the Plexon Offline
SorterTM.

The most common detection algorithm selects events that cross a threshold, with alignment to the
threshold crossing or a peak [29]. Alternatively, [24] used multiple thresholds and temporal and
spatial adjacency to improve detection, and aligned to the mean energy of a soft thresholded signal;
[38] used wavelets to denoise and detect spikes. All these methods generally lead to many false
positives that negatively affect the clustering step. Our pipeline improves on these issues by triaging
false positives and addressing them in a later post-processing step (see Section C.1).

The clustering stage of the spike sorting problem has been discussed in several reviews [41, 29, 16, 39].
Spike sorting on dense MEAs has been explored via template matching [15], blind deconvolution
[8, 37, 12], and clustering [24, 9]. Our approach is based on the Dirichlet process Gaussian mixture
model (DP-GMM), which first introduced to the spike sorting problem by [48]. There have been
significant improvements in efficient inference for the DP-GMM, and our work heavily utilizes the
memoized approach of [21], but several alternatives exist, including online approaches [46], utilized
in [8], and parallel computing [7].

Compared to prior work, we directly address collisions and outliers by excluding them from the clus-
tering step with triaging, which enables significantly improved clustering performance. Furthermore,
local minima are a critical problem in many clustering, template matching, and blind deconvolution
approaches due to the non-convex nature of these approaches. While our model is also non-convex,
our empirical results (not shown) demonstrated that adapting modern variational inference techniques
improved both reliability and accuracy. These results match the conclusions of [21]. This is of crucial
importance as the field moves towards millions of distinct waveforms, because common hand-sorting
and hand-correction steps are intractable on such data.

There are a number of alternative approaches to the clustering step in the literature. Many of these
approaches address the Gaussianity assumption on the shape of the clusters. One of the most common
alternative approaches to a Gaussian mixture model formulation for clustering is a density based
approach. This has been done in the form of superparamagnetic clustering [38], consensus clustering
[14], unimodal clustering [31], spectral clustering, finding density peaks [40, 51], and the mean shift
algorithm [20]. MountainSort [31] uses a non-parametric clustering step that assumes the clusters
are unimodal in the sense that they have a single point of maximal density when projected onto any
line. These approaches hold significant promise for dealing with non-Gaussian waveform clusters,
and many of these clustering methods could be interchanged with our DPMM in our complete
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pipeline to alter the clustering step. However, as empirically demonstrated in our experiments, while
these approaches can deliver improved performance on non-Gaussian clusters, on our metrics, for the
datasets analyzed here, the average performance is below the proposed DPMM.

Recently, the Kilosort algorithm [36] was proposed to perform clustering and inference directly
on the time series instead of using clustering. Collisions generally cause problems in the PCA and
clustering space [12]; the matching pursuit approach of [36] sidesteps the clustering step entirely.
In our pipeline, we address the collision problem with our triage-then-pursuit strategy; this lets us
use fast clustering primitives to estimate templates, leading to significant scalability gains relative to
full matching pursuit approaches. (Clustering approaches are also better able to handle uncertainty
in template shape and spike assignments than greedy matching pursuit approaches.) After we have
an appropriate clustering and waveform shape estimate, we use some of the methods proposed in
[36] and [12] for the final collision-unmixing step. Other methods implicitly incorporate overlapping
spike detection in their model training [8]; however, this approach has not yet been demonstrated to
scale to large dense MEA datasets.

Spyking Circus [51] is another algorithm that aims to scale spike sorting to large MEA recordings
by density estimation clustering of dimensionally reduced spikes by PCA, followed by template
estimation and matching. Spikes are detected according to threshold crossings on each channel which
can affect PCA projections negatively because of collisions and alignment issues. The algorithm
is scaled to large recording sizes by sub-sampling spikes (data points), which can under represent
units with lower firing rates. This method allows for parallelizing the computation of affinity matrices
of data points which has lead to GPU and multi-threading implementations. However a great deal
of post processing of results of each channel is needed that in practice renders the method time
inefficient compared to YASS and KiloSort.

JRClust [23] follows a similar method as Spyking Circus. It does not use deconvolution to infer
collisions. The method, however, addresses an issue of non-stationarity caused by noise and probe
drift. Due to methodological similarity to Spyking Circus, it is expected that their performances
are comparable. We hope to provide more detailed comparisons in the future.
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