
A Proofs

A.1 Proofs for Section 3

Proof of Lemma 3.2. First, we show strict concavity of H̄ . Let ρ and ρ′ be occupancy measures, and
suppose λ ∈ [0, 1]. For all s and a, the log-sum inequality implies:

−(λρ(s, a) + (1− λ)ρ′(s, a)) log
λρ(s, a) + (1− λ)ρ′(s, a)∑
a′(λρ(s, a′) + (1− λ)ρ′(s, a′))

(19)

= −(λρ(s, a) + (1− λ)ρ′(s, a)) log
λρ(s, a) + (1− λ)ρ′(s, a)

λ
∑
a′ ρ(s, a′) + (1− λ)

∑
a′ ρ
′(s, a′)

(20)

≥ −λρ(s, a) log
λρ(s, a)

λ
∑
a′ ρ(s, a′)

− (1− λ)ρ′(s, a) log
(1− λ)ρ′(s, a)

(1− λ)
∑
a′ ρ
′(s, a′)

(21)

= λ

(
−ρ(s, a) log

ρ(s, a)∑
a′ ρ(s, a′)

)
+ (1− λ)

(
−ρ′(s, a) log

ρ′(s, a)∑
a′ ρ
′(s, a′)

)
, (22)

with equality if and only if πρ , ρ(s, a)/
∑
a′ ρ(s, a′) = ρ′(s, a)/

∑
a′ ρ
′(s, a′) , πρ′ . Summing

both sides over all s and a shows that H̄(λρ+ (1− λ)ρ′) ≥ λH̄(ρ) + (1− λ)H̄(ρ′) with equality if
and only if πρ = πρ′ . Applying Lemma 3.1 shows that equality in fact holds if and only if ρ = ρ′, so
H̄ is strictly concave.

Now, we turn to verifying the last two statements, which also follow from Lemma 3.1 and the
definition of occupancy measures. First,

H(π) = Eπ[− log π(a|s)] = −
∑
s,a

ρπ(s, a) log π(a|s) (23)

= −
∑
s,a

ρπ(s, a) log
ρπ(s, a)∑
a′ ρπ(s, a′)

= H̄(ρπ), (24)

and second,

H̄(ρ) = −
∑
s,a

ρ(s, a) log
ρ(s, a)∑
a′ ρ(s, a′)

= −
∑
s,a

ρπρ(s, a) log πρ(a|s) (25)

= Eπρ [− log πρ(a|s)] = H(πρ). (26)

Proof of Proposition 3.1. This proof relies on properties of saddle points. For a reference, we refer
the reader to Hiriart-Urruty and Lemaréchal [9, section VII.4].

Keeping C = RS×A, let c̃ ∈ IRLψ(πE), π̃ ∈ RL(c̃) = RL ◦ IRLψ(πE), and

πA ∈ arg min
π

−H(π) + ψ∗(ρπ − ρπE) (27)

= arg min
π

sup
c∈C
−H(π)− ψ(c) +

∑
s,a

(ρπ(s, a)− ρπE (s, a))c(s, a) (28)

We wish to show that πA = π̃. To do this, let ρA be the occupancy measure of πA, let ρ̃ be the
occupancy measure of π̃, and define L̄ : D × C → R by

L̄(ρ, c) = −H̄(ρ)− ψ(c) +
∑
s,a

ρ(s, a)c(s, a)−
∑
s,a

ρπE (s, a)c(s, a). (29)

The following relationships then hold, due to Lemma 3.1:

ρA ∈ arg min
ρ∈D

sup
c∈C

L̄(ρ, c), (30)

c̃ ∈ arg max
c∈C

min
ρ∈D

L̄(ρ, c), (31)

ρ̃ ∈ arg min
ρ∈D

L̄(ρ, c̃). (32)

10

(Recall that we can write Eq. (31) because we assumed the existence of a solution to the IRL problem
Eq. (1).) Now D is compact and convex and C is convex; furthermore, due to convexity of −H̄ and
ψ, we also have that L̄(·, c) is convex for all c, and that L̄(ρ, ·) is concave for all ρ, and hence:

min
ρ∈D

sup
c∈C

L̄(ρ, c) = max
c∈C

min
ρ∈D

L̄(ρ, c) (33)

Consequently, from Eqs. (30) and (31), (ρA, c̃) is a saddle point of L̄. In particular,

ρA ∈ arg min
ρ∈D

L̄(ρ, c̃). (34)

Because L̄(·, c) is strictly convex for all c (Lemma 3.2), Eqs. (32) and (34) imply ρA = ρ̃. Since
policies corresponding to occupancy measures are unique (Lemma 3.1), πA = π̃.

A.2 Proofs for Section 5

In Eq. (13) of Section 5, we described a cost regularizer ψGA, which leads to an imitation learning
algorithm (15) that minimizes Jensen-Shannon divergence between occupancy measures (for clarity
throughout, just as in Eq. (15), we will drop the 1− γ normalization factor that converts occupancy
measures to distributions). To justify our choice of ψGA, we show how to convert certain surrogate
loss functions φ, for binary classification of state-action pairs drawn from the occupancy measures
ρπ and ρπE , into cost function regularizers ψ, for which ψ∗(ρπ − ρπE) is the minimum expected risk
Rφ(ρπ, ρπE) for φ:

Rφ(π, πE) =
∑
s,a

inf
γ∈R

ρπ(s, a)φ(γ) + ρπE (s, a)φ(−γ) (35)

Specifically, we will restrict ourselves to strictly decreasing convex loss functions. Nguyen et al. [17]
show a correspondence between minimum expected risks Rφ and symmetric f -divergences, of which
Jensen-Shannon divergence is a special case. Our following construction, therefore, can generate any
imitation learning algorithm that minimizes a symmetric f -divergence between occupancy measures,
as long as that f -divergence is induced by a strictly decreasing convex surrogate φ.

Proposition A.1. Suppose φ : R→ R is a strictly decreasing convex function. Let T be the range of
−φ, and define gφ : R→ R and ψφ : RS×A → R by:

gφ(x) =

{
−x+ φ(−φ−1(−x)) if x ∈ T
+∞ otherwise

ψφ(c) =

∑
s,a

ρπE (s, a)gφ(c(s, a)) if c(s, a) ∈ T for all s, a

+∞ otherwise

(36)

Then, ψφ is closed, proper, and convex, and RL ◦ IRLψφ(πE) = arg minπ −H(π)−Rφ(ρπ, ρπE).

Proof. To verify the first claim, it suffices to check that gφ(x) = −x + φ(−φ−1(−x)) is closed,
proper, and convex. Convexity follows from the fact that x 7→ φ(−φ−1(−x)) is convex, because
it is a concave function followed by a nonincreasing convex function. Furthermore, because T is
nonempty, gφ is proper. To show that gφ is closed, note that because φ is strictly decreasing and
convex, the range of φ is either all of R or an open interval (b,∞) for some b ∈ R. If the range of
φ is R, then gφ is finite everywhere and is therefore closed. On the other hand, if the range of φ is
(b,∞), then φ(x) → b as x → ∞, and φ(x) → ∞ as x → −∞. Thus, as x → b, φ−1(−x) → ∞,
so φ(−φ−1(−x))→∞ too, implying that gφ(x)→∞ as x→ b, which means gφ is closed.

11

Now, we verify the second claim. By Proposition 3.1, all we need to check is that −Rφ(ρπ, ρπE) =
ψ∗φ(ρπ − ρπE):

ψ∗φ(ρπ − ρπE) = sup
c∈C

∑
s,a

(ρπ(s, a)− ρπE (s, a))c(s, a)−
∑
s,a

ρπE (s, a)gφ(c(s, a)) (37)

=
∑
s,a

sup
c∈T

(ρπ(s, a)− ρπE (s, a))c− ρπE (s, a)[−c+ φ(−φ−1(−c))] (38)

=
∑
s,a

sup
c∈T

ρπ(s, a)c− ρπE (s, a)φ(−φ−1(−c)) (39)

=
∑
s,a

sup
γ∈R

ρπ(s, a)(−φ(γ))− ρπE (s, a)φ(−φ−1(φ(γ))) (40)

=
∑
s,a

sup
γ∈R

ρπ(s, a)(−φ(γ))− ρπE (s, a)φ(−γ) (41)

= −Rφ(ρπ, ρπE) (42)

where we made the change of variables c→ −φ(γ), justified because T is the range of −φ.

Having showed how to construct a cost function regularizer ψφ from φ, we obtain, as a corollary, a
cost function regularizer for the logistic loss, whose optimal expected risk is, up to a constant, the
Jensen-Shannon divergence.
Corollary A.1.1. The cost regularizer (13)

ψGA(c) ,

{
EπE [g(c(s, a))] if c < 0

+∞ otherwise
where g(x) =

{−x− log(1− ex) if x < 0

+∞ otherwise

satisfies

ψ∗GA(ρπ − ρπE) = sup
D∈(0,1)S×A

Eπ[log(D(s, a))] + EπE [log(1−D(s, a))]. (43)

Proof. Using the logistic loss φ(x) = log(1 + e−x), we see that Eq. (36) reduces to the claimed ψGA.
Applying Proposition A.1, we get

ψ∗GA(ρπ − ρπE) = −Rφ(ρπ, ρπE) (44)

=
∑
s,a

sup
γ∈R

ρπ(s, a) log

(
1

1 + e−γ

)
+ ρπE (s, a) log

(
1

1 + eγ

)
(45)

=
∑
s,a

sup
γ∈R

ρπ(s, a) log

(
1

1 + e−γ

)
+ ρπE (s, a) log

(
1− 1

1 + e−γ

)
(46)

=
∑
s,a

sup
γ∈R

ρπ(s, a) log(σ(γ)) + ρπE (s, a) log(1− σ(γ)), (47)

where σ(x) = 1/(1 + e−x) is the sigmoid function. Because the range of σ is (0, 1), we can write

ψ∗GA(ρπ − ρπE) =
∑
s,a

sup
d∈(0,1)

ρπ(s, a) log d+ ρπE (s, a) log(1− d) (48)

= sup
D∈(0,1)S×A

∑
s,a

ρπ(s, a) log(D(s, a)) + ρπE (s, a) log(1−D(s, a)), (49)

which is the desired expression.

We conclude with a policy gradient formula for causal entropy.
Lemma A.1. The causal entropy gradient is given by

∇θEπθ [− log πθ(a|s)] = Eπθ [∇θ log πθ(a|s)Qlog(s, a)] ,

where Qlog(s̄, ā) = Eπθ [− log πθ(a|s) | s0 = s̄, a0 = ā].
(50)

12

Proof. For an occupancy measure ρ(s, a), define ρ(s) =
∑
a ρ(s, a). Next,

∇θEπθ [− log πθ(a|s)] = −∇θ
∑
s,a

ρπθ (s, a) log πθ(a|s)

= −
∑
s,a

(∇θρπθ (s, a)) log πθ(a|s)−
∑
s

ρπθ (s)
∑
a

πθ(a|s)∇θ log πθ(a|s)

= −
∑
s,a

(∇θρπθ (s, a)) log πθ(a|s)−
∑
s

ρπθ (s)
∑
a

∇θπθ(a|s)

The second term vanishes, because
∑
a∇θπθ(a|s) = ∇θ

∑
a πθ(a|s) = ∇θ1 = 0. We are left with

∇θEπθ [− log πθ(a|s)] =
∑
s,a

(∇θρπθ (s, a))(− log πθ(a|s)),

which is the policy gradient for RL with the fixed cost function clog(s, a) , − log πθ(a|s). The
resulting formula is given by the standard policy gradient formula for clog.

B Environments and detailed results

The environments we used for our experiments are from the OpenAI Gym [5]. The names and version
numbers of these environments are listed in Table 1, which also lists dimension or cardinality of their
observation and action spaces (numbers marked “continuous” indicate dimension for a continuous
space, and numbers marked “discrete” indicate cardinality for a finite space).

As outlined in Section 6, our experiment pipeline for a single environment consists of the following
steps: (1) training an expert with TRPO on the true cost function, (2) sampling a dataset of trajectories
from the expert, and (3) running imitation learning algorithms on that dataset. (Note that the imitation
learning algorithms, over multiple reruns, are given the same datasets.) The performance of the
TRPO-trained experts and the performance of random policies are listed in Table 1.

Table 1: Environments
Task Observation space Action space Random policy performance Expert performance

Cartpole-v0 4 (continuous) 2 (discrete) 18.64± 7.45 200.00± 0.00
Acrobot-v0 4 (continuous) 3 (discrete) −200.00± 0.00 −75.25± 10.94
MountainCar-v0 2 (continuous) 3 (discrete) −200.00± 0.00 −98.75± 8.71
Reacher-v1 11 (continuous) 2 (continuous) −43.21± 4.32 −4.09± 1.70
HalfCheetah-v1 17 (continuous) 6 (continuous) −282.43± 79.53 4463.46± 105.83
Hopper-v1 11 (continuous) 3 (continuous) 14.47± 7.96 3571.38± 184.20
Walker-v1 17 (continuous) 6 (continuous) 0.57± 4.59 6717.08± 845.62
Ant-v1 111 (continuous) 8 (continuous) −69.68± 111.10 4228.37± 424.16
Humanoid-v1 376 (continuous) 17 (continuous) 122.87± 35.11 9575.40± 1750.80

To generate the datasets, we subsampled the expert trajectories for the different environments at
various timestep intervals: 10 timesteps between samples for Cartpole, 5 for Mountain Car and
Acrobot, 1 for Reacher, and 20 for Hopper, Walker, Ant, HalfCheetah, and Humanoid. This both
made the tasks harder and made the amount of data given to the algorithms approximately comparable
over the various tasks, as the average trajectory lengths of the various environments differ vastly from
each other.

The amount of environment interaction used for FEM, GTAL, and GAIL is shown in Table 2. To
reduce gradient variance for these three algorithms, we also fit value functions, with the same neural
network architecture as the policies, and employed generalized advantage estimation [25] (with
γ = .995 and λ = .97). The exact experimental results are listed in Table 3. Means and standard
deviations are computed over a number of runs with different random seeds: 7 runs for Cartpole,
Acrobot, Mountain Car, and Reacher; 5 runs for HalfCheetah, Hopper, Walker, and Ant; 1 run for
Humanoid. The policy learned from each run is assessed by its average performance over 50 rollouts.

13

Table 2: Parameters for FEM, GTAL, and GAIL
Task Training iterations State-action pairs per iteration

Cartpole 300 5000
Mountain Car 300 5000
Acrobot 300 5000
Reacher 200 50000
HalfCheetah 500 50000
Hopper 500 50000
Walker 500 50000
Ant 500 50000
Humanoid 1500 50000

Table 3: Learned policy performance
Task Dataset size Behavioral cloning FEM GTAL GAIL (ours)

Cartpole 1 71.94± 23.94 200.00± 0.00 200.00± 0.00 200.00± 0.00
4 168.98± 48.67 200.00± 0.00 200.00± 0.00 200.00± 0.00
7 188.60± 20.54 200.00± 0.00 199.94± 0.14 200.00± 0.00

10 177.19± 46.85 199.75± 0.62 200.00± 0.00 200.00± 0.00
Acrobot 1 −130.60± 36.10 −133.32± 57.78 −81.35± 3.30 −77.28± 4.00

4 −93.20± 9.64 −94.21± 43.23 −94.80± 43.23 −83.12± 3.49
7 −96.92± 6.80 −94.99± 43.13 −95.72± 42.88 −82.56± 4.44

10 −95.10± 4.52 −77.22± 3.75 −94.32± 43.38 −78.91± 1.28
Mountain Car 1 −136.75± 6.44 −100.98± 3.23 −115.44± 34.61 −101.55± 2.14

4 −133.25± 4.27 −99.29± 1.76 −143.58± 48.96 −101.35± 1.18
7 −127.34± 9.08 −100.65± 1.49 −128.96± 44.99 −99.90± 0.79

10 −123.14± 7.31 −100.48± 0.97 −120.00± 34.29 −100.83± 2.81
HalfCheetah 4 −319.88± 306.80 338.97± 468.81 432.97± 769.97 4274.05± 251.75

11 184.78± 440.31 71.83± 511.65 273.68± 417.29 4498.79± 226.55
18 2344.70± 1313.61 −165.07± 482.60 739.77± 929.13 4729.51± 124.86
25 2849.87± 954.66 242.13± 247.16 −95.08± 520.46 4823.48± 46.40

Hopper 4 394.99± 25.24 3460.88± 82.30 2842.52± 915.60 3604.94± 18.85
11 1503.65± 910.70 3509.89± 113.57 2758.53± 668.62 3607.44± 18.07
18 1928.39± 1036.67 3519.44± 94.34 2591.56± 858.33 3631.70± 14.09
25 2022.83± 665.59 3443.99± 114.51 3043.17± 462.35 3615.54± 11.51

Walker 4 548.31± 357.68 4449.50± 805.64 4379.85± 1103.55 6675.04± 348.72
11 2534.97± 1508.82 3784.84± 391.31 4835.57± 518.24 6884.47± 169.34
18 2846.40± 2033.15 3795.22± 275.70 4433.71± 784.88 6947.50± 146.28
25 3348.29± 1186.94 4077.99± 414.05 4888.72± 423.27 7027.03± 76.39

Ant 4 1384.42± 212.60 −4510.92± 2328.03 −4042.96± 1998.47 3233.16± 310.87
11 2622.63± 309.01 −3550.70± 575.79 −4240.46± 1704.07 3894.09± 324.45
18 3048.75± 150.00 −4586.88± 2001.42 −4949.60± 1861.02 3684.49± 285.52
25 3598.54± 578.18 −5457.76± 1389.80 −5404.55± 1054.70 4057.52± 393.90

Humanoid 80 1397.06 5093.12 5096.43 10200.73
160 3655.14 5120.52 5412.47 10119.80
240 5660.53 5192.34 5145.94 10361.94

Task Dataset size Behavioral cloning GAIL (λ = 0) GAIL (λ = 10−3) GAIL (λ = 10−2)

Reacher 4 −10.97± 2.49 −67.23± 34.70 −32.37± 17.57 −46.72± 49.52
11 −6.23± 0.69 −6.06± 0.89 −6.61± 1.30 −9.23± 7.80
18 −4.76± 0.32 −8.25± 5.77 −5.66± 0.57 −5.04± 0.35

14

