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A Super-spacey random surfer

A.1 Stationary distribution

Suppose the process has run for a very long time and that xt is the current empirical distribution.
From equation (7), we have

Pr(Xt+1 = i|Xt = j) = (1− α)vi + α
(∑

(j,k)∈F

Pi,j,kxt(k) +
∑

(j,k)6∈F

xt(k)xt(i)
)
. (1)

The above transition process can be treated as a Markov chain with transition matrix depending on
the current empirical distribution xt. Let M t denote this Markov chain transition matrix, and we
have:

M t = (1− α)veT + αP [xt] + αxt(e
T − eTP [xt]).

To understand the above expression, the first term of M t comes from the first term of equation (1) and
so does the second term. For the third term, the j-th entry of eT −eTP [xt] is exactly

∑
(j,k) 6∈F xt(k),

so that M t is a column stochastic matrix. At stationarity of the super-spacey random walk, the
stationary distribution of this Markov chain must satisfy x = M tx. When the random walk is at its
stationary distribution x, M t will not change but be fixed as:

M t = M = (1− α)veT + αP [x] + αx(eT − eTP [x]).

And we have:
Mx = (1− α)veTx + αP [x]x + αx(eT − eTP [x])x

= (1− α)v + αPx2 + αx(1− eTPx2)

= (1− α)v + αPx2 + α(1− ‖Px2‖1)x.

Thus equation 9 gives us the necessary condition for x being the stationary distribution. A more
formal proof is to use the results from [2] to show that (9) is the necessary condition of the stationary
distribution in a vertex reinforced random walk.

A.2 Proof of Theorem 2.1

Let R denote the mode-1 unfolding of P :

R = [P (:, :, 1) | P (:, :, 2) | · · · | P (:, :, n)].

Note that R(x⊗ x) = Px2 where ⊗ is the Kronecker product. Assume x and y are two solutions
of (9). Let rx = ‖R(x⊗ x)‖1 and ry = ‖R(y ⊗ y)‖1. Then

‖x− y‖1 ≤ α‖R(x⊗ x− y ⊗ y)‖1 + α‖(1− rx)x− (1− ry)y‖1.
By Lemma 4.5 of [6], the first term

α‖R(x⊗ x− y ⊗ y)‖1 ≤ α‖R‖1‖x⊗ x− y ⊗ y‖1 ≤ 2α‖x− y‖1.
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The second term satifies

α‖(1− rx)x− (1− ry)y‖1
= α‖(1− rx)(x− y)− (rx − ry)y‖1
≤ α‖(1− rx)(x− y)‖1 + α|ry − rx|
≤ α‖x− y‖1 + α‖R(x⊗ x− y ⊗ y)‖1 ≤ 3α‖x− y‖1.

Combining the above two facts, we know when α < 1/5 the solution is unique. For an m-mode
tensor, this idea generalizes to α < 1/(2m− 1).

For the convergence of the fixed point algorithm (10), the same analysis shows that ‖xk+1 − x∗‖1 ≤
5α‖xk − x∗‖1, and so the iteration converges at least linearly when the solution is unique.

B Algorithm discussion

Algorithm 1 General Tensor Spectral Co-clustering

Require:
Symmetric square tensor T ∈ Rn×n×n

+ , α ∈ (0, 1)
Stopping criterion max-size, min-size, φ∗

Ensure:
Partitioning C of indices {1, . . . , n}.

1: C = {{1, . . . , n}}
2: IF n ≤ min-size: RETURN
3: Generate transition tensor P by

Pijk =

{
Tijk/

∑n
i=1 Tijk if

∑n
i=1 Tijk > 0

0 otherwise

4: Compute super-spacey stationary vector x (Equation (9)) and form P [x].
5: Compute second largest left, real-valued eigenvector z of

P̃ = P [x] + x(eT − eTP [x]) (that is, zT P̃ = λzT ).
6: σ ← Sort eigenvector z
7: (S, φ)← Biased Conductance Sweep Cut(σ,P [x]) with bias p = x.
8: if n ≥ max-size or φ ≤ φ∗ then
9: CS = Algorithm 1 on sub-tensor T S,S,S .

10: CS̄ = Algorithm 1 on sub-tensor T S̄,S̄,S̄ .
11: C = CS ∪ CS̄ .
12: end if
13: RETURN C

The overall algorithm is summarized in Algorithm 1.

We also have a couple of pre-processing steps. First, we have to symmetrize the data if the tensor
is rectangular. Second, we look for “empty" indices that do not participate in the tensor structure.
Formally, index i is empty if T ijk = 0 for all j and k.

B.1 Linear time sweep cut

In this section we prove that the operations we need for computing the eigenvector and conducting
the sweep cut for P̃ (possibly a dense matrix) depend only on the number of non-zeros of the sparse
tensor P .

For computing the eigenvector of P̃ , it only involves the mat-vec operation (i.e., P̃b):

P̃b = P [x]b + x
(
eTb− eT (P [x]b)

)
Since P [x] is a sparse matrix with number of non-zeros up to the number of non-zeros in P , so the
mat-vec operation P̃b also only depends on the number of non-zeros in P .
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For the sweep cut procedure, let z be the eigenvector we computed from P̃ and without a loss of
generality, we assume z1 ≤ z2 ≤ · · · ≤ zn. We want to see what is the computational complexity for
calculating Pr(X1 ∈ S̄k+1|X0 ∈ Sk+1) when the value of Pr(X1 ∈ S̄k|X0 ∈ Sk) is given.

Denote the row vector h = eT − eTP[x], Hk =
∑k

i=1 xihi and Qk =
∑n

i=k xk Then given the
value of:

Pr(X1∈ S̄k|X0∈Sk)=
Pr(X1∈ S̄k, X0∈Sk)

Pr(X0∈Sk)
=

pk
1−Qk+1

To compute Pr(X1 ∈ S̄k+1|X0 ∈ Sk+1)

=
Pr(X1∈S̄k+1, X0∈Sk)+Pr(X1∈S̄k+1, X0=k+1)

Pr(X0∈Sk)+Pr(X0=k+1)

=
Pr(X1∈S̄k, X0∈Sk)−Pr(X1=k+1, X0∈Sk)+Pr(X1∈S̄k+1, X0=k+1)

1−Qk+1+xk+1

=
pk−

∑k
i=1 xiP̃ [x]k+1,i+xk+1

∑n
i=k+2 P̃ [x]i,k+1

1−Qk+2

=
pk−

∑k
i=1 xiP [x]k+1,i−

∑k
i=1 xixk+1hi+xk+1

∑n
i=k+2 P [x]i,k+1+xk+1

∑n
i=k+2 xihk+1

1−Qk+2

=
−
∑k

i=1 xiP [x]k+1,i+xk+1

∑n
i=k+2 P [x]i,k+1

1−Qk+2
+
pk−xk+1Hk+xk+1hk+1Qk+2

1−Qk+2

The first term only involves the (k+1)-th row and column of P [x], and the second term cost constant
computation as long as the arraies H and Q are precomputed. Since computing H and Q is O(n),
the total complexity of computing the above probability for all 1 ≤ k ≤ n is linear to the number of
non-zeros in P [x], and the same conclusion holds for Pr(X1 ∈ Sk|X0 ∈ S̄k). So in summary the
Sweep Cut procedure costs order of total number of non-zeros in P [x].

B.2 Computational complexity

We now provide an analysis of the running time of our algorithm. Let N be the number of non-zeros
in the tensor T . First, note that the pre-processing (tensor symmetrization and finding empty nodes)
takes O(N) time. Now, we examine the computational complexity of a single partition:

1. Generating the transition tensor P costs O(N).
2. Each step of the fixed-point algorithm to find the stationary distribution is O(N).
3. Constructing P [x] costs O(N). (The matrix P̃ is not formed explicitly).
4. Each iteration of the eigenvector computation takes time linear in the number of non-zeros

in P [x], which is O(N).
5. Sorting the eigenvector takes O(n log n) computations, which is negligible considering N

is big compared to n.
6. The sweep cut takes time O(n+N), which is O(N).

In practice, we find that only a few iterations are needed to compute the stationary distribution, which
is consistent with past results [3, 6]. For these systems, we do not know how many iterations are
needed for the eigenvector computations. However, for the datasets we analyze in this paper, the
eigenvector computation is not prohibitive. Thus, we can think of the time for each cut as roughly
linear in the number of non-zeros. Provided that the cuts are roughly balanced, the depth of the
recursion tree is O(logN), and the total time is O(N logN). Again, in our experiments, this is the
case.

To backup our analysis, we tested the scalability of our algorithm on a data tensor of English 3-grams.
We varied the number of non-zeros in the data tensor from five million down to a few hundred by
removing non-zeroes uniformly at random. We used a laptop with 8GB of memory and 1.3GHz
of CPU to run Algorithm 1 on these tensors with max-size = 100, min-size = 5, and φ∗ = 0.4.
Figure 1 shows the results, and we see that the scaling is roughly linear.
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Figure 1: Time to compute a partition on the English 3-grams as a function of the number of non-zeros
in the tensors. We see that the algorithm scales roughly linearly in the number of non-zeros (the red
line).

C Experiment discussion

C.1 Clustering methods and evaluation for synthetic experiment

We compared the results of our GTSC framework to several other state-of-the-art methods for
clustering tensor data.

GTSC. This is the method presented in this paper (Algorithm 1). We use the parameters α = 0.8,
max-size = 100, min-size = 5, and φ∗ = 0.35.1

TSC. This is the original tensor spectral clustering algorithm [3]. We use the algorithm with recursive
bisection to find 20 clusters.

PARAFAC. The PARAFAC method is a widely used tensor decomposition procedure [7] that finds
an approximation to the tensor by the sum of outer-products of vectors. We compute a rank-20
decomposition using the Tensor Toolbox [1, 5], and then assign nodes to clusters by taking the index
of the vector with highest value in the nodes index. We use the default tolerance of 10−4 and a
maximum of 1000 iterations.

Spectral Clustering (SC). Our clustering framework (Algorithm 1) works on mode-2 tensors, i.e.,
matrices. In this case, with α = 1, our algorithm reduces to a standard spectral clustering method.
We create a matrix M from the tensor data T by summing along the third mode: Mij =

∑n
k=1 Ti,j,k.

We then run Algorithm 1 with the same parameters as GTSC.

Multilinear Decomposition (MulDec). This is the higher-way co-clustering method for tensor
decomposition [10]. The parameter λ is set to be 0. We compute the rank-20 decomposition and
recover the clusters.

Evaluation metrics. We evaluate the clustering results using the Adjusted Rand Index (ARI) [8],
Normalized Mutual Information (NMI) [9], and F1 score. The ground truth labels correspond to the
generated groups.

C.2 Real-world dataset

In all of our experiments, we use the stopping criterion α = 0.8, φ∗ = 0.4, max-size = 100 and
min-size = 5 for Algorithm 1.

Table 1 shows the airline-airport co-clusters our GTSC finds. The other two methods (i.e., SC and
TSC) cannot find the Worldwide metropolises group, which is analogous to the “stop word” group
in the n-gram experiments. In particular TSC Even has trouble accurately identifying the regional

1 We tested several values φ∗ ∈ [0.3, 0.4] and obtained roughly the same results.
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Table 1: High-level descriptions of the larger co-clusters found by our GTSC framework on the
Airline-airport dataset. The algorithm finds one co-cluster of international hubs and large commercial
airlines and several geographically coherent groups.

Name #
Airports

# Air-
lines

Airports description Airlines description

Worldwide
metropolises

250 77 Large hubs, e.g., Beijing
Capital and JFK in New
York

Large commercial airlines,
e.g., United, Air Canada,
Air China

Europe 184 32 177 in Europe, rest in Mo-
rocco

29 European airlines

United States 137 9 136 in U.S., Cancún Interna-
tional

29 all U.S. airlines

China/Taiwan 170 33 136 in China or Taiwan, 21 in China/Taiwan 14 in S.
Korea and Thailand

Oceania/S.E.
Asia

302 52 231 in Oceania or S.E. Asia, 41 in East Asia or Canada 66
in China, Japan, or Canada

Mexico/Americas 399 68 396 in Mexico or Central
and South America

43 in Mexico or Central and
South America
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Figure 2: Enron email volume on three labeled topics. Our GTSC framework finds a co-cluster
consisting of these three topics at the time points labeled in red, which seems to correlate with various
events involving the CEO.

clusters. Other methods like PARAFAC and MulDec cannot handle the dataset of this size. Although
the number of non-zeros in this dataset is only 51, 982, PARAFAC and MulDec are unable to utilize
the sparse structure of the tensor. As a result the data size is 4, 655, 731, 619 (i.e.,539× 2939× 2939)
to them.

C.3 Extra experiemt - Enron email tensor

Due to space limit of the paper, we put our experiment results for Enron dataset here in Appendix.

Enron email. This dataset is constructed from emails between Enron employees with labeled top-
ics [4]. The tensor data represents the volume of communication between two employees discussing
a given topic during a particular week. In total, there are 185 weeks of data, 184 employees, and
34 topics, leading to a 185× 184× 184× 34 tensor where Tijkl is the number of emails between
employee j and k on topic l during week i.

In total, the algorithm finds 23 co-clusters of topics, people, and time. The most popular group
corresponds to three topics, 19 people, and 0 time intervals. Similar to the n-grams and airport-airline
data, this cluster corresponds to high-volume entities, in this case common topics and people who
send a lot of emails. The three topics are “Daily business", “too few words", and “no matching topic",

5



which account for roughly 90% of the total email volume. (The latter two topics are capturing outliers
and emails that do not fall under an obvious category). The 19 employees include 11 managers: the
CEO, (vice) preseidents, and directors. These employees are involved in 42% of the total emails.
There is no time interval in this co-cluster because these high-volume topics and employees are
balanced throughout time.

We also found several interesting co-clusters. One consists of the topics “California bankruptcy",
“California legislature", and “India (general)", during three weeks in December 2000 and January
2001, and 13 employees. These time points correspond to various events involving CEO Skilling
(Figure 2). Each of the 13 employees in the co-cluster sent at least one email from at least one of
the topics. Another co-cluster consists of the topics “General newsfeed", “Downfall newsfeed", and
“Federal Energy Regulatory Commission/Department of Energy" and several weeks from March 2001
and December 2001. These time intervals coincide with investor James Chanos finding problems
with Enron in early 2001 and the serious financial troubles encountered by the company in late 2001.

D Other discussion

D.1 Dangling correction effect

The TSC framework [3] used a pre-defined stochastic dangling vector u when encountering a zero
column of the tensor P. So the transition tensor is

P̃ ijk =

{
Pijk if

∑n
i=1 Tijk > 0

ui otherwise

Denote R̃ and R the mode-1 unfolding of tensor P̃ and P respectively. Then we have

R̃ = R + u(eT − eTR).

The multilinear Pagerank vector x of R̃ from Equation (5) satisfies:

x=α
(
R+u(eT −eTR)

)
x⊗x+(1−α)v

=αRx⊗x+αu(1−eTRx⊗x+(1−α)v

=αRx⊗x+α(1−‖Rx⊗x‖1)u+(1−α)v

where ‖ · ‖1 denotes the 1−norm of a vector.

When the tensor is very sparse, there are lots of zero columns in R, and ‖Rx ⊗ x‖1 can be quite
small. Thus, the contribution of the dangling vector u becomes significant. In prior work, u is simply
chosen as the uniform vector, and thus it washes out information about the structure in R.

With the dangling vector, the spacey random surfer ends up guessing some history steps that are not
feasible, i.e., states corresponding to zero columns in R.
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