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A Proofs of Main Results

Proof of Theorem 4. We prove by contradiction. Assume the contrary, that (ψn)n is a polynomial
time computable certifier for Q̃⊗(n×p)-random matrices.

For α < 1 and 0 ≤ β < 1
3 (1 − α), let (p, k, θ) = (pn, kn, θn) ∈ Rα be a sequence satisfying

p ≥ n, log p = O(log n), n
1

3−α−4β � k � n
1

2−β−δ for some δ > 0 and θ =
√
k1+α log(p)/n. Let

L = 10 and ` = bkβc. Define m = L`n and κ = Lk. We check that

κ2 � k2−βkβ � n1−δ`� m1−δ′

for some positive δ′ that depends on δ only. We remark that the purpose of introducing the extra
parameter β in the proof is mainly to show the ubiquity of parameter sequences (p, k, θ) that arrive at
a contradiction. In particular, we can use positive β values to construct sequences where k � n1/2.
For a first reading, it suffices to take β = 0 (i.e. ` = 1), which already constitutes a proof of the
theorem. When β > 0, the proof requires the additional assumption that there exists Q̆ such that
for Y1, . . . , Y 2

`
i.i.d.∼ Q̆, `−1

∑`2

i=1 Yi ∼ Q̃. Note when β = 0, we can simply take Q̆ = Q̃. Let
ξ denote the median of Q̆. By definition of the median, there exists a unique decomposition of the
probability measure Q̆ as Q̆ = 1

2 Q̆
+ + 1

2 Q̆
−, where Q̆+ and Q̆− are probability measures supported

on (−∞, ξ] and [ξ,∞) respectively.

We prove below that Algorithm 1, which runs in randomized polynomial time, can distinguish be-
tween P0 and PH with zero asymptotic error for any choice of H ∈ Hκ,ε.
First, assume G ∼ P0. Then matrix A from Step 1 of Algorithm 1 have independent Rademacher
entries, which implies that X ∼ Q̃⊗(n×p). Therefore, by (2) in Section 2 we must have

lim inf P0(φ(G) = 1) = Q̃⊗(n×p)(ψ−1n (0)) < 1/3.

Next, assume G is generated with probability measure PH for some H ∈ Hκ,ε. We claim that

X̃ /∈ RIPn,n

(
k,
ck2

n`2

)
(1)

for some absolute positive constant c. Since

k2

n`2
�
√
k1+α

n
� θ,
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Algorithm 1: Pseudo-code for an algorithm to distinguish between P0 and PH .
Input: m ∈ N, κ ∈ {1, . . . ,m}, G ∈ Gm, L ∈ N
begin

Step 1: Let N ← bm/Lc, k ← bκ/Lc, `← bkβc, n← bN/`c, p← pn. Draw
u1, . . . , uN , w1, . . . , wN uniformly at random without replacement from V (G). Form
A = (Aij) ∈ RN×N where Aij = 2 · 1{ui∼wj} − 1.
Step 2: Let Y + = (Y +

ij ) and Y − = (Y −ij ) be N -by-N random matrices independent from all

other random variables and from each other, and such that Y +
ij

i.i.d.∼ Q̆+ and Y −ij
i.i.d.∼ Q̆−.

Define Z = (Zij) by Zij = 1{Aij = 1}Y +
ij + 1{Aij = −1}Y −ij .

Step 3: For 0 ≤ a, b ≤ `− 1, define Z(a,b) ∈ Rn×n by Z(a,b)
i,j = Zan+i,bn+j . Define

X̃ ← `−1
∑

0≤a,b<` Z
(a,b). Finally, let X ←

(
X̃ X̃ ′

)
where X̃ ′ ∈ Rn×(p−n) has entries

independently drawn from distribution Q̃.
Step 4: Let φ(G)← 1− ψn(X).

end
Output: φ(G)

we have that for large n, X̃ /∈ RIPn,n(k, θ). Hence X is a fortiori not an RIPn,p(k, θ) matrix. As
a result,

lim inf
m

max
H∈Hκ,ε

PH
(
φ(G) = 0)

)
< 1/3,

contradicting Assumption (A1).

It remains to verify the claimed result in (1). LetK ⊆ V (G) be the κ-subset of vertices on which the
subgraph H is planted. We write U = {u1, . . . , uN} and W = {w1, . . . , wN} for the two random
subsets of vertices. Let NU,W ;K be the random variable counting the number of edges in G with
two endpoints in U ∩K and W ∩K respectively. Then

NU,W ;K = #
{
{u,w} ∈ E(G) : u ∈ U ∩K,w ∈W ∩K

}
=
∑
u∈K

∑
w∈K

1{u ∈ U}1{w ∈W}1{u ∼ w}.

Define

Ω1 :=

{
NU,W ;K ≥

(
1

2
+
ε

4

)
k2
}
∩
{∣∣#U ∩K − k∣∣ ≤ ε

8
k

}
∩
{∣∣#W ∩K − k∣∣ ≤ ε

8
k

}
.

Lemma 1 below shows that Ω1 has asymptotic probability 1. Note Ω1 is in the σ-algebra of (U,W ).
Let U = U0 and W = W0 be any realization satisfying Ω1. We write PU0,W0 and EU0,W0 as
shorthand for the probability and expectation conditional on U = U0 and W = W0.

For each j ∈ {1, . . . , n}, define sj :=
∑
ui∈U∩K Ai,j . Write k1 := (1−ε/8)k and k2 = (1+ε/8)k.

Let S := {i : ui ∈ U ∩K}, and let T be a subset of k1 indices in {1, . . . , n} corresponding to the
k1 largest values of sj (breaking ties arbitrarily). Note that S and T are functions of U and V . On
the event U = U0 and W = W0, both #S = #U ∩K and #W ∩K are bounded in the interval
[k1, k2], so in particular k1 ≤ #W ∩K. We have∑
wj∈W∩K

sj = 2NU,W ;K −#(U ∩K)×#(W ∩K) ≥
{

(1 + ε/2)− (1 + ε/8)2
}
k2 ≥ ε

5
k2.

As elements of T index columns of A corresponding to largest values of sjs, we have that on event
{U = U0,W = W0}, ∑

j∈T
sj ≥

#T

#W ∩K
ε

5
k2 ≥ ε

5

k2k1
k2
≥ ε

6
kk1. (2)
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Define the unit vector v ∈ Rn by vT = k
−1/2
1 1k1 and vT c = 0. Note that v is k1-sparse and hence

also k-sparse. Conditional on U = U0 and W = W0, Zij = Y +
ij if Aij = 1 and Zij = Y −ij

if Aij = −1. By definition of Q̃+ and Q̃−, and the fact that Q̃ is not a point mass, we have
EY +

ij = −EY −ij = c1/
√
n for some absolute constant c1 > 0. By (2), the sum

∑
i∈S,j∈T Zij can

be bounded below in conditional expectation by

EU0,W0

∑
i∈S,j∈T

Zij ≥ EU0,W0

( ∑
i∈S,j∈T

(1{Aij = 1}Y +
ij + 1{Aij = −1}Y −ij )

)

=
c1√
n

(∑
j∈T

sj

)
≥ c1√

n

ε

6
kk1 .

By Lemma 3, both Y +
ij − EY +

ij and Y −ij − EY −ij are sub-Gaussian with parameter at most c2σ/
√
n

for some absolute constant c2 > 0. By Hoeffding’s inequality for sums of sub-Gaussian random
variables (see e.g. Vershynin (2012, Proposition 5.10)),

PU0,W0

( ∑
i∈S,j∈T

Zij >
c1ε

12
√
n
kk1

)
≥ 1− 2 exp

{
−

( c1ε
12
√
n
kk1)2

2c22σ
2k1k2/n

}
→ 1. (3)

By (3) and the fact that P(Ω1)→ 1, the event

Ω2 :=

{ ∑
i∈S,j∈T

Zij ≥
c1εkk1
12
√
n

}
has asymptotic probability 1.

Now define

S̃ = {i ∈ {1, . . . , n} : uan+i ∈ U ∩K for some 0 ≤ a ≤ `− 1}
T̃ = {j ∈ {1, . . . , n} : wbn+j ∈W ∩K for some 0 ≤ b ≤ `− 1}

Also, define v(b) = (vbn+1, . . . , vbn+n)> for 0 ≤ b ≤ ` − 1, ṽsum =
∑

0≤b≤`−1 v
(b) and ṽ =

ṽsum/‖ṽsum‖2. By Lemma 6, we have ‖ṽsum‖∞ ≤ c2k−1/21 with asymptotic probability 1 for some
c2 depending on β only. Hence ‖ṽsum‖2 ≤ c2. Thus, by Cauchy–Schwarz inequality, we have with
asymptotic probability 1,

‖X̃S̃∗ṽ‖2 ≥ ‖ṽsum‖
−1
2 (#S̃)−1/2‖X̃S̃∗ṽsum‖1

Since

X̃S̃∗ṽsum = `−1
( ∑
0≤a,b<`

Z
(a,b)
S∗

)( ∑
0≤b′<`

v(b)
)

= `−1
∑

0≤a,b<`

Z
(a,b)
S∗ v(b) + `−1

∑
0≤a,b,b′<`

b 6=b′

Z
(a,b)
S∗ v(b

′)

We can bound ‖X̃S̃∗ṽsum‖1 from below by the entrywise sums of the two terms above. The en-
trywise sum of the first term can be rewritten as `−1

∑
i∈S,j∈T Zij , which by (3) is bounded from

below by c3εk
`
√
n

with asymptotic probability 1. The second term has entries with nonnegative means,
hence another application of the Hoeffding’s inequality shows that its contribution will be of smaller
order than the first term with high probability. To summarise, we have that

‖X̃S̃∗ṽ‖2 ≥
c3εk

`
√
n
.

with asymptotic probability 1. On the other hand, the submatrix X̃S̃c∗ has independent and iden-
tically distributed entries. By Vershynin (2012, Lemma 5.9), for i ∈ S̃c and 1 ≤ j ≤ n,
X̃ij = `−1

∑`−1
a,b=0 Z

(a,b)
an+i,bn+j is a centred sub-Gaussian random variable with sub-Gaussian pa-

rameter σ/
√
n and variance 1/n. Let X̃i denote the ith row vector of the matrix X̃ , then conditional

on T̃ , we have that X̃>i ṽ is also a centred sub-Gaussian random variable with parameter σ/
√
n and

variance 1/n. Using Lemma 5, we have

P
(
‖X̃Sc∗ṽ‖22 −

n−#S̃

n
≤ −

√
log n

n−#S̃

)
≤ exp

{
− log n

64σ4

}
→ 0.

3



Since #S̃ ≤ k2 with asymptotic probability 1, the event

Ω3 :=

{
‖X̃S̃c∗ṽ‖

2
2 ≥ 1− k2

n
−
√

2 log n

n

}
has asymptotic probability 1. Finally, since X̃ṽ = (X̃S̃∗ṽ, X̃S̃c∗v)>, on Ω2 ∩ Ω3,

‖X̃ṽ‖22 = ‖X̃S̃∗ṽ‖
2
2 + ‖X̃S̃c∗v‖

2
2 ≥ 1 +

c23ε
2k2

`2n
− k2

n
−
√

2 log n

n
.

The right hand side is at least 1+ck2/(n`2) for some absolute positive constant c for all large values
of n. This verifies (1) and concludes the proof.

Lemma 1. Let G be a graph on m vertices and K a κ-subset of V (G), such that the edge density
of G restricted to K is at least 1/2 + ε. Let n, p be integers less than m/2. Choose u1, . . . , un and
w1, . . . , wp independently at random without replacement from V (G). Denote U = {u1, . . . , un}
and W = {w1, . . . , wp}. Define NU,W ;K to be the number of edges with two endpoints in U and
W respectively. Then for m,n, p, κ sufficiently large.

P
{∣∣∣∣#U ∩K − nκ

m

∣∣∣∣ ≥ ε

8

nκ

m

}
≤ 64m

ε2nκ
,

P
{∣∣∣∣#W ∩K − pκ

m

∣∣∣∣ ≥ ε

8

pκ

m

}
≤ 64m

ε2pκ
,

P
{
NU,W ;K ≤

(
1

2
+
ε

4

)
npκ2

m2

}
≤ 16m(pκ+ nκ+m)

ε2npκ2
.

Proof. The cardinality of U ∩K has HyperGeom(m,κ, n) distribution. Hence

E(#U ∩K) =
nκ

m
and var(#U ∩K) = n

κ

m

m− κ
m

m− n
m− 1

≤ nκ

m
.

The first inequality in the lemma now follows from an application of Chebyshev’s inequality. A
similar argument establishes the second inequality. For the final inequality in the lemma, we have
that for κ sufficiently large,

E(NU,W ;K) =
∑
u∈K

∑
w∈K

P(u ∈ U,w ∈W )1{u ∼ w}

=
np

m(m− 1)

∑
u∈K

∑
w∈K

1{u ∼ w} ≥
(1

2
+ ε
)npκ(κ− 1)

m(m− 1)
≥
(1

2
+
ε

2

)npκ2
m2

.

We then compute the variance of NU,W ;K by

var(NU,W ;K) = cov

(∑
u∈K

∑
w∈K

1{u ∈ U,w ∈W,u ∼ w},
∑
u′∈K

∑
w′∈K

1{u′ ∈ U,w′ ∈W,u′ ∼ w′}
)

=
∑

u,w,u′,w′∈K
cov
(
1{u ∈ U,w ∈W,u ∼ w},1{u′ ∈ U,w′ ∈W,u′ ∼ w′}

)
=: I + II + III + IV,

where the four terms I, II, III and IV handle sums over subsets of indices {(u,w, u′, w′) ∈ K4 : u 6=
u′, w 6= w′}, {(u,w, u′, w′) ∈ K4 : u = u′, w 6= w′}, {(u,w, u′, w′) ∈ K4 : u 6= u′, w = w′} and
{(u,w, u′, w′) ∈ K4 : u = u′, w = w′} respectively.

We bound the four terms separately. For the first term, we have

I =
∑

u,u′,w,w′ distinct

{
P(u, u′ ∈ U,w,w′ ∈W )− P(u ∈ U,w ∈W )P(u′ ∈ U,w′ ∈W )

}
1{v ∼ w}1{u′ ∼ w′}

=
∑

u,u′,w,w′ distinct

{
n(n− 1)p(p− 1)

m(m− 1)(m− 2)(m− 3)
−
(

np

m(m− 1)

)2}
1{u ∼ w}1{u′ ∼ w′}.
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When m > max(2n, 2p), the term in bracket above is non-positive, hence I ≤ 0. For the second
term, we get that

II =
∑

u,w,w′ distinct

{
P(u ∈ U,w,w′ ∈W )− P(u ∈ U,w ∈W )P(u ∈ U,w′ ∈W )

}
1{u ∼ w}1{u′ ∼ w′}

=
∑

u,w,w′ distinct

{
np(p− 1)

m(m− 1)(m− 2)
−
(

np

m(m− 1)

)2}
1{u ∼ w}1{u ∼ w′}

≤ np(p− 1)

m(m− 1)(m− 2)

∑
u,w,w′ distinct

1{u ∼ w}1{u ∼ w′} ≤ np2κ3

m3
.

Similarly, we have

III ≤ n(n− 1)pκ(κ− 1)(κ− 2)

m(m− 1)(m− 2)
≤ n2pκ3

m3
.

And finally,

IV =
∑

u,w distinct

{
P(u ∈ U,w ∈W )− P(u ∈ U,w ∈W )2

}
1{u ∼ w} ≤ npκ(κ− 1)

m(m− 1)
≤ npκ2

m2
.

Sum up the four terms, we get that

var(NU,W ;K) ≤ npκ2

m2

(
pκ

m
+
nκ

m
+ 1

)
.

By Chebyshev’s inequality, we get that

P
{
NU,W ;K ≤

(
1

2
+
ε

4

)
npκ2

m2

}
≤ 16m(pκ+ nκ+m)

ε2npκ2
,

as desired.

B Auxiliary Results

Proof of Proposition 1. Let Xi denote the ith row vector of X . Then for any fixed u ∈ Sp(k),

Eeλ(X
>
i u) =

∏
1≤j≤p

EeλXijuj ≤
∏
j

eλ
2u2
j/(2σ

2n) = eλ
2/(2σ2n).

Apply Lemma 5 to ‖Xu‖22 − 1 = n−1
∑n
i=1

{
(
√
nX>i u)2 − E(

√
nX>i u)2

}
, and use the fact that

θ/(8σ2) ≤ 1, we have

P
(
1− θ ≤ ‖Xu‖22 ≤ 1 + θ

)
≥ 1− 2e−nθ

2/(64σ4).

We claim that there is a set N of cardinality at most
(
p
k

)
9k such that

sup
u∈Sp(k)

∣∣‖Xu‖22 − 1
∣∣ ≤ 2 sup

u∈N

∣∣‖Xu‖22 − 1
∣∣ (4)

Given (4), by union bound, we have

P(X ∈ RIP(k, θ)) = P
(

sup
u∈Sp(k)

∣∣‖Xu‖22 − 1
∣∣ ≤ θ) ≥ P

(
sup
u∈N

∣∣‖Xu‖22 − 1
∣∣ ≤ θ/2)

≥ 1− 2

(
p

k

)
9ke−nθ

2/(256σ4) ≥ 1− 2 exp

{
k log

(
9ep

k

)
− nθ2

256σ4

}
,

as desired. It remains to verify Claim (4). For any cardinality k subset J ⊆ {1, . . . , p}, let BJ =
{u ∈ Sp(k) : uJc = 0}. Each BJ contains a 1/4-net, NJ , of cardinality at most 9k (Vershynin,
2012, Lemma 5.2). ThenN := ∪JNJ form a 1/4-net for Sp(k). Define uJ ∈ argmaxu∈BJ‖Xu‖

2
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and let vJ be an element in NJ closest in Euclidean distance to uJ . Define A := X>X − Ip. We
have

|u>J AuJ | ≤ |v>J AvJ |+ |(uJ − vJ)>AvJ |+ |u>J A(uJ − vJ)| ≤ max
u∈NI

|u>Au|+ 1

2
sup

u∈Sp(k)
|u>Au|.

Hence
sup

u∈Sp(k)
|u>Au| ≤ 2 max

u∈N
|u>Au|,

which verifies the claim.

Proof of Proposition 2. By definition, ‖X>X − Ip‖op,k ≤ θ is equivalent to X ∈ RIPn,p(k, θ).
Moreover, by Proposition 1, X ∈ RIPn,p(k, θ) with probability converging to 1, under Q̃⊗(n×p).
The certifier hence satisfies the two desired properties.

Proof of Proposition 3. The proposed certifier is clearly polynomial time computable (it has time
complexity O(np2)). To verify that it is a certifier, we check that (i) ψ−1n (1) ⊆ RIPn,p(k, θ) and
(ii) lim infn→∞ Q̃⊗(n×p)(ψ−1n (1)) > 2/3.

For (i), on the event ‖X>X − Ip‖∞ ≤ 14σ2
√

log p
n , for any index set T ∈ {1, . . . , p} of cardinality

k, we have ‖X>∗TX∗T − Ik‖∞ ≤ 14σ2
√

log p
n , which implies that

‖X>∗TX∗T − Ik‖op ≤ 14σ2k

√
log p

n
≤ θ

For (ii), let Yn ∼ χ2
n. Using Lemma 5 and the fact that for any A ∈ Rp×p

‖A‖∞ = sup
S⊆{1,...,p},#S=2

‖ASS‖∞ ≤ sup
S⊆{1,...,p},#S=2

‖ASS‖op = ‖A‖op,2

we get

P
{
‖X>X − Ip‖∞ ≤ 14σ2

√
log p

n

}
≥ P

{
sup

u∈Sp(2)

∣∣‖Xu‖22 − 1
∣∣ ≤ 14σ2

√
log p

n

}
≥ 1− 2

(
p

2

)
92 exp

{
− n

256σ4

196σ4 log p

n

}
≥ 1− 81p2 exp{−3 log p/4} → 1.

as desired.

Lemma 2. Let Z be a non-negative random variable and r ≥ 2, then

E(Zr) ≥ E(|Z − EZ|r).

In other words, centring a nonnegative random variable shrinks its second or higher absolute mo-
ments.

Proof. Let µ := E(Z) and define Y = Z−µ. Let P denote the probability measure on R associated
with random variable Y . Hence

∫
[−µ,∞)

y dP (y) = 0. Without loss of generality, we may assume
that Z is not a point mass. Then

∫
[−µ,0](−y) dP (y) =

∫
(0,∞)

y dP (y) = A for some A > 0. For
any measureable function f : R→ [0,∞), we may write

A

∫
[−µ,∞)

f(y) dP (y) =

∫
[−µ,0]

(−v) dP (v)

∫
(0,∞)

f(u) dP (u) +

∫
(0,∞)

u dP (u)

∫
[−µ,0]

f(v)dP (v)

=

∫
u∈(0,∞)

∫
v∈[−µ,0]

(
u

u− v
f(v)− v

u− v
f(u)

)
(u− v) dP (v) dP (u).

(5)
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Let (U, V ) be a bivariate random vector having probability measure

1

A
(u− v)1(0,∞)(u)1[−µ,0](v) dP (u) dP (v)

on R2 (that this is a probability measure follows from substituting f(y) ≡ 1 in (5)). Then (5) can be
rewritten as

E
{
f(Y )

}
= E

{
U

U − V
f(V )− V

U − V
f(U)

}
.

Now consider choosing f to be f1(y) = |y|r and f2(y) = (y + µ)r respectively in the above
equation. Note that for u ∈ (0,∞) and v ∈ [−µ, 0] and r ≥ 2, we always have

uf2(v)− vf2(u) ≥ −vf2(u) ≥ −v(u− v)r ≥ (−v)ru+ (−v)ur ≥ uf1(v)− vf1(u).

Therefore,

E(|Y |m) = E
{

U

U − V
f1(V )− V

U − V
f1(U)

}
≤ E

{
U

U − V
f2(V )− V

U − V
f2(U)

}
= E(|Y + µ|m),

as desired.

Lemma 3. Suppose X is a sub-Gaussian random variable with parameter σ and median ξ. Let
X+ = X | X ≥ ξ and X− = X | X < ξ. Then X+ − EX+ and X− − EX− are both
sub-Gaussian with parameters are most cσ for some absolute constant c.

Proof. By Vershynin (2012, Lemma 5.5), X is sub-Gaussian with parameter σ implies that
(E|X|p)1/p ≤ c1σ

√
p for some absolute constant c1. Hence by Lemma 2, we have

E
(∣∣X+ − EX+

∣∣p)1/p ≤ (E∣∣X+
∣∣p)1/p = 2

(
E
∣∣X1{X ≥ ξ}∣∣p)1/p ≤ 2c1σ

√
p.

Using Vershynin (2012, Lemma 5.5) again, we have thatX+−EX+ is sub-Gaussian with parameter
at most cσ for some absolute constant c. A similar argument holds for X− − EX−.

Lemma 4. Suppose X is a random variable satisfying EeλX ≤ eσ
2λ2/2 for all λ ∈ R. Define

Y = X2 − EX2. Then EeλY ≤ e16σ4λ2

for all |λ| ≤ 1
4σ2 .

Proof. By Markov’s inequality,

P(|X| ≥ t) = P(X ≥ t)+P(−X ≥ t) ≤ e−t
2/σ2

E
(
etX/σ

2)
+e−t

2/σ2

E
(
e−tX/σ

2)
≤ 2e−t

2/(2σ2).

From Lemma 2, for r ≥ 2

E(|Y |r) ≤ E(|X|2r) =

∫ ∞
0

P(|X| ≥ t)(2r)t2r−1 dt ≤
∫ ∞
0

4rt2r−1e−t
2/(2σ2) dt = 2(2σ2)rΓ(r+1).

Consequently, if |2σ2λ| ≤ 1/2, then

EeλY =

∞∑
r=0

λrEY r

r!
≤ 1 + 2

∞∑
r=2

(2σ2λ)r ≤ 1 + 16σ4λ2 ≤ e16σ
4λ2

,

as desired.

Lemma 5. LetX1, X2, . . . , Xn be independent sub-Gaussian random variables with sub-Gaussian
parameters at most σ. Let Yi := X2

i − EX2
i . Then

P
( n∑
i=1

Yi ≥ θ
)
≤ exp

{
−
(

θ2

64nσ4
∧ θ

8σ2

)}

P
( n∑
i=1

Yi ≤ −θ
)
≤ exp

{
− θ2

64nσ4

}
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Proof. Using Markov’s inequality, we have

P
( n∑
i=1

Yi ≥ θ
)

= P
(
eλ

∑
i Yi ≥ eλθ

)
≤ e−λθ

∏
i

EeλYi .

Set λ = θ
32nσ4 ∧ 1

4σ2 . By Lemma 4, we have

P
( n∑
i=1

Yi ≥ θ
)
≤ e−λθ+16λ2nσ4

≤ e−λθ/2,

which establishes the first desired inequality. Applying the same argument with −Yi in place of Yi
we get

P
( n∑
i=1

Yi ≤ −θ
)
≤ exp

{
−
(

θ2

64nσ4
∧ θ

8σ2

)}
. (6)

Taylor expand the moment generating function of Xi around 0, we have EX2
i ≤ σ2. Hence we may

assume θ ≤ nσ2. Then we have
θ2

64nσ4
<

θ

8σ2
,

which together with (6) implies the desired result.

Lemma 6. Suppose n` balls are arranged in an array of n rows and ` columns and k balls
(k < n) are chosen uniformly at random. Let Vi be the number of chosen balls in row i and
V = (V1, . . . , Vn)>. Then

P
(
‖V ‖0 ≤ k −

k2

2n
−
√
k log k

)
≤ 1

k2
.

Moreover, if k ≤ nγ for some γ < 1, then

P
(
‖V ‖∞ ≥ a

)
≤ n1−a(1−γ)

(
1− n−(1−γ)

)
.

Proof. Let Ui be the number of balls chosen in row i when balls are drawn with replacement from
the array and U = (U1, . . . , Un)>. Then ‖V ‖0 is stochastically larger than ‖U‖0 and ‖V ‖∞ is
stochastically smaller than ‖U‖∞. So it suffices to show the desired inequalities with U replacing
V . In the following argument, we consider only drawing with replacement.

Let X = {e1, . . . , en} where ei denotes the ith standard basis vector in Rn. For 1 ≤ r ≤ k, let Xr

be uniformly distributed in X . Then U d
=
∑k
r=1Xr. We note that changing the value of any of the

Xr affects the value of ‖U‖0 by at most 1. By McDiarmid’s inequality (McDiarmid, 1989), we have
that for any t > 0,

P
(
‖U‖0 − E‖U‖0 ≤ −t

)
≤ e− 2t2

k . (7)
For 1 ≤ i ≤ n. Define Ji = 1{no ball is chosen in row i}, then

E‖U‖0 = n−
n∑
i=1

EJi = n− n(1− 1/n)k ≥ k
(

1− k

2n

)
.

Thus, together with (7), we have

P
(
‖U‖0 ≤ k −

k2

2n
−
√
k log k

)
≤ P

(
‖U‖0 − E‖U‖0 ≤ −

√
k log k

)
≤ e−2 log k = k−2,

as desired. For the second inequality,

we have by union bound that

P(‖U‖∞ ≥ a) ≤ nP(U1 ≥ a) = n

k∑
s=a

(
k

s

)
n−s

≤ n
∞∑
s=a

(k/n)s = n
(k/n)a

1− k/n
≤ n1−a(1−γ)(1− n−(1−γ))−1,

as desired.
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