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Université Paris-Saclay
75013, Paris, France

{maxime.sangnier, olivier.fercoq, florence.dalche}
@telecom-paristech.fr

A Detailed proofs

A.1 Generalization

This section describes a proof of the generalization bound given in the corpus of the paper. The result
is based on a concentration inequality à la Bartlett and Mendelson [1] for vector-valued functions
[4], along with a bound on the Rademacher complexity of operator-valued kernel based hypothesis
sets [7]. Before stating these two critical properties, let us remind the definition of the Rademacher
complexity, used to quantify the complexity of a class of functions.
Definition A.1 (Rademacher complexity [4]). Let (Xi)1≤i≤n ∈ Xn be an independent and identi-
cally distributed (iid) sample of random variables and (εi,j) 1≤i≤n

1≤j≤p
∈ {−1, 1}n×p be n× p indepen-

dent Rademacher variables (i.e. uniformly distributed on {−1, 1}). Let now F ⊂ (Rp)X be a class
of functions from X to Rp. The Rademacher complexity (or average) of the class F is defined as:

Rn(F) = E

sup
f∈F

1

n

∑
1≤i≤n
1≤j≤p

εi,jfj(Xi)

 ,
where the expectation is computed jointly on (Xi)1≤i≤n and (εi,j) 1≤i≤n

1≤j≤p
.

Proposition A.1 (Concentration for Lipschitz hypotheses). Let X ∈ X and (Xi)1≤i≤n ∈ Xn be
iid random variables, F ⊂ (Rp)X a class of functions. Let φ : Rp → [a, b] (a, b ∈ R) be a Lipschitz
continuous mapping with Lipschitz constant Lφ:

∀(z, z′) ∈ Rp : |φ(z)− φ(z′)| ≤ Lφ ‖z − z′‖`2 .
Let δ ∈ (0, 1], then with probability at least 1− δ:

sup
f∈F

(
E [φ(f(X))]− 1

n

n∑
i=1

φ(f(Xi))

)
≤ 2
√

2LφRn(F) + (b− a)

√
log(1/δ)

2n
.

Proof. Thanks to the assumptions above, with probability at least 1− δ, we have [1, 3]:

sup
f∈F

(
E [φ(f(X))]− 1

n

n∑
i=1

φ(f(Xi))

)
≤ 2Rn(Φ) + (b− a)

√
log(1/δ)

2n
,

where Φ = {φ ◦ f : f ∈ F} . Then, using [5, Corollary 1], we obtain:

Rn(Φ) ≤
√

2LφRn(F).

Gathering both equations concludes the proof.
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Proposition A.2 (Bound on the Rademacher average [7, Theorem 3.1]). Assume that there exists
κ ∈ R+ such that: supx∈X tr(K(x,x)) ≤ κ and let F = {f ∈ KK , ‖f‖K ≤ c} for a given
c ∈ R+. Then:

Rn(F) ≤ c
√
κ

n
.

Theorem A.3 (Generalization). Let τ ∈ (0, 1)p, ((Xi, Yi))1≤i≤n ∈ (X × Y)n be iid random
variables (independent from (X,Y )), a ∈ R+ such that supy∈Y |y| ≤ a and b ∈ Yp. Let H =
{f + b : f ∈ KK/ ‖f‖K ≤ c}, for a given c ∈ R+, be the class of hypotheses. Moreover, assume
that there exists κ ∈ R+ such that: supx∈X tr(K(x,x)) ≤ κ and, for a hypothesis h, let us denote

R̂n(h) =
1

n

n∑
i=1

`τ (Yi1− h(Xi)),

the random variable associated to the empirical risk. Let δ ∈ (0, 1], then with probability at least
1− δ:

∀h ∈ H : R(h) ≤ R̂n(h) + 2
√

2c

√
pκ

n
+ (2pa+ c

√
pκ)

√
log(1/δ)

2n
.

Proof. Let F = {f ∈ KK , ‖f‖K ≤ c}. The proof begins with the following lemma.

Lemma A.4. Under the assumptions of Theorem A.3: ∀(f,x) ∈ F × X , ‖f(x)‖`2 ≤ c
√
κ.

Proof of Lemma A.4.

∀(f,x,y) ∈ F × X × Rp,
〈f(x) | y〉`2 = 〈Kxy | f〉K

≤ ‖f‖K ‖Kxy‖K
≤ c
√
〈Kxy |Kxy〉K

= c
√
〈y |K(x,x)y〉`2 .

From the properties of operator-valued kernels, we know that K(x,x) is symmetric positive semi-
definite. Thus, denoting (λj)1≤j≤p its (non-negative) eigenvalues and (ej)1≤j≤p the corresponding
orthonormal basis, we obtain when ‖y‖`2 ≤ 1:

〈y |K(x,x)y〉`2 =
∑
i,j

〈y | ei〉`2 〈y | ej〉`2 〈ei |K(x,x)ej〉`2

=
∑
j

〈y | ej〉2`2 λj

≤
∑
j

λj (since ‖y‖`2 ≤ 1)

= tr(K(x,x)).

Thus: ∀(f,x) ∈ F × X , ‖f(x)‖`2 = sup‖y‖`2≤1
〈f(x) | y〉`2 ≤ c

√
κ.
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In order to apply Proposition A.1, let us observe that the loss function `τ is
√
p-Lipschitz:

∀(r, r′) ∈ Rp,
`τ (r) = `τ (r − r′ + r′)

=

p∑
j=1

max
(
τj(rj − r′j + r′j), (τj − 1)(rj − r′j + r′j)

)
=

p∑
j=1

{
τj(rj − r′j + r′j) if rj − r′j + r′j ≥ 0
(τj − 1)(rj − r′j + r′j) if rj − r′j + r′j ≤ 0

=

p∑
j=1

{
τj(rj − r′j) + τjr

′
j if rj − r′j + r′j ≥ 0

(τj − 1)(rj − r′j) + (τj − 1)r′j if rj − r′j + r′j ≤ 0

≤
p∑
j=1

{
|rj − r′j |+ τjr

′
j if rj − r′j + r′j ≥ 0

|rj − r′j |+ (τj − 1)r′j if rj − r′j + r′j ≤ 0

≤
p∑
j=1

(
|rj − r′j |+ max(τjr

′
j , (τj − 1)r′j)

)
= ‖r − r′‖`1 + `τ (r′).

Switching r and r′ we get |`τ (r)− `τ (r′)| ≤ ‖r − r′‖`1 . Since by Cauchy-Schwarz inequality
‖r − r′‖`1 ≤

√
p ‖r − r′‖`2 , we obtain that `τ is

√
p-Lipschitz.

In addition, `τ is bounded for the residuals of interest:

∀(f,x,y) ∈ F × X × Yp,
0 ≤ `τ (y − f(x)− b) ≤ ‖y − f(x)− b‖`1

≤ ‖y − b‖`1 + ‖f(x)‖`1
≤ 2pa+

√
p ‖f(x)‖`2

≤ 2pa+ c
√
pκ.

Let U = {u : (x,y) ∈ X × Rp 7→ y − f(x) − b, f ∈ F}. By Proposition A.1 we have with
probability at least 1− δ:

sup
u∈U

(
E [`τ (u(X,Y ))]− 1

n

n∑
i=1

`τ (u(Xi, Yi))

)
≤ 2
√

2pRn(U) + (2pa+ c
√
pκ)

√
log(1/δ)

2n
.
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Let (εi,j) 1≤i≤n
1≤j≤p

be an iid sample of Rademacher random variables. Then:

Rn(U) = E

sup
u∈U

 1

n

∑
1≤i≤n
1≤j≤p

εi,juj(Xi, Yi)




= E

sup
f∈F

 1

n

∑
1≤i≤n
1≤j≤p

εi,j(Yi − fj(Xi)− bj)




= E

sup
f∈F

 1

n

∑
1≤i≤n
1≤j≤p

εi,jfj(Xi)




+ E

 1

n

∑
1≤i≤n
1≤j≤p

εi,jYi

+ bjE

 1

n

∑
1≤i≤n
1≤j≤p

εi,j


= E

[
sup
f∈F

(
1

n

n∑
i=1

εi,jfj(Xi)

)]

+
1

n

∑
1≤i≤n
1≤j≤p

E [εi,j ]E [Yi] + bj
1

n

∑
1≤i≤n
1≤j≤p

E [εi,j ]

= E

sup
f∈F

 1

n

∑
1≤i≤n
1≤j≤p

εi,jfj(Xi)




= Rn(F)

≤ c
√
κ

n
(Proposition A.2).

This concludes the proof.

A.2 Quantile deviation

Given a vector of probabilities τ ∈ (0, 1)p and a quantile estimator ĥ : X → Rp, we are inter-
ested in controlling the deviation of E

[
P
(
Y ≤ ĥj(X) | X

)]
from τj (for a particular j ∈ Np).

For this purpose, we would like to derive a uniform bound using the scalar counterpart of Propo-
sition A.1 (which is identical but substituting

√
2 by 1 [3]). Since such a bound is true for all

hypothesis h, we do not require E [P (Y ≤ hj(X) | X)] to be close to τj , but to its empirical twin
1
n

∑n
i=1 IR− (Yi − hj(Xi)), where IR− is the indicator function of the set R−. For a quantile esti-

mator ĥ, the quantile property states that τj is sufficiently close to 1
n

∑n
i=1 IR−

(
yi − ĥj(xi)

)
.

Now, remark that:

E [P (Y ≤ hj(X) | X)] = E
[
E
[
IR− (Y − hj(X)) | X

]]
= E

[
IR− (Y − hj(X))

]
.

Thus, the two quantities to compare clearly appear as an expected and an empirical costs based on
the loss function IR− . Unfortunately, that loss function is not Lipschitz continuous. In order to
circumvent that pitfall, we introduce an artificial margin ε > 0 and two ramp functions Γ−ε and Γ+

ε
(see definition in Theorem A.5). These surrogate mappings are 1

ε -Lipschitz and respectively lower
and upper bound IR− .

Finally, Theorem A.5 states that E [P (Y ≤ hj(X) | X)] is uniformly bounded by the empirical
quantile levels 1

n

∑n
i=1 Γ−ε (Yi − hj(Xi)) and 1

n

∑n
i=1 Γ+

ε (Yi − hj(Xi)) to an additive bias in
O(1/

√
n).
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Theorem A.5 (Quantile deviation). Let τ ∈ (0, 1)p, ((Xi, Yi))1≤i≤n ∈ (X × Y)n be iid random
variables (independent from (X,Y )) and b ∈ Rp. Let H = {f + b : f ∈ KK/ ‖f‖K ≤ c}, for a
given c ∈ R+, be the class of hypotheses. Moreover, assume that there exists κ ∈ R+ such that:
supx∈X tr(K(x,x)) ≤ κ. Let ε > 0 be an artificial margin,

Γ+
ε : r ∈ R 7→ proj[0,1]

(
1− r

ε

)
and Γ−ε : r ∈ R 7→ proj[0,1]

(
−r
ε

)
,

two ramp functions, j ∈ Np and δ ∈ (0, 1]. Then with probability at least 1− δ:

∀h ∈ H :
1

n

n∑
i=1

Γ−ε (Yi − hj(Xi))−∆ ≤ E [P (Y ≤ hj(X) | X)] ≤ 1

n

n∑
i=1

Γ+
ε (Yi − hj(Xi)) + ∆,

where ∆ = 2c
ε

√
κ
n +

√
log(2/δ)

2n .

Proof. First, let us remind that: E [P (Y ≤ hj(X) | X)] = E
[
IR− (Y − hj(X))

]
, and ∀r ∈

R,Γ−ε (r) ≤ IR−(r) ≤ Γ+
ε (r). Thus,

E
[
Γ−ε (Y − hj(X))

]
≤ E [P (Y ≤ hj(X) | X)] ≤ E

[
Γ+
ε (Y − hj(X))

]
.

Then, remarking that Γ+
ε is 1

ε -Lipschitz, we obtain (by the same reasoning as for the proof of Theo-
rem A.3 and using [3, Theorem 1]):

∀h ∈ H : E
[
Γ+
ε (Y − hj(X))

]
≤ 1

n

n∑
i=1

Γ+
ε (Yi − hj(Xi)) +

2c

ε

√
κ

n
+

√
log(1/δ)

2n
,

with probability at least 1− δ. Respectively, for −Γ−ε , with probability at least 1− δ:

∀h ∈ H : − E
[
Γ−ε (Y − hj(X))

]
≤ − 1

n

n∑
i=1

Γ−ε (Yi − hj(Xi)) +
2c

ε

√
κ

n
+

√
log(1/δ)

2n
.

Gathering everything with the union bound concludes the proof.

B Dual formulation

In this section, we derive a dual problem for learning a joint quantile regressor with non-crossing
constraints. These last constraints are set thanks to a matrixA defined below. ConsideringA as the
null-matrix gives a dual formulation for the learning problem without non-crossing constraints.

Let C ∈ R+, τ ∈ (0, 1)p, such that τj > τj+1 (∀j ∈ Np−1) and the finite difference operator,
embodied by the matrix:

A =


1 −1 0 . . . 0

0 1 −1
. . . 0

...
. . . . . . . . . 0

0 . . . 0 1 −1

 ∈ R(p−1)×p.

The primal problem we are interested in (with the associated dual variables) is:

minimize
f∈H,b∈Rp
ξ,ξ∗∈(Rp)n,

1

2
‖f‖2K + C

n∑
i=1

〈τ | ξi〉`2 + C

n∑
i=1

〈1− τ | ξ∗i 〉`2

s. t.


∀i ∈ Nn : yi − f(xi)− b = ξi − ξ

∗
i : αi ∈ Rp

ξi < 0 : βi ∈ Rp+
ξ∗i < 0 : γi ∈ Rp+
A(f(xi) + b) < 0 : δi ∈ Rp−1+ .
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The last constraint enforces the regressors not to cross on the training points (hard non-crossing
constraints). Let us write the Lagrangian function:

L(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) =

1

2
‖f‖2K + C

n∑
i=1

〈τ | ξi〉`2 + C

n∑
i=1

〈1− τ | ξ∗i 〉`2

+

n∑
i=1

〈αi | yi〉`2 −
n∑
i=1

〈αi | f(xi)〉`2 −
n∑
i=1

〈αi | b〉`2

−
n∑
i=1

〈αi | ξi〉`2 +

n∑
i=1

〈αi | ξ∗i 〉`2

−
n∑
i=1

〈βi | ξi〉`2 −
n∑
i=1

〈γi | ξ
∗
i 〉`2

−
n∑
i=1

〈δi |A(f(xi) + b)〉`2

=
1

2
‖f‖2K −

〈
n∑
i=1

Kxi
(αi +A>δi) | f

〉
H

+

n∑
i=1

〈Cτ −αi − βi | ξi〉`2

+

n∑
i=1

〈C(1− τ ) +αi − γi | ξ
∗
i 〉`2 −

〈
n∑
i=1

(αi +A>δi) | b

〉
`2

+

n∑
i=1

〈αi | yi〉`2 .

First order optimality conditions for the primal variables give:

∇fL(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = f −

n∑
i=1

Kxi(αi +A>δi) = 0

∇bL(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = −

n∑
i=1

(αi +A>δi) = 0

∇ξiL(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = Cτ −αi − βi = 0

∇ξ∗i L(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = C(1− τ ) +αi − γi = 0.

That is: 

f =

n∑
i=1

Kxi
(αi +A>δi)

0 =

n∑
i=1

(αi +A>δi)

βi = Cτ −αi
γi = C(1− τ ) +αi.

Recalling that βi < 0 and γi < 0, we obtain: C(τ − 1) 4 αi 4 Cτ . Then, by substitution of the
first order equations in the Lagrangian function, the linear expressions in the primal variables vanish
and the quadratic part becomes:

1

2
‖f‖2K −

〈
n∑
i=1

Kxi(αi +A>δi) | f

〉
H

=
1

2

n∑
i,j=1

〈
Kxi(αi +A>δi) |Kxj (αj +A>δj)

〉
H

−
n∑

i,j=1

〈
Kxi(αi +A>δi) |Kxj (αj +A>δj)

〉
H

= −1

2

n∑
i,j=1

〈
(αi +A>δi) |K(xi,xj)(αj +A>δj)

〉
`2
.
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Gathering every thing, the dual problem writes:

maximize
αi∈Rp,δi∈Rp−1

∀i∈Nn

−1

2

n∑
i,j=1

〈
(αi +A>δi) |K(xi,xj)(αj +A>δj)

〉
`2

+

n∑
i=1

〈αi | yi〉`2

s. t.


∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ

δi < 0
n∑
i=1

(αi +A>δi) = 0Rp .

In order to simplify the previous problem, let ui = αi+A
>δi and remark thatAyi = yi(A1) = 0.

The new dual problem then becomes:

maximize
ui∈Rp,δi∈Rp−1

∀i∈Nn

−1

2

n∑
i,j=1

〈ui |K(xi,xj)uj〉`2 +

n∑
i=1

〈ui | yi〉`2

s. t.


∀i ∈ Nn : C(τ − 1) 4 ui −A>δi 4 Cτ

δi < 0
n∑
i=1

ui = 0Rp .

Primal variables are recovered thanks to first order conditions. First, f =
∑n
i=1Kxiui. Second,

the intercept b can be obtained either by detecting couples (i, `) ∈ Nn × Np such that C(τ` − 1) <

(ui)` − (A>δi)` < Cτ` (in this case b` = yi − f`(xi)), or by remarking that b is a dual vector
for the linear constraint

∑n
i=1 ui = 0Rp (if one uses a primal-dual algorithm to solve the previous

optimization problem).

When non-crossing constraints are dismissed (A = 0R(p−1)×p ), the regressor h = f + b satisfies
the quantile property. Thus, knowing f , the intercepts b` can be recovered as τ`-quantiles of (yi −
f`(xi)1≤i≤n.

C Algorithmic details

This section details an augmented Lagrangian scheme for estimating quantile regressors. We start
with the dual formulation of the learning problem (without non-crossing constraints):

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi |K(xi,xj)αj〉`2 −
n∑
i=1

yi 〈αi | 1〉`2

s. t.


∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ
n∑
i=1

αi = 0Rp .

The method consists in solving the saddle point problem with an additional squared penalty [2]:

maximize
b∈Rp

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi |K(xi,xj)αj〉`2 −
n∑
i=1

yi 〈αi | 1〉`2

+

〈
b |

n∑
i=1

αi

〉
`2

+
µ

2

∥∥∥∥∥
n∑
i=1

αi

∥∥∥∥∥
2

`2
s. t. ∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ ,

where µ is a positive scalar. The next step is to split the optimization program into an outer problem
(depending only on the variable b) and an inner one (depending on α). This latter problem is:

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi | (K(xi,xj) + µI)αj〉`2 +

n∑
i=1

〈αi | b− yi1〉`2

s. t. ∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ ,

(1)
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Algorithm 1 Augmented Lagrangian algorithm
Initialize µ← 10, b← 0Rp .
repeat

Solve Optimization Problem (1).
Make a gradient step on b with step size µ.

until ‖
∑n
i=1αi‖

2

`2
is small enough

Table 1: Empirical quantile loss ×100 (the closer to 0, the better).

Data set IND. IND. (NC) MTFL JQR

caution 4.50 ± 39.08 3.33 ± 37.84 7.00 ± 32.57 ◦◦◦ 7.17 ± 36.40
ftcollinssnow 1.43 ± 38.49 1.79 ± 38.12 1.25 ± 38.50 ◦◦◦ 0.54 ± 35.77
highway 10.83 ± 70.12 10.83 ± 71.20 7.50 ± 62.96 ◦◦◦ 15.00 ± 67.11
heights -1.15 ± 9.88 -1.14 ± 9.88 -0.76 ± 9.39 ◦◦◦ -1.26 ± 9.31
sniffer -6.58 ± 26.45 -6.58 ± 27.59 -3.95 ± 27.57 ◦◦◦ -4.08 ± 29.23
snowgeese -0.00 ± 44.03 1.07 ± 43.41 1.43 ± 50.03 ◦◦◦ -6.43 ± 44.94
ufc 0.58 ± 12.13 0.89 ± 11.97 -0.31 ± 13.59 ••◦ -1.79 ± 13.42
birthwt 2.02 ± 29.80 2.02 ± 29.80 2.11 ± 34.55 ◦◦◦ 0.88 ± 33.86
crabs -2.42 ± 20.52 -1.25 ± 22.08 -2.17 ± 22.21 ◦◦◦ -0.50 ± 21.75
GAGurine 1.95 ± 17.43 1.74 ± 17.39 0.89 ± 16.71 ◦◦◦ 1.84 ± 16.89
geyser 1.22 ± 18.84 1.17 ± 18.66 0.22 ± 19.20 ◦◦◦ 1.61 ± 19.04
gilgais 0.95 ± 18.35 0.95 ± 18.19 -0.64 ± 16.12 ◦◦◦ 0.18 ± 20.22
topo -19.38 ± 70.18 -19.38 ± 71.34 -20.00 ± 64.18 ◦◦◦ -20.31 ± 65.73
BostonHousing 7.40 ± 18.26 7.30 ± 17.94 5.72 ± 16.72 ◦◦◦ 5.30 ± 15.74
CobarOre 26.67 ± 72.49 25.42 ± 72.58 -22.08 ± 77.16 ◦◦◦ 20.00 ± 72.62
engel -3.66 ± 18.71 -3.73 ± 18.72 -3.73 ± 19.73 ◦◦◦ -2.39 ± 17.18
mcycle 1.37 ± 29.20 1.75 ± 30.73 4.75 ± 28.42 ◦◦◦ 6.25 ± 30.84
BigMac2003 -4.76 ± 51.10 -0.00 ± 45.24 1.67 ± 52.19 ◦◦◦ 0.24 ± 45.76
UN3 4.44 ± 19.11 4.21 ± 19.23 2.62 ± 17.06 ◦◦◦ 4.76 ± 20.68
cpus 2.38 ± 20.30 3.57 ± 19.63 1.51 ± 15.02 ◦◦◦ 1.67 ± 31.78

where I is the identity matrix. This inner optimization problem is a quadratic program with a box
constraint. This is quite easily solvable. Thus, following [2], we can learn quantile estimators
thanks to the simple alternate scheme described in Algorithm 1. In practice, the inner solver used
in Algorithm 1 in order to get an approximate solution for Problem (1) is the primal dual-dual
coordinate descent proposed in [6] with 104 as the maximum number of iterations.

D Numerical results

D.1 Quantile regression

Another criterion for assessing quantile regression methods is the quantile loss∑p
j=1

[[
1
n

∑n
i=1 IR−(yi − hj(xi))

]
− τj

]
, where IR− is the indicator function of the set R−.

This loss measures the deviation of the estimators hj to the prescribed quantile levels τj .

However, the quantile loss is quite an equivocal criterion, since it measures how much the uncon-
ditional quantile property is satisfied. This unconditional indicator is indeed the only way to get
a piece of information concerning the conditional quantile property. For instance, Takeuchi et al.
[8] empirically showed (with the same datasets) that the constant function based on the uncondi-
tional quantile estimator performs best under this criterion, even though it is expected to be a poor
conditional quantile regressor. The numerical results in Table 1 follow this remark and the results
previously obtained [8]. No significant ranking comes out.

D.2 Training algorithms

In order to compare the implementations of the three algorithms for solving the dual optimization
problem of joint quantile regession, the following procedure has been set up: we first run QP, with
a relative tolerance set to 10−2, and store the optimal objective value. Then, the two other methods
(AUG. LAG and PDCD) are launched and stopped when they pass the objective value reached by
QP.

During the descent of PDCD, we used an efficient accumulated objective value, which is not exact
since the iterate α is not feasible to the linear constraint. Table 2 describes the average objective
values (divided by the sample size) reached by each algorithm after projection of the best candidate
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Table 2: Average objective value (divided by the sample size) reached in the second numerical
experiment presented in the corpus of the paper.

Size QP AUG. LAG. PDCD

250 -109.69 ± 5.41 -109.73 ± 5.41 -109.72 ± 5.40
500 -109.84 ± 2.09 -109.85 ± 2.08 -109.88 ± 2.11
1000 -104.13 ± 1.49 – -104.17 ± 1.49
2000 -106.35 ± 2.36 – -106.39 ± 2.38

onto the set of constraints. We can check that our approach (PDCD) always reaches a smaller
objective value than the target QP. This validates our procedure.
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