
Supplementary Materials for:
“f -GAN: Training Generative Neural Samplers using

Variational Divergence Minimization”

Sebastian Nowozin, Botond Cseke, Ryota Tomioka
Machine Intelligence and Perception Group

Microsoft Research
{Sebastian.Nowozin, Botond.Cseke, ryoto}@microsoft.com

1 Introduction

We provide additional material to support the content presented in the paper. The text is structured as
follows. In Section 2 we present an extended list of f-divergences, corresponding generator functions
and their convex conjugates. In Section 3 we provide the proof of Theorem 1 from Section 3.
In Section 5 we discuss the differences between current (to our knowledge) GAN optimisation
algorithms. Section 6 provides a proof of concept of our approach by fitting a Gaussian to a mixture
of Gaussians using various divergence measures. Finally, in Section 7 we present the details of the
network architectures used in Section 4 of the main text.

2 f -divergences and Generator-Conjugate Pairs

In Table 2 we show an extended list of f-divergences Df (P‖Q) together with their generators
f(u) and the corresponding optimal variational functions T ∗(x). For all divergences we have
f : domf → R ∪ {+∞}, where f is convex and lower-semicontinuous. Also we have f(1) = 0
which ensures that Df (P‖P) = 0 for any distribution P . As shown by [1] GAN is related to the
Jensen-Shannon divergence through DGAN = 2DJS − log(4). The GAN generator function f does
not satisfy f(1) = 0 hence DGAN(P‖P) 6= 0.

Table 3 lists the convex conjugate functions f∗(t) of the generator functions f(u) in Table 2, their
domains, as well as the activation functions gf we use in the last layers of the generator networks to
obtain a correct mapping of the network outputs into the domains of the conjugate functions.

The panels of Figure 1 show the generator functions and the corresponding convex conjugate functions
for a variety of f-divergences.

3 Proof of Theorem 1

In this section we present the proof of Theorem 1 from Section 3 of the main text. For completeness,
we reiterate the conditions and the theorem.

We assume that F is strongly convex in θ and strongly concave in ω such that
∇θF (θ∗, ω∗) = 0, ∇ωF (θ∗, ω∗) = 0, (1)

∇2
θF (θ, ω) � δI, ∇2

ωF (θ, ω) � −δI. (2)
These assumptions are necessary except for the “strong” part in order to define the type of saddle
points that are valid solutions of our variational framework.

We define πt = (θt, ωt) and use the notation

∇F (π) =
(
∇θF (θ, ω)
∇ωF (θ, ω)

)
, ∇̃F (π) =

(
−∇θF (θ, ω)
∇ωF (θ, ω)

)
.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

10-1 100 101

u=
dP=d¹

dQ=d¹

0

5

10

15

20

f(
u
)

f-divergence Generators f(u)

Squared Hellinger

Kullback-Leibler

Pearson Chi-Square

Reverse Kullback-Leibler

Total Variation

Jeffrey

Neyman Chi-Square

GAN

Jensen-Shannon

−5 −4 −3 −2 −1 0 1 2
t

−3

−2

−1

0

1

2

3

4

5

f
¤
(t
)

f-divergence Conjugates f ¤ (t)

Jeffreys

Squared Hellinger

Kullback-Leibler

Pearson Chi-Square

Reverse Kullback-Leibler

Total Variation

Neyman Chi-Square

GAN

Jensen-Shannon

Figure 1: Generator-conjugate (f, f∗) pairs in the variational framework of Nguyen et al. [2]. Left: generator

functions f used in the f -divergence Df (P‖Q) =
∫
X q(x)f

(
p(x)
q(x)

)
dx. Right: conjugate functions f∗ in the

variational divergence lower bound Df (P‖Q) ≥ supT∈T
∫
X p(x)T (x)− q(x)f

∗(T (x)) dx.

With this notation, Algorithm 1 in the main text can be written as

πt+1 = πt + η∇̃F (πt).

Given the above assumptions and notation, in Section 3 of the main text we formulate the following
theorem.
Theorem 1. Suppose that there is a saddle point π∗ = (θ∗, ω∗) with a neighborhood that satisfies
conditions (1) and (2). Moreover we define J(π) = 1

2‖∇F (π)‖
2
2 and assume that in the above

neighborhood, F is sufficiently smooth so that there is a constant L > 0 and

J(π′) ≤ J(π) + 〈∇J(π), π′ − π〉+ L

2
‖π′ − π‖22 (3)

for any π, π′ in the neighborhood of π∗. Then using the step-size η = δ/L in Algorithm 1, we have

J(πt) ≤
(
1− δ2

L

)t
J(π0)

where L is the smoothness parameter of J . That is, the squared norm of the gradient ∇F (π)
decreases geometrically.

Proof. First, note that the gradient of J can be written as

∇J(π) = ∇2F (π)∇F (π).
Therefore we notice that,〈
∇̃F (π),∇J(π)

〉
=
〈
∇̃F (π),∇2F (π)∇F (π)

〉
=

〈(
−∇θF (θ, ω)
∇ωF (θ, ω)

)
,

(
∇2
θF (θ, ω) ∇θ∇ωF (θ, ω)

∇ω∇θF (θ, ω) ∇2
ωF (θ, ω)

)(
∇θF (θ, ω)
∇ωF (θ, ω)

)〉
= −

〈
∇θF (θ, ω),∇2

θF (θ, ω)∇θF (θ, ω)
〉
+
〈
∇ωF (θ, ω),∇2

ωF (θ, ω)∇ωF (θ, ω)
〉

≤ −δ
(
‖∇θF (θ, ω)‖22 + ‖∇ωF (θ, ω)‖22

)
= −δ‖∇F (π)‖22 (4)

In other words, Algorithm 1 decreases J by an amount proportional to the squared norm of∇F (π).
Now combining the smoothness (3) with Algorithm 1, we get

J(πt+1) ≤ J(πt) + η
〈
∇J(πt), ∇̃F (πt)

〉
+
Lη2

2
‖∇̃F (πt)‖22

≤
(
1− 2δη + Lη2

)
J(πt)

=

(
1− δ2

L

)
J(πt),

where we used sufficient decrease (4) and J(π) = 1
2‖∇F (π)‖

2
2 = 1

2‖∇̃F (π)‖
2
2 in the second

inequality, and the final equality follows by taking η = δ/L.

2

Algorithm Maximisation in ω Minimisation in θ

NCE [5] α = 1, β = 0 NA
GAN-1 [1] α = 1, β = 0 α = 1, β = 0
GAN-2 [1] α = 1, β = 0 α = 0, β = 1
GAN-3 [4] α = 1, β = 0 α = 1, β = 1

Table 1: Optimisation algorithms for the GAN objective (5).

4 Proof of the Generalized Heuristic

Formally we prove the following statement.
Theorem 2. maximizing Ex∼Qθ [gf (Vω(x))] with respect to θ has the same stationary point as
minimizing Ex∼Qθ [−f∗ (gf (Vω(x)))].

Proof. The derivative with respect to the two objectives can be written as follows:

Ez

[
dgf (v)

dv

∣∣∣∣
v=Vω(Gθ(z))

· dVω(x)
dx

∣∣∣∣
x=Gθ(z)

· ∂Gθ(z)
∂θ

]
,

Ez

[
− df∗(t)

dt

∣∣∣∣
t=gf (Vω(Gθ(z)))

· dgf (v)
dv

∣∣∣∣
v=Vω(Gθ(z))

· dVω(x)
dx

∣∣∣∣
x=Gθ(z)

· ∂Gθ(z)
∂θ

]
.

Thus the difference lies only in the leading term df∗(t)/dt evaluated at t = gf (Vω(Gθ(z))). Now
using (5) in the main text in the other direction, we observe that df∗(t)/dt = p(x)/q(x) evaluated at
t = T ∗(x). Thus at optimality p(x)/q(x) = 1 and the leading term becomes a constant.

5 Related Algorithms

Due to recent interest in GAN type models, there have been attempts to derive various divergence
measures, objective functions and algorithms. In particular, an alternative Jensen-Shannon divergence
has been derived in [3] and a heuristic algorithm that behaves similarly to the one resulting from it
has been proposed in [4].

In this section we summarise (some of) the current algorithms and show how they are related. Note
that some algorithms use heuristics that do not correspond to a saddle point optimisation, that is, in
the corresponding maximization and minimization steps they optimise alternative objectives that do
not add up to a coherent joint objective. We include a short discussion of [5] because it can be viewed
as a special case of GAN.

To illustrate how the discussed algorithms work, we define the objective function

F (θ, ω;α, β) =Ex∼P [logDω(x)] + αEx∼Qθ [log(1−Dω(x))]− βEx∼Qθ [log(Dω(x))], (5)

where we introduce two scalar parameters, α and β, to help us highlight the differences between the
algorithms shown in Table 1.

Noise-Contrastive Estimation (NCE)

NCE [5] is a method that estimates the parameters of an unnormalised model p(x;ω) by performing
non-linear logistic regression to discriminate between the data generated from the model and some
artificially generated data. To achieve this NCE casts the estimation problem as a ML estimation in a
binary classification problem where the data is augmented with artificially generated data. The “true”
data items are labeled as positives while the artificially generated data items are labeled as negatives.
The discriminant function is defined as Dω(x) = p(x;ω)/(p(x;ω) + q(x)) where q(x) denotes the
distribution of the artificially generated data, typically a Gaussian parameterised by the empirical
mean and covariance of the true data. ML estimation in this binary classification model results in
an objective that has the form (5) with α = 1 amd β = 0, where the expectations are taken w.r.t.
the empirical distribution of augmented data. As a result, NCE can be viewed as a special case of

3

GAN where the generator is fixed and one only have maximise the objective w.r.t. the parameters of
the discriminator. Another difference is that in this case the data distribution is learned through the
discriminator not the generator, however, the method has many conceptual similarities to GAN.

GAN-1 and GAN-2

The first algorithm (GAN-1) proposed in [1] performs a stochastic gradient ascent-descent on the
objective with α = 1 and β = 0. However, the authors point out that in practice it is more
advantageous to minimise −Ex∼Qθ [logDω(x)] instead of Ex∼Qθ [log(1−Dω(x))], we denote this
by GAN-2. This is motivated by the observation that in the early stages of training when Qθ is not
sufficiently well fitted, Dω can saturate fast leading to weak gradients in Ex∼Qθ [log(1−Dω(x))].
The −Ex∼Qθ [logDω(x)] term, however, can provide stronger gradients and leads to the same fixed
point. This heuristic can be viewed as using α = 1, β = 0 in the maximisation step and α = 0, β = 1
in the minimisation step1.

GAN-3

In [4] a further heuristic for the minimisation step is proposed. Formally, it can be viewed as
a combination of the minimisation steps in GAN-1 and GAN-2. In the proposed algorithm, the
maximisation step is performed similarly (α = 1, β = 0), but the minimisation is done using α = 1
and β = 1. This choice is motivated by KL optimality arguments. The author argues that since the
optimal discriminator is given by

D∗(x) =
p(x)

qθ(x) + p(x)
(6)

when close to optimality, the minimisation of Ex∼Qθ [log(1−Dω(x))]−Ex∼Qθ [logDω(x)] corre-
sponds to the minimisation of the reverse KL divergence Ex∼Qθ [log(qθ(x)/p(x))]. This approach
can be viewed as choosing α = 1 and β = 1 in the minimisation step.

Remarks on the Weighted Jensen-Shannon Divergence in [3]

The GAN/variational objective corresponding to alternative Jensen-Shannon divergence measure
proposed in [3] (see Jensen-Shannon-weighted in Table 1) is

F (θ, ω;π) =Ex∼P [logDω(x)]− (1− π)Ex∼Qθ
[
log

1− π
1− πDω(x)1/π

]
. (7)

Note that we have the Tω(x) = logDω(x) correspondence. According to the definition of the
variational objective, when Tω is close to optimal then in the minimisation step the objective function
is close to the chosen divergence. In this case the optimal discriminator is

D∗(x)1/π =
p(x)

(1− π)qθ(x) + πp(x)
. (8)

The objective in (7) vanishes when π ∈ {0, 1}, however, when π is only is close to 0 and 1, it can
behave similarly to the KL and reverse KL objectives, respectively. Overall, the connection between
GAN-3 and the optimisation of (7) can only be considered as approximate. To obtain an exact KL or
reverse KL behavior one can use the corresponding f -GAN objectives. For a simple illustration of
how the f -divergences and f -GAN objectives behave see Section 2.5 and Section 6 below.

6 Details of the Univariate Example

We follow up on the example in Section 2.5 of the main text by presenting further details about the
quality and behavior of the approximations resulting from using various f -divergence measures. For
completeness, we reiterate the setup and then we present further results.

1 A somewhat similar observation regarding the artificially generated data is made in [5]: in order to have
meaningful training one should choose the artificially generated data to be close the the true data, hence the
choice of an ML multivariate Gaussian.

4

6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Kullback-Leibler
Q(x) learned
Q(x) best fit
P(x) ground truth

6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Reverse Kullback-Leibler
Q(x) learned
Q(x) best fit
P(x) ground truth

6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Jensen-Shannon
Q(x) learned
Q(x) best fit
P(x) ground truth

6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Pearson
Q(x) learned
Q(x) best fit
P(x) ground truth

6 4 2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6 Jeffrey
Q(x) learned
Q(x) best fit
P(x) ground truth 10

8
6
4
2
0
2
4

Kullback-Leibler (KL)

25
20
15
10

5
0
5

reverse Kullback-Leibler (KLrev)

7
6
5
4
3
2
1
0
1
2

Jensen-Shannon (JS)

25
20
15
10

5
0
5

Jeffrey

6 4 2 0 2 4 6 8
3
2
1
0
1
2
3
4
5
6

Pearson

Figure 2: Gaussian approximation of a mixture of Gaussians. Gaussian approximations obtained by direct
optimisation of Df (p||qθ∗) (dashed-black) and the optimisation of F (ω̂, θ̂) (solid-colored). Right-bottom:
optimal variational functions T ∗ (dashed) and Tω̂ (solid-red).

5

Setup. We approximate a mixture of Gaussian 2 by learning a Gaussian distribution. The model Qθ
is represented by a linear function which receives a random noise z ∼ N (0, 1) and outputs

Gθ(z) = µ+ σz, (9)

where θ = (µ, σ) are the parameters to be learned. For the variational function Tω we use the neural
network

x → Linear(1,64)→ Tanh→ Linear(64,64)→ Tanh→ Linear(64,1). (10)

We optimise the objective F (ω, θ) by using the single-step gradient method presented in Section 3.1
of the main text . In each step we sample batches of size 1024 from p(x) and p(z) and we use
a step-size of 0.01 for updating both ω and θ. We compare the results to the best fit provided by
the exact optimisation of Df (P‖Qθ) w.r.t. θ, which is feasible in this case by solving the required
integrals numerically. We use (ω̂, θ̂) (learned) and θ∗ (best fit) to distinguish the parameters sets used
in these two approaches.

Results. The panels in Figure 2 shows the density function of the data distribution as well as the
Gaussian approximations corresponding to a few f -divergences form Table 2. As expected, the KL
approximation covers the data distribution by fitting its mean and variance while KL-rev has more of
a mode-seeking behavior [6]. The fit corresponding to the Jensen-Shannon divergence is somewhere
between KL and KL-rev. All Gaussian approximations resulting from neural network training are
close to the ones obtained by direct optimisation of the divergence (learned vs. best fit).

In the right–bottom panel of Figure 2 we compare the variational functions Tω̂ and T ∗. The latter is
defined as T ∗(x) = f ′(p(x)/qθ∗(x)), see main text. The objective value corresponding to T ∗ is the
true divergence Df (P ||Qθ∗). In the majority of the cases our Tω̂ is close to T ∗ in the area of interest.
The discrepancies around the tails can be due to (1) the class of functions resulting from the tanh
activation function has limited capability representing the tails, and (2) in the Gaussian case there is a
lack of data in the tails. These limitations, however, do not have a significant effect on the learned
parameters.

7 Details of the Experiments

In this section we present the technical setup as well as the architectures we used in the experiments
described in Section 4.

7.1 Deep Learning Environment

We use the deep learning framework Chainer [7], version 1.8.1, running on CUDA 7.5 with CuDNN
v5 on NVIDIA GTX TITAN X.

7.2 MNIST Setup

MNIST Generator

z → Linear(100, 1200)→ BN→ ReLU→ Linear(1200, 1200)→ BN→ ReLU
→ Linear(1200, 784)→ Sigmoid (11)

All weights are initialized at a weight scale of 0.05, as in [1].

MNIST Variational Function

x → Linear(784,240)→ ELU→ Linear(240,240)→ ELU→ Linear(240,1), (12)

where ELU is the exponential linear unit [8]. All weights are initialized at a weight scale of 0.005,
one order of magnitude smaller than in [1].

Variational Autoencoders For the variational autoencoders [9], we used the example implementa-
tion included with Chainer [7]. We trained for 100 epochs with 20 latent dimensions.

2The plots on Figure 2 correspond to p(x) = (1−w)N(x;m1, v1)+wN(x;m2, v2) withw = 0.67,m1 =
−1, v1 = 0.0625,m2 = 2, v2 = 2.

6

7.3 LSUN Natural Images

In the LSUN experiment we use the generator

z → Linear(100, 6 · 6 · 512)→ BN→ ReLU→ Reshape(512,6,6)
→ Deconv(512,256)→ BN→ ReLU→ Deconv(256,128)→ BN→ ReLU
→ Deconv(128,64)→ BN→ ReLU→ Deconv(64,3), (13)

where all Deconv operations use a kernel size of four and a stride of two.

7

N
am

e
D
f
(P
‖Q

)
G

en
er

at
or
f
(u
)

T
∗ (
x
)

To
ta

lv
ar

ia
tio

n
1 2

∫ |p(
x
)
−
q(
x
)|

dx
1 2
|u
−

1|
1 2
si
g
n
(
p
(x

)
q
(x

)
−

1
)

K
ul

lb
ac

k-
L

ei
bl

er
∫ p(x

)
lo
g
p
(x

)
q
(x

)
dx

u
lo
g
u

1
+
lo
g
p
(x

)
q
(x

)

R
ev

er
se

K
ul

lb
ac

k-
L

ei
bl

er
∫ q(x

)
lo
g
q
(x

)
p
(x

)
dx

−
lo
g
u

−
q
(x

)
p
(x

)

Pe
ar

so
n
χ
2

∫ (q(
x
)−
p
(x

))
2

p
(x

)
dx

(u
−

1
)2

2
(
p
(x

)
q
(x

)
−

1
)

N
ey

m
an
χ
2

∫ (p(
x
)−
q
(x

))
2

q
(x

)
dx

(1
−
u
)2

u
1
−
[q(x) p

(x
)

] 2
Sq

ua
re

d
H

el
lin

ge
r

∫(√
p
(x
)
−
√ q(

x
)) 2 dx

(√
u
−

1
)2

(√ p(x
)

q
(x

)
−

1
)
·√ q

(x
)

p
(x

)

Je
ff

re
y

∫ (p(
x
)
−
q(
x
))
lo
g
(p(x

)
q
(x

)

) dx
(u
−

1
)
lo
g
u

1
+
lo
g
p
(x

)
q
(x

)
−

q
(x

)
p
(x

)

Je
ns

en
-S

ha
nn

on
1 2

∫ p(x
)
lo
g

2
p
(x

)
p
(x

)+
q
(x

)
+
q(
x
)
lo
g

2
q
(x

)
p
(x

)+
q
(x

)
dx

−
(u

+
1
)
lo
g

1
+
u

2
+
u
lo
g
u

lo
g

2
p
(x

)
p
(x

)+
q
(x

)

Je
ns

en
-S

ha
nn

on
-w

ei
gh

te
d

π
∫ p(x

)
lo
g

p
(x

)
π
p
(x

)+
(1
−
π
)q

(x
)
+

(1
−
π
)q
(x
)
lo
g

q
(x

)
π
p
(x

)+
(1
−
π
)q

(x
)

dx
π
u
lo
g
u
−

(1
−
π
+
π
u
)
lo
g
(1
−
π
+
π
u
)

π
lo
g

p
(x

)
(1
−
π
)q

(x
)+
π
p
(x

)

G
A

N
∫ p(x

)
lo
g

2
p
(x

)
p
(x

)+
q
(x

)
+
q(
x
)
lo
g

2
q
(x

)
p
(x

)+
q
(x

)
dx
−

lo
g
(4
)

u
lo
g
u
−

(u
+
1
)
lo
g
(u

+
1
)

lo
g

p
(x

)
p
(x

)+
q
(x

)

α
-d

iv
er

ge
nc

e
(α

/∈
{0
,1
})

1
α
(α
−
1
)

∫(p
(x
)
[(q(

x
)

p
(x

)

) α −
1] −

α
(q
(x
)
−
p
(x
))
) dx

1
α
(α
−
1
)
(u
α
−

1
−
α
(u
−

1
))

1
α
−
1

[[p(x
)

q
(x

)

] α−1
−

1]
Ta

bl
e

2:
L

is
to

ff
-d

iv
er

ge
nc

es
D
f
(P
‖Q

),
th

ei
rg

en
er

at
or

fu
nc

tio
ns

an
d

th
e

op
tim

al
va

ri
at

io
na

lf
un

ct
io

ns
.

8

N
am

e
O

ut
pu

ta
ct

iv
at

io
n
g f

do
m
f
∗

C
on

ju
ga

te
f
∗ (
t)

f
′ (
1
)

To
ta

lv
ar

ia
tio

n
1 2
ta
n
h
(v
)

−
1 2
≤
t
≤

1 2
t

0
K

ul
lb

ac
k-

L
ei

bl
er

(K
L

)
v

R
ex
p
(t
−

1
)

1
R

ev
er

se
K

L
−
ex
p
(v
)

R
−

−
1
−

lo
g
(−
t)

−
1

Pe
ar

so
n
χ
2

v
R

1 4
t2

+
t

0
N

ey
m

an
χ
2

1
−

ex
p
(v
)

t
<

1
2
−
2
√
1
−
t

0
Sq

ua
re

d
H

el
lin

ge
r

1
−

ex
p
(v
)

t
<

1
t

1
−
t

0

Je
ff

re
y

v
R

W
(e

1
−
t
)
+

1
W

(e
1
−
t
)
+
t
−

2
0

Je
ns

en
-S

ha
nn

on
lo
g
(2
)
−

lo
g
(1

+
ex
p
(−
v
))

t
<

lo
g
(2
)

−
lo
g
(2
−

ex
p
(t
))

0
Je

ns
en

-S
ha

nn
on

-w
ei

gh
te

d
−
π
lo
g
π
−
lo
g
(1

+
ex
p
(−
v
))

t
<
−
π
lo
g
π

(1
−
π
)
lo
g

1
−
π

1
−
π
e
t
/
π

0
G

A
N

−
lo
g
(1

+
ex
p
(−
v
))

R
−

−
lo
g
(1
−

ex
p
(t
))

−
lo
g
(2
)

α
-d

iv
.(
α
<

1,
α
6=

0)
1

1
−
α
−

lo
g
(1

+
ex
p
(−
v
))

t
<

1
1
−
α

1 α
(t
(α
−

1
)
+
1
)

α
α
−

1
−

1 α
0

α
-d

iv
.(
α
>

1)
v

R
1 α
(t
(α
−

1
)
+
1
)

α
α
−

1
−

1 α
0

Ta
bl

e
3:

R
ec

om
m

en
de

d
fin

al
la

ye
ra

ct
iv

at
io

n
fu

nc
tio

ns
an

d
cr

iti
ca

lv
ar

ia
tio

na
lf

un
ct

io
n

le
ve

ld
efi

ne
d

by
f
′ (
1
).

T
he

ob
je

ct
iv

e
fu

nc
tio

n
fo

rt
ra

in
in

g
a

ge
ne

ra
tiv

e
ne

ur
al

ne
tw

or
k
G
θ

gi
ve

n
a

tr
ue

di
st

ri
bu

tio
n
P

an
d

an
au

xi
lia

ry
va

ri
at

io
na

lf
un

ct
io

n
T

is
m
in
θ
m
a
x
T
(E
x
∼
P
[T

(x
)]
−

E x
∼
G
θ
[f
∗
(T

(x
))
])

.F
or

an
y

sa
m

pl
e
x

th
e

va
ri

at
io

na
lf

un
ct

io
n

pr
od

uc
es

a
sc

al
ar

v
(x
)
∈
R

.T
he

ou
tp

ut
ac

tiv
at

io
n

pr
ov

id
es

a
di

ff
er

en
tia

bl
e

m
ap
g
:
R
→

do
m
f
∗

,d
efi

ni
ng
T
(x
)
=
g
(v
(x
))

.T
he

cr
iti

ca
lv

al
ue
f
′ (
1
)

ca
n

be
in

te
rp

re
te

d
as

a
cl

as
si

fic
at

io
n

th
re

sh
ol

d
ap

pl
ie

d
to
T
(x
)

to
di

st
in

gu
is

h
be

tw
ee

n
tr

ue
an

d
ge

ne
ra

te
d

sa
m

pl
es

.W
is

th
e

L
am

be
rt

-W
pr

od
uc

tl
og

fu
nc

tio
n.

9

References
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative adversarial nets. In NIPS, pages 2672–2680, 2014.

[2] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the likelihood ratio
by convex risk minimization. Information Theory, IEEE, 56(11):5847–5861, 2010.

[3] F. Huszár. How (not) to train your generative model: scheduled sampling, likelihood, adversary?
arXiv:1511.05101, 2015.

[4] F. Huszár. An alternative update rule for generative adversarial networks. http://www.inference.
vc/an-alternative-update-rule-for-generative-adversarial-networks/.

[5] M. Gutmann and A. Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormalized
statistical models. In AISTATS, pages 297–304, 2010.

[6] T. Minka. Divergence measures and message passing. Technical report, Microsoft Research, 2005.

[7] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation open source framework for deep
learning. In NIPS, 2015.

[8] D. A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential
linear units (ELUs). arXiv:1511.07289, 2015.

[9] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv:1402.0030, 2013.

10

http://www.inference.vc/an-alternative-update-rule-for-generative-adversarial-networks/
http://www.inference.vc/an-alternative-update-rule-for-generative-adversarial-networks/

	Introduction
	f-divergences and Generator-Conjugate Pairs
	Proof of Theorem 1
	Proof of the Generalized Heuristic
	Related Algorithms
	Details of the Univariate Example
	Details of the Experiments
	Deep Learning Environment
	MNIST Setup
	LSUN Natural Images

