Appendices

A Proof of Proposition 1

Recall that h = t; — t;_; for all j. Straightforward substitutions into the definitions give that
o; = ¢(0) = (0,1,0,...,0), p;—1 = ¢(—h) = (0,0,1,...,0) etc. and hence ¢iT7p¢i_q = 0y, for
all 0 < p,q < s — 1. Furthermore ®; = ®(0) = (1,0,0,...,0) since every component of ®(w) bar
the first is a polynomial of degree s with a factor w. Finally
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Now by (10) and the standard formulae for Gaussian conditioning, we have
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which is equal to the s-step Adams-Bashforth predictor defined by (6) and (7). Next we write
oL, ®; \ 7D,
T
Var(yis1|Yi, ficst1:4] = ®Fpq Pig1 — Z+_1¢z ]I;il s
DL himst ¢¢Tfs+.1‘1>i+1
NN 1
o | T ||
[@it1]s41 [Pit1]s41
- ‘PZTHCI’M ‘I)z+1q)l+1
=0

and the proposition follows.

B Proof of Proposition 2

We follow the same reasoning as in Proposition 1. Since the additional basis function at the end
of qi);."_ . is clearly zero at for all 0 < k < s — 1, each inner product of the form ¢T7 ¢, @7 T

and 77 ®7 is equal to the corresponding inner product ¢” ¢, ®”¢ and ¢7® as no additional



contribution from the new extended basis arises. It therefore suffices to check only the terms of the
form 7@,

Integrating the additional basis function gives a polynomial of degree s + 1 with a constant factor w.

Evaluating this at ¢; = 0 means that the additional term is also 0 in ®;. Therefore <I>i++T1 o =L |9,

and @7 @] = &7 ®,. It follows that the expression for E[y; 1 |yi, fi—s+1:] is exactly the same as
when using the unaugmented basis function set.

The argument in the previous paragraph means we can immediately write down that
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Since the first s + 1 components of @Z_Tl are equal to the s + 1 components of <I>iT+1, this expression
reduces to the contribution of the augmented basis element. Therefore
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The Adams-Moulton coefficient Bf{‘ffs 41 1s equal to the local truncation error constant for the s-step
Adams-Bashforth method [12] and the proposition follows.

C Extension to Adams-Moulton

We collect here the straightforward modifications required to the constructions in the main paper to
produce implicit Adams-Moulton methods instead of explicit Adams-Bashforth versions.

The telescopic decomposition (5) becomes
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where it is particularly to be noted that f is no longer superfluous.

The Lagrange interpolation resulting in the the Adams-Moulton method is
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the analogous vectors of basis polynomials to (8) and (9) are
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and the iterator is defined by
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with gAM, = h~! / 1 jfl:s*l(w) dw are the Adams-Moulton coefficients.
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The Gaussian process prior resulting in AM is
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D Adams-Moulton integrator with s = 4

The conditional distribution of interest is p(y;+1|yi, fi+1, [i, fi—1, fi—2) = p(Wit1|Yi, fit1:i—2)- In
the deterministic case the vectors of basis functions become

w(w)s:4 _ (0 w(w+fé§:;+2h) (w—h)(w;li;)(w—i-Qh) w(w—f%&:;—l—ﬂz) w(w—éL]iéw—i—h)) (20)

_ Wr(2h+w)?  w(Bwi48hw?—6h2w—2fh%)  W?(Bw?+4hw—12R%) w2 (w?-—2h?)
V(w)s=1 = (1 243 2R3 24h3 —5h3 @n

and the resulting calculations give
3 19 5 1
E(yit1lyis fiv1i—2) =yi +h | 2 fi o fi— o fion+ o fie
(i1l firr:im2) = i + <8f+1+24f g -1t 51f 2)

Var(yi+1yi, fi+1:i-2) =0
The probabilistic version is
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and further calculation shows that
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Remark

Proofs analogous to those of Propositions 1 and 2, for the Adams-Moulton case, follow the same line
of reasoning as for the Adams-Bashforth case.

E Expansion of backward difference coefficient approximation for s = 3

From (13), we have for s = 3
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F Proof of Theorem 3

Proposition 2 implies that our integrator can be written as
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where y; denotes the numerical solution at iteration i, and & € R? is a Gaussian random variable
satisfying E|&;£T | = Qh?**2 for some fixed d x d matrix (). We denote the true solution of the ODE
(1) at iteration ¢ by Y; = y(¢;) and we have that
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where by construction the local truncation error 7; = O(h**1). If we now subtract (26) from (27)
and denote the accumulated error at iteration ¢ by F; = Y; — y;, we have
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where
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We will rearrange this s-step recursion to give an equivalent one-step recursion in an higher-
dimensional space. In particular, using the trivial identities F; 1 = F;_1, - , E;_s41 = Fj_s41
we obtain
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or in compact form,
Eiy1 = A&+ AP, +T; — E;, i=s—1,...,N—1, N=T/h (28)

For the subsequent calculations it will be necessary to find a scalar product inducing a matrix norm
such that the norm of the matrix A is less or equal to 1. This is possible if the eigenvalues of the
Frobenius matrix .4 lie inside the unit circle on the complex plane and are simple if their modulus
is equal to 1. It is easy to show that the eigenvalues of A are roots of the characteristic polynomial
associated with the deterministic integrator (7). Since we have assumed that the deterministic
integrator is convergent, .4 does have the claimed property, since it is equivalent to the root condition
in Dahlquist’s equivalence theorem [12]. Thus there exists a non-singular matrix A with a block
structure like A such that [|[A~1 A A||2 < 1. We can therefore choose a scalar product for X', ) € R4
as
(2,9), = (AT"X,A7Y),

and then have | - |, and || - ||« as the induced vector and matrix norms respectively, with ||.A||, =
[|[A=tAAl|]2 < 1 as required. We also have

(X, 9), =XTATTATY = XTA Y with A" = A7TA = (A @ Ln)1<i,j<s (29)

Due to the equivalence of norms there exist constants c*, ¢, > 0 such that
X3 <cf|X)? and  |X|? < X%, forall X € RY, (30)
where |X|3 = >

j=1.ns 1|7 a0d X oo = maxj—y o |z;] for X = (21, 2])T, 2; €RY.

For the particular vectors X = (z7,0,---,0)" and Y = (y7,0,---,0)7 with X, € R% and
z,y € R%, one has o
(X, V) = Nile, )2 = N2y, (31)
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where A}, is as in (29). Applying the norm | - |2 to (28) and taking expectations gives
El€ir1]? = ElAE + A®; + T; — B2
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= E|AE + A®;|? + 2E(hY2(AE; + AD,), Th~Y2), + E|T;|> + O(h**+?)

= E|AE; + AD;|2 + 2E(hY2(AE; + AD;), Tih~Y2), + O(h?12) (32)
We now consider the term | AE; + A®;|? and expand it as
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For term A we immediately have |A&;|? < |&;|2 by construction of the norm | - |2.

For term B we have that
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For term C we have 2(A&;, A®;),. < 2|AE;|.|A®;|. < 2T'h|&;|? and it follows that
JAE; + A®i[Z < (1+O(h)) &l
Then from (32) we have
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Then by applying the Gronwall inequality we have (for different K in each line)

max [E|&|? < K(T)h*
0<kh<T

and since &, = (E, Fx—1, - , Fx—_s11) we conclude that

max E|E|? < K(T)h?®
0<kh<T

Note that in (33), the O(h**T2) term derived from the introduced perturbations &; is of one higher
order than the O(h?**1) term representing the truncation error in the deterministic solver. This
observation implies that a noise vector satisfying E|¢;¢7| = Qh?5T! would also give rise to an
integrator of order s.

Remark

An analogous proof for the Adams-Moulton case follows with straightforward modifications.
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