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Abstract

Estimating maps among large collections of objects (e.g., dense correspondences
across images and 3D shapes) is a fundamental problem across a wide range of
domains. In this paper, we provide theoretical justifications of spectral techniques
for the map synchronization problem, i.e., it takes as input a collection of objects
and noisy maps estimated between pairs of objects along a connected object graph,
and outputs clean maps between all pairs of objects. We show that a simple
normalized spectral method (or NormSpecSync) that projects the blocks of the top
eigenvectors of a data matrix to the map space, exhibits surprisingly good behavior
— NormSpecSync is much more efficient than state-of-the-art convex optimization
techniques, yet still admitting similar exact recovery conditions. We demonstrate
the usefulness of NormSpecSync on both synthetic and real datasets.

1 Introduction

The problem of establishing maps (e.g., point correspondences or transformations) among a collection
of objects is connected with a wide range of scientific problems, including fusing partially overlapped
range scans [1], multi-view structure from motion [2], re-assembling fractured objects [3], analyzing
and organizing geometric data collections [4] as well as DNA sequencing and modeling [5]. A
fundamental problem in this domain is the so-called map synchronization, which takes as input noisy
maps computed between pairs of objects, and utilizes the natural constraint that composite maps
along cycles are identity maps to obtain improved maps.

Despite the importance of map synchronization, the algorithmic advancements on this problem remain
limited. Earlier works formulate map synchronization as solving combinatorial optimizations [1, 6, 7,
8]. These formulations are restricted to small-scale problems and are susceptible to local minimums.
Recent works establish the connection between the cycle-consistency constraint and the low-rank
property of the matrix that stores pairwise maps in blocks; they cast map synchronization as low-rank
matrix inference [9, 10, 11]. These techniques exhibit improvements on both the theoretical and
practical sides. In particular, they admit exact recovery conditions (i.e., on the underlying maps can
be recovered from noisy input maps). Yet due to the limitations of convex optimization, all of these
methods do not scale well to large-scale datasets.

In contrast to convex optimizations, we demonstrate that spectral techniques work remarkably well
for map synchronization. We focus on the problem of synchronizing permutations and introduce
a robust and efficient algorithm that consists of two simple steps. The first step computes the top
eigenvectors of a data matrix that encodes the input maps, and the second step rounds each block of
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the top-eigenvector matrix into a permutation matrix. We show that such a simple algorithm possesses
a remarkable denoising ability. In particular, its exact recovery conditions match the state-of-the-art
convex optimization techniques. Yet computation-wise, it is much more efficient, and such a property
enables us to apply the proposed algorithm on large-scale dataset (e.g., many thousands of objects).
Spectral map synchronization has been considered in [12, 13] for input observations between all
pairs of objects. In contrast to these techniques, we consider incomplete pair-wise observations, and
provide theoretical justifications on a much more practical noise model.

2 Algorithm

In this section, we describe the proposed algorithm for permutation synchronization. We begin with
the problem setup in Section 2.1. Then we introduce the algorithmic details in Section 2.2.

2.1 Problem Setup

Suppose we have n objects S1, · · · , Sn. Each object is represented by m points (e.g., feature points
on images and shapes). We consider bijective maps φij : Si → Sj , 1 ≤ i, j ≤ n between pairs of
objects. Following the convention, we encode each such map φij as a permutation matrix Xij ∈ Pm,
where Pm is the space of permutation matrices of dimension m:

Pm := {X|X ∈ [0, 1]m×m, X1m = 1m, X
T1m = 1m},

where 1m = (1, · · · , 1)T ∈ Rm is the vector whose elements are 1.

The input permutation synchronization consists of noisy permutations X in
ij ∈ G along a connected

object graph G. As described in [4, 9], a widely used pipeline to generate such input is to 1) establish
the object graph G by connecting each object and similar objects using object descriptors (e.g.,
HOG [14] for images) , and 2) apply off-the-shelf pair-wise object matching methods to compute the
input pair-wise maps (e.g., SIFTFlow [15] for images and BIM [16] for 3D shapes).

The output consists of improved maps between all of objects

Xij , 1 ≤ i, j ≤ n.

2.2 Algorithm

We begin with defining a data matrix Xobs ∈ Rnm×nm that encodes the initial pairwise maps in
blocks:

Xobs
ij =

{
1√
didj

X in
ij , (i, j) ∈ G

0, otherwise
(1)

where di := |{Sj |(Si, Sj) ∈ G}| is the degree of object Si in graph G.
Remark 1. Note that the way we encode the data matrix is different from [12, 13] in the sense that
we follow the common strategy for handling irregular graphs and use a normalized data matrix.

The proposed algorithm is motivated from the fact that when the input pair-wise maps are correct, the
correct maps between all pairs of objects can be recovered from the leading eigenvectors of Xobs:
Proposition 2.1. Suppose there exist latent maps (e.g., the ground-truth maps to one object) Xi, 1 ≤
i ≤ n so that Xin

ij = XT
j Xi, (i, j) ∈ G. Denote W ∈ Rnm×m as the matrix that collects the first m

eigenvectors of Xobs in its columns. Then the underlying pair-wise maps can be computed from the
corresponding matrix blocks of matrix WWT :

XT
j Xi =

∑n
i=1 di√
didj

(WWT )ij , 1 ≤ i, j ≤ n. (2)

The key insight of the proposed approach is that even when the input maps are noisy (i.e., the blocks
of Xobs are corrupted), the leading eigenvectors of Xobs are still stable under these perturbations
(we will analyze this stability property in Section 3). This motivates us to design a simple two-step
permutation synchronization approach called NormSpecSync. The first step of NormSpecSync
computes the leading eigenvectors of W ; the second step of NormSpecSync rounds the induced
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Algorithm 1 NormSpecSync
Input: Xobs based on (1), δmax

Initialize W0: set W0 as an initial guess for the top-m orthonormal eigenvectors, k ← 0
while ‖W (k) −W (k−1)‖ > δmax do
W (k+1)+ = Xobs ·W (k),
W (k+1)R(k+1) = W (k+1)+, (QR factorization),
k ← k + 1.

end while
Set W = W (k) and X

spec

i1 = (WWT )i1.

Round each X
spec

i1 into the corresponding Xi1 by solving (3).
Output: Xij = XT

j1Xi1, 1 ≤ i, j ≤ n.

matrix blocks (2) into permutations. In the following, we elaborate these two steps and analyze the
complexity. Algorithm 1 provides the pseudo-code.

Leading eigenvector computation. Since we only need to compute the leading m eigenvectors of
Xobs, we propose to use generalized power method. This is justified by the observation that usually
there exists a gap between λm and λm+1. In fact, when the input pair-wise maps are correct, it is
easy to derive that the leading eigenvectors of Xobs are given by:

λ1(Xobs) = · · · = λm(Xobs) = 1, λm+1(Xobs) = λn−1(G),

where λn−1(G) is the second largest eigenvalue of the normalized adjacency matrix of G. As we
will see later, the eigen-gap λm(Xobs)− λm+1(Xobs) is still persistent in the presence of corrupted
pair-wise maps, due to the stability of eigenvalues under perturbation.

Projection onto Pm. Denote Xspec
ij :=

∑n
i=1 di√
didj

(WWT )ij . Since the underlying ground-truth maps

Xij , 1 ≤ i, j ≤ n obey Xij = XT
jkXik, 1 ≤ i, j ≤ n for any fixed k, we only need to round Xspec

ik

into Xik. Without losing generality, we set k = 1 in this paper.

The rounding is done by solving the following constrained optimization problem, which projects
Xobs

i1 onto the space of permutations via the Frobenius norm:

Xi1 = arg min
X∈Pm

‖X −Xobs
i1 ‖

2
F = arg min

X∈Pm

(
‖X‖2F + ‖Xobs

i1 ‖
2
F− 2〈X,Xobs

i1 〉
)

= arg max
X∈Pm

〈X,Xobs
i1 〉. (3)

The optimization problem described in (3) is the so-called linear assignment problem, which can be
solved exactly using the Hungarian algorithm whose complexity is O(m3) (c.f. [17]). Note that the
optimal solution of (3) is invariant under global scaling and shifting of Xobs

i1 , so we omit
∑n
i=1 di√
didj

and
1
m11T when generating Xobs

ij (See Algorithm 1).

Time complexity of NormSpecSync. Each step of the generalized power method consists of a matrix-
vector multiplication and a QR factorization. The complexity of the matrix-vector multiplication,
which leverages of the sparsity in Xobs, is O(nE · m2), where nE is the number of edges in G.
The complexity of each QR factorization is O(nm3). As we will analyze laser, generalized power
method converges linearly, and setting δmax = 1/n provides a sufficiently accurate estimation
of the leading eigenvectors. So the total time complexity of the Generalized power method is
O
(
(nEm

2 + nm3
)

log(n)). The time complexity of the rounding step is O(nm3). In summary, the
total complexity of NormSpecSync is O

(
(nEm

2 + nm3
)

log(n)). In comparison, the complexity of
the SDP formulation [9], even when it is solved using the fast ADMM method (alternating direction
of multiplier method), is at least O(n3m3nadmm. So NormSpecSync exhibits significant speedups
when compared to SDP formulations.

3



3 Analysis

In this section, we provide an analysis of NormSpecSync under a generalized Erdős-Rényi noise
model.

3.1 Noise Model

The noise model we consider is given by two parameters m and p. Specifically, we assume the
observation graph G is fixed. Then independently for each edge (i, j) ∈ E ,

X in
ij =

{
Im with probability p
Pij with probability 1− p (4)

where Pij ∈ Pm is a random permutation.
Remark 2. The noise model described above assumes the underlying permutations are identity maps.
In fact, one can assume a generalized noise model

X in
ij =

{
XT

j1Xi1 with probability p
Pij with probability 1− p

where Xi1, 1 ≤ i ≤ n are pre-defined underlying permutations from object Si to the first object S1.
However, since Pij are independent of Xi1. It turns out the model described above is equivalent to

Xj1X
in
ijX

T
i1 =

{
Im with probability p
Pij with probability 1− p

Where Pij are independent random permutations. This means it is sufficient to consider the model
described in (4).
Remark 3. The fundamental difference between our model and the one proposed in [11] or the ones
used in low-rank matrix recovery [18] is that the observation pattern (i.e., G) is fixed, while in other
models it also follows a random model. We argue that our assumption is more practical because
the observation graph is constructed by comparing object descriptors and it is dependent on the
distribution of the input objects. On the other hand, fixing G significantly complicates the analysis of
NormSpecSync, which is the main contribution of this paper.

3.2 Main Theorem

Now we state the main result of the paper.

Theorem 3.1. Let dmin := min1≤i≤n di, davg :=
∑

i di/n, and denote ρ as the second top eigen-
value of normalized adjacency matrix of G. Assume dmin = Ω(

√
n ln3 n), davg = O(dmin),

ρ < min{p, 1/2}. Then under the noise model described above, NormSpecSync recovers the
underlying pair-wise maps with high probability if

p > C · ln3 n

dmin/
√
n
, (5)

for some constant C.

Proof Roadmap. The proof of Theorem 3.1 combines two stability bounds. The first one considers
the projection step:

Proposition 3.1. Consider a permutation matrix X = (xij) ∈ Pm and another matrix X = (xij) ∈
Rm×m. If ‖X −X‖ < 1

2 , then
X = arg min

Y ∈Pm
‖Y −X‖2F .

Proof. The proof is quite straight-forward. In fact,

‖X −X‖∞ ≤ ‖X −X‖ <
1

2
.
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Figure 1: Comparisons between NormSpecSync, SDP[9], DiffSync[13] on the noise model described in Sec. 2.

This means the corresponding element xij of each non-zero element in xij is dominant in its row and
column, i.e.,

xij 6= 0 ↔ xij > max(max
k 6=j

xik,max
k 6=i

xkj),

which ends the proof. �

The second bound concerns the block-wise stability of the leading eigenvectors of Xobs:
Lemma 3.1. Under the assumption of Theorem 3.1, then w.h.p.,∥∥∥∥∑n

i=1 di√
did1

(WWT )i1 − Im
∥∥∥∥ < 1

3
, 1 ≤ i ≤ n. (6)

It is easy to see that we can prove Theorem 3.1 by combing Lemma 3.1 and Prop. 3.1. Yet unlike
Prop. 3.1, the proof of Lemma 3.1 is much harder. The major difficulty is that (6) requires controlling
each block of the leading eigenvectors, namely, it requires a L∞ bound, whereas most stability results
on eigenvectors are based on the L2-norm. Due to space constraint, we defer the proof of Lemma 3.1
to Appendix A and the supplemental material. �

Near-optimality of NormSpecSync. Theorem 3.1 implies that NormSpecSync is near-optimal with
respect to the information theoretical bound described in [19]. In fact, when G is a clique, (5) becomes
p > C · ln

3(n)√
n

, which aligns with the lower bound in [19] up to a polylogarithmic factor. Following
the model described in [19], we can also assume that the observation graph G is sampled with a
density factor q, namely, two objects are connected independently with probability q. In this case,
it is easy to see that dmin > O(nq/ lnn) w.h.p., and (5) becomes p > C · ln

4 n√
nq . This bound also

stays within a polylogarithmic factor from the lower bound in [19], indicating the near-optimality of
NormSpecSync.

4 Experiments

In this section, we perform quantitative evaluations of NormSpecSync on both synthetic and real
examples. Experimental results show that NormSpecSync is superior to state-of-the-art map syn-
chronization methods in the literature. We organize the remainder of this section as follows. In
Section 4.1, we evaluate NormSpecSync on synthetic examples. Then in section 4.2, we evaluate
NormSpecSync on real examples.

4.1 Quantitative Evaluations on Synthetic Examples

We generate synthetic data by following the same procedure described in Section 2. Specifically,
each synthetic example is controlled by three parameters G, m, and p. Here G specifies the input
graph; m describes the size of each permutation matrix; p controls the noise level of the input maps.
The input maps follow a generalized Erdos-Renyi model, i.e., independently for each edge (i, j) ∈ G
in the input graph, with probability p the input map X in

ij = Im, and otherwise X in
ij is a random

permutation. To simplify the discussion, we fix m = 10, n = 200 and vary the observation graph G
and p to evaluate NormSpecSync and existing algorithms.
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Figure 2: Comparison between NorSpecSync and SpecSync on irregular observation graphs.

Dense graph versus sparse graph. We first study the performance of NormSpecSync with respect
to the density of the graph. In this experiment, we control the density of G by following a standard
Erdős-Rényi model with parameter q, namely independently, each edge is connected with probability
q. For each pair of fixed p and q, we generate 10 examples. We then apply NormSpecSync and count
the ratio that the underlying permutations are recovered. Figure 1(a) illustrates the success rate of
NormSpecSync on a grid of samples for p and q. Blue and yellow colors indicate it succeeded and
failed on all the examples, respectively, and the colors in between indicate a mixture of success and
failure. We can see that NormSpecSync tolerates more noise when the graph becomes denser. This
aligns with our theoretical analysis result.

NormSpecSync versus SpecSync. We also compare NormSpecSync with SpecSync [12], and
show the advantage of NormSpecSync on irregular observation graphs. To this end, we generate
G using a different model. Specifically, we let the degree of the vertex to be uniformly distribute
between ( 1

2 − q)n and ( 1
2 + q)n. As illustrated in Figure 2, when q is small, i.e., all the vertices have

similar degrees, the performance of NormSpecSync and SpecSync are similar. When q is large, i.e.,
G is irregular, NormSpecSync tend to tolerate more noise than SpecSync. This shows the advantage
of utilizing a normalized data matrix.

NormSpecSync versus DiffSync. We proceed to compare NormSpecSync with DiffSync [13],
which is a permutation synchronization method based on diffusion distances. NormSpecSync and
DiffSync exhibit similar computation efficiency. However, NormSpecSync can tolerate significantly
more noise than DiffSync, as illustrated in Figure 1(c).

NormSpecSync versus SDP. Finally, we compare NormSpecSync with SDP [9], which formulates
permutation synchronization as solving a semidefinite program. As illustrated in Figure 1(b), the
exact recovery ability of NormSpecSync and SDP are similar. This aligns with our theoretical analysis
result, which shows the near-optimality of NormSpecSync under the noise model of consideration.
Yet computationally, NormSpecSync is much more efficient than SDP. The averaged running time for
SpecSync is 2.25 second. In contrast, SDP takes 203.12 seconds in average.

4.2 Quantitative Evaluations on Real Examples

In this section, we present quantitative evaluation of NormSpecSync on real datasets.

CMU Hotel/House. We first evaluate NormSpecSync on CMU Hotel and CMU House
datasets [20]. The CMU Hotel dataset contains 110 images, where each image has 30 marked
feature points. In our experiment, we estimate the initial map between a pair of images using
RANSAC [21]. We consider two observation graphs: a clique observation graph Gfull, where we
have initial maps computed between all pairs of images, and a sparse observation graph Gsparse.
Gsparse is constructed to only connect similar images. In this experiment, we connect an edge between
two images if the difference in their HOG descriptors [22] is smaller than 1

2 of the average descriptor
differences among all pairs of images. Note that Gsparse shows high variance in terms of vertex
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Figure 3: Comparison between NorSpecSync, SpecSync, DiffSync and SDP on CMU Hotel/House and SCAPE.
In each dataset, we consider a full observation graph and a sparse observation graph that only connects potentially
similar objects.

degree. The CMU House dataset is similar to CMU Hotel, containing 100 images and exhibiting
slightly bigger intra-cluster variability than CMU Hotel. We construct the observation graphs and the
initial maps in a similar fashion. For quantitative evaluation, we measure the cumulative distribution
of distances between the predicted target points and the ground-truth target points.

Figure 3(Left) compares NormSpecSync with the SDP formulation, SpecSync, and DiffSync. On
both full and sparse observation graphs, we can see that NormSpecSync, SDP and SpecSync are
superior to DiffSync. The performance of NormSpecSync and SpecSync on Gfull is similar, while
on Gsparse, NormSpecSync shows a slight advantage, due to its ability to handle irregular graphs.
Moreover, although the performance of NormSpecSync and SDP are similar, SDP is much slower
than NormSpecSync. For example, on Gsparse, SDP took 1002.4 seconds, while NormSpecSync
only took 3.4 seconds.

SCAPE. Next we evaluate NormSpecSync on the SCAPE dataset. SCAPE consists of 71 different
poses of a human subject. We uniformly sample 128 points on each model. Again we consider a
full observation graph Gfull and a sparse observation graph Gsparse. Gsparse is constructed in the
same way as above, except we use the shape context descriptor [4] for measuring the similarity
between 3D models. In addition, the initial maps are computed from blended-intrinsic-map [16],
which is the state-of-the-art technique for computing dense correspondences between organic shapes.
For quantitative evaluation, we measure the cumulative distribution of geodesic distances between
the predicted target points and the ground-truth target points. As illustrated in Figure 3(Right), the
relative performance between NormSpecSync and the other three algorithms is similar to CMU Hotel
and CMU House. In particular, NormSpecSync shows an advantage over SpecSync on Gsparse. Yet
in terms of computational efficiency, NormSpecSync is far better than SDP.

5 Conclusions
In this paper, we propose an efficient algorithm named NormSpecSync towards solving the permuta-
tion synchronization problem. The algorithm adopts a spectral view of the mapping problem and
exhibits surprising behavior both in terms of computation complexity and exact recovery conditions.
The theoretical result improves upon existing methods from several aspects, including a fixed obser-
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vation graph and a practical noise method. Experimental results demonstrate the usefulness of the
proposed approach.

There are multiple opportunities for future research. For example, we would like to extend NormSpec-
Sync to handle the case where input objects only partially overlap with each other. In this scenario,
developing and analyzing suitable rounding procedures become subtle. Another example is to extend
NormSpecSync for rotation synchronization, e.g., by applying Spectral decomposition and rounding
in an iterative manner.

Acknowledgement. We would like to thank the anonymous reviewers for detailed comments on how
to improve the paper. The authors would like to thank the support of DMS-1700234, CCF-1302435,
CCF-1320175, CCF-1564000, CNS-0954059, IIS-1302662, and IIS-1546500.

A Proof Architecture of Lemma 3.1

In this section, we provide a roadmap for the proof of Lemma 3.1. The detailed proofs are deferred to
the supplemental material.

Reformulate the observation matrix. The normalized adjacency matrix Ā = D−
1
2AD−

1
2 can

be decomposed as Ā = ssT + V ΛV T , where the dominant eigenvalue is 1 and corresponding
eigenvector is s. We reformulate the observation matrix as 1

pM = Ā ⊗ Im + Ñ , and it is clear
to see that the ground truth result relates to the term (ssT )⊗ Im, while the noise comes from two
terms: (V ΛV T )⊗ Im and Ñ . More specifically, the noise not only comes from the randomness of
uncertainty of the measurements, but also from the graph structure, and we use ρ to represent the
spectral norm of Λ. When the graph is disconnected or near disconnected, ρ is close to 1 and it is
impossible to recover the ground truth.

Bound the spectral norm of Ñ . The noise term Ñ consists of random matrices with mean zero
in each block. In a complete graph, the spectral norm is bounded by O( 1

p
√
n

), however, when
considering the graph structure, we give a O( 1

p
√
dmin

) bound.

Measure the block-wise distance between U and s ⊗ Im. Let M = UΣUT + U2Σ2U
T
2 , we

want to show the distance between U and s ⊗ 1m is small, where the distance function dist(·) is
defined as:

dist(U, V ) = min
R:RRT=I

∥∥∥U − V R∥∥∥
B
, (7)

and this B−norm for any matrix X represented in the form X = [XT
1 , · · · , XT

n ]T ∈ Rmn×m is
defined as

‖X‖B = max
i
‖Xi‖F . (8)

More specifically, we bound the distance between U and s⊗ Im by constructing a series of matrix
{Ak}, and we can show for some k = O(log n), the distances from s⊗ Ak to both U and s⊗ Im
are small. Therefore, by using the triangle inequality, we can show that U and s⊗ Im is close.

Sketch proof of Lemma 3.1. Once we are able to show that there exists some rotation matrix R,
such that dist(U, s ⊗ Im) is in the order of o( 1√

n
), then it is straightforward to prove Lemma 3.1.

Intuitively, this is because the measurements from the eigenvectors is close enough to the ground
truth, hence their second moment will still be close. Formally speaking,∥∥UiU

T
j − (si · Im)(sj · Im)

∥∥ (9)

=
∥∥UiRR

TUT
j − (si · Im)(sj · Im)

∥∥ (10)

=
∥∥UiR(RTUT

j − (sj · Im)T ) + (UiR− si · Im)(sj · Im)T
∥∥ (11)

≤
∥∥Ui

∥∥ · dist(U, s⊗ Im) + dist(U, s⊗ Im) ·
∥∥sj · Im∥∥ (12)

On the other hand, notice that∥∥∥∑n
i=1 di√
didj

UiU
T
j − Im

∥∥∥ =

∑n
i=1 di√
didj

∥∥∥UiU
T
j − (si · Im)(sj · Im)

∥∥∥, (13)

and we only need to show that (13) is in the order of o(1). The details are included in the supplemental
material.
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A Reformulating the Noise Term in the Model

As is shown in 3.1, each observed block matrix is corrupted by permutation matrices, therefore the noise can
not be directly modeled as random matrices with zero mean, and we need to be careful with it. Since without
loss of generality, we can assume each block matrix Xi of the underlying ground truth matrix X to be Im, for
convenience, define Xgt as:

Xgt = A⊗ Im +
1− p
p

A⊗
(

1

m
1m · 1m

T

)
. (14)

Here, A is the adjacency matrix for graph G. p is the probability that we observe Im correctly, and with
probability 1− p, the observed block matrix is wrong, i.e., we observe a random permutation. Accordingly, the
noise model N we propose written in a block-wise form is:

Nij =

{
1
p
Im − Im − 1−p

p
1
m
1m · 1Tm, with probability p,

1
p
Pij − Im − 1−p

p
1
m
1m · 1Tm, with probability 1− p, (i, j) ∈ G, (15)

and for (i, j) /∈ G, Nij = 0. Intuitively, the bias term Im + 1−p
p

1
m

1 · 1T is added to offset the first moment of
the noise matrix and is helpful for our theoretic analysis. The expectation of each Nij is:

E [Nij ] =pE
[

1

p
Im − Im −

1− p
p

1

m
1m · 1Tm

]
+ (1− p)E

[
1

p
Pij − Im −

1− p
p

1

m
1m · 1Tm

]
(16)

=Im +
1− p
p

E [Pij ]− Im −
1− p
p

1

m
1m · 1Tm (17)

=0. (18)

We can rewrite our input matrix X in as a ground truth term with an additive noise term:

X in = pXgt + pN. (19)

Accordingly,
Xobs =

(
D−

1
2 ⊗ Im

)
Xin

(
D−

1
2 ⊗ Im

)
. (20)

Now, we reconsider the adjacency matrix A of graph G. Ideally, we get a noisy observation of the ground truth
matrix X (where all blocks are Im) when graph G is fully connected. However, in practice, we may encounter
problems getting all the pair mapping results, i.e., incomplete observation. Accordingly, only a subset of entries
in A is set to be 1, i.e., Aij = 1 if Xij is observed, otherwise Aij = 0. We denote the normalized adjacency
matrix as Ā = D−

1
2AD−

1
2 , and we will frequently use the dominant eigenvector s of spectral decomposition

of Ā:
Ā = ssT + V ΛV T , (21)

as well as the second largest eigenvalue of Ā, and denote it as ρ = ‖Λ‖.

Furthermore, denote M∗ as pXobs, combine previous formula in this section, we have

1

p
M∗ = Ā⊗ Im +

1− p
p

Ā⊗
(

1

m
1m · 1m

T

)
+ N̄ (22)

= Ā⊗
(
Im +

1− p
p

1

m
1m · 1m

T

)
+ N̄ , (23)

where N̄ :=
(
D−

1
2 ⊗ Im

)
N
(
D−

1
2 ⊗ Im

)
. We normalize the right hand side of (22) and define M as

follows:
1

p
M ,

(
In ⊗

(
Im −

1−√p
m

1m · 1m
T

))(
1

p
M∗
)(

In ⊗
(
Im −

1−√p
m

1m · 1m
T

))
(24)

=Ā⊗ Im + Ñ , (25)

where

Ñ =

(
In ⊗

(
Im −

1−√p
m

1m · 1m
T

))
N̄

(
In ⊗

(
Im −

1−√p
m

1m · 1m
T

))
. (26)

The purpose of our algorithm is to find the spectral decomposition of (22), i.e., the first m eigenvectors of M∗,
since we can only get M∗ from the data but not M . However, with basic assumptions on A and p (so that
the spectral gap is not too small), we can show that both (22) and (24) give us the same top-m eigenvectors.
Therefore, we move our target from (22) to (24) when checking the performance of our algorithm. In the
noiseless setting, the algorithm’s first m eigenvectors would be s⊗ Im up to a rotation operation, and we would
like to show the convergence to this result in the noisy setting, with reasonable assumption on the value of p, ρ
and ‖Ñ‖.
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B Consistency of Eigenvectors

ρ, ‖Ñ‖ are the spectral norm of Λ, Ñ , respectively. We assume

ρ+ ‖Ñ‖ < (1 + ρ)/2,
1

p
ρ+ ‖N̄‖ < 1. (27)

We can interpret ρ as the noise from the adjacency graph, and Ñ as the noise from observation. Obviously,
ρ < 1, and accordingly we have ρ+ ‖Ñ‖ < 1, which is a necessary condition for the eigengap. The second
condition in (27) implies that ρ < p, which means that the graph needs to be well connected enough to tolerate
large observation noise. Intuitively, this constraint is due to the interaction between graph noise and observation
noise, which is also necessary.

B.1 Lemma B.1

Lemma B.1. With assumption (27), the top-m eigenvectors of M and M∗ are consistent, i.e., they span the
same space.

Proof. It is obvious to find the following relationship of M∗ and M :

1

p
M =

1

p
M∗(In ⊗ (Im −

1− p
m

1m · 1m
T )). (28)

Hence,

1

p
(M∗−M) =

1− p
m

1

p
M∗

(
In ⊗ 1m · 1m

T
)

(29)

=
1− p
m

(
Ā⊗

(
Im +

1− p
p

1

m
1m · 1m

T

))(
In ⊗ 1m · 1m

T
)

(30)

=
1− p
p

(
ssT + V ΛV T

)
⊗
(

1

m
1m · 1m

T

)
(31)

=
1− p
p

(
1√
m
s⊗ 1m ·

1√
m
sT ⊗ 1m

T +

n−1∑
i=1

σi(Λ)
1√
m
vi ⊗ 1m ·

1√
m
vTi ⊗ 1m

T

)
, (32)

where (30) is because of the noise term always has a block row (column) sum of 0. In (31) we use the property of
Kronecker product, i.e., (X1⊗X2)(X3⊗X4) = (X1X3)⊗ (X2X4), as well as the eigenvector decomposition
of Ā defined in (21). Meanwhile, let vi be the ith column of V ,

1

p
M∗ (vi ⊗ 1m) =Ā⊗

(
Im +

1− p
p

1

m
1m · 1m

T

)
(vi ⊗ 1m) + N̄ (vi ⊗ 1m) (33)

=
(
Āvi
)
⊗
((

Im +
1− p
p

1

m
1m · 1m

T

)
1m

)
(34)

=
1

p
σi (Λ) (vi ⊗ 1m) (35)

Therefore, the difference between M and M∗ only includes the change in eigenvalues corresponding to
eigenvectors 1√

m
vi ⊗ 1m and 1√

m
s ⊗ 1m. On the other hand, since ρ + ‖Ñ‖ < 1, the top-m eigenvalues

of Ā ⊗ Im are [1, 1, · · · , 1], σm(M) > 1 − ‖Ñ‖ > ρ, hence the top-m eigenvectors of M do not include
vi ⊗ 1m. Meanwhile, since the maximum eigenvalue corresponding to vi ⊗ 1m for (22) is 1

p
ρ, with assumption

(27), the top-m eigenvectors of M∗ also do not include vi ⊗ 1m. Therefore, the top-m eigenvectors of M and
M∗ are consistent.

In this lemma, we try to convey the message that M∗ is a perturbation of M that still guarantees the same
top-m eigenvector subspace if assumption (27) is satisfied. Moreover, due to the structure of the problem, the
perturbation in this problem can be well explained as a summation of n terms, where each of them is a rank-1
matrix spanned by one of the eigenvectors, thus making our analysis easier. �

C Convergence Analysis

Lemma C.1. Alg.1 has linear convergence rate. More specifically, let M = UΣUT + U2Σ2U
T
2 , and

diag (Σ) = [σ1, · · · , σm], diag (Σ2) = [σm+1, · · · , σmn], the columns of U are them-dominant eigenvectors,
then X̂ = WiWi

T in Alg.1 converges to UUT linearly.
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Proof. Let Wk = UCk + U2Ck,2, where U ∈ Rmn×m, Ck ∈ Rm×m, U2 ∈ Rmn×m(n−1), Ck,2 ∈
Rm(n−1)×m. In the following, we assume that Ck is invertible. First of all,

W+
k =

(
UΣUT + U2Σ2U

T
2

)
(UCk + U2Ck,2) = UΣCk + U2Σ2Ck,2. (36)

Besides, Ck, Ck,2 should satisfy the following:

Im = WT
k Wk = CTk Ck + CTk,2Ck,2. (37)

Also, since the orthogonality of column vectors of U and U2,

UTW+
k = ΣCk, UT2 W

+
k = Σ2Ck,2. (38)

According to Alg. 1, let the SVD decomposition of W+
k be UkΣ+

k V
T
k , then Uk is what the QR factorization

step gives us. Furthermore,

Wk+1W
T
k+1 = W+

k VkΣ+
k

−2
V Tk W

+
k

T
= W+

k

(
W+
k

T
W+
k

)−1

W+
k

T
. (39)

Substitute (39) with (36), we have:

Wk+1W
T
k+1 = W+

k

(
W+
k

T
W+
k

)−1

W+
k

T
(40)

= (UΣCk + U2Σ2Ck,2)
(
CTk Σ2Ck + CTk,2Σ2

2Ck,2
)−1

(UΣCk + U2Σ2Ck,2)T (41)

= (UΣ + U2Σ2Ck,3)
(

Σ2 + CTk,3Σ2
2Ck,3

)−1

(UΣ + U2Σ2Ck,3)T , (42)

where Ck,3 = Ck,2C
−1
k .

Proposition C.1. Let the minimum eigenvalue in Σ be σm, and the maximum eigenvalue in Σ2 be σm+1,
σm > σm+1, we have: ∥∥Σ−1XTΣ2

2XΣ−1
∥∥
F
≤ σ2

m+1

σ2
m

∥∥XTX
∥∥
F
. (43)

This is obvious once we check the eigenvalues on both sides.

Multiply both sides of (37) with C−1
k , we have:

C−1
k = CTk + CTk,2Ck,2C

−1
k , (44)

⇒ I = CkC
T
k + CkC

T
k,2Ck,2C

−1
k = CkC

T
k

(
I + CTk,3Ck,3

)
, (45)

⇒ CTk,3Ck,3 =
(
CkC

T
k

)−1

− I. (46)

According to (40), we have:

UTWk+1W
T
k+1U = Ck+1C

T
k+1 = Σ

(
Σ2 + CTk,3Σ2

2Ck,3
)−1

ΣT . (47)

Therefore, (
Ck+1C

T
k+1

)−1

= Σ−1
(

Σ2 + CTk,3Σ2
2Ck,3

)
Σ−1 = I + Σ−1CTk,3Σ2

2Ck,3Σ−1. (48)

According to Proposition C.1 and (46), we have:∥∥(Ck+1C
T
k+1)−1 − I

∥∥
F

(49)

=
∥∥Σ−1CTk,3Σ2

2Ck,3Σ−1
∥∥
F

(50)

≤σ
2
m+1

σ2
m

∥∥CTk,3Ck,3∥∥F (51)

=
σ2
m+1

σ2
m

∥∥∥(CkCTk )−1

− I
∥∥∥
F
. (52)

Therefore, Wk has a linear convergence rate. �
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D Prove Lemma 3.1

D.1 Lemma D.1

Lemma D.1. The spectral norm of N̄ is O(
√

lnn

p
√
dmin

) with high probability.

Proof. First we introduce the inequality that is useful in the following content, i.e., the Bernstein inequality in
the matrix form.

Proposition D.1. Matrix Bernstein. Let {Sk} be a serious of independent matrices with same dimension
d1 × d2, satisfying E[Sk] = 0, ‖Sk‖ ≤ L. Let Z be the sum of matrices Sk, i.e., Z =

∑
k Sk, and let the

“variance” of Z be defined as follow:

v (Z) = max

{∥∥∥∑
k

E [SkS
∗
k ]
∥∥∥, ∥∥∥∑

k

E [S∗kSk]
∥∥∥} . (53)

Then, we have:

E [‖Z‖] ≤
√

2v (Z) log (d1 + d2) +
1

3
L log (d1 + d2) (54)

P(‖Z‖ ≥ t) ≤ (d1 + d2) exp

(
−t2/2

v(Z) + Lt/3

)
, (55)

for t ≥ 0.

The Ñ we care about can be written as a summation of 2n terms as follows:

Ñ =
(
Ñ:1 + Ñ:2 + · · · Ñ:n

)
+
(
Ñ:1 + Ñ:2 + · · · Ñ:n

)T
, (56)

and Ñ:i = Mi(Ñ), whereMi(·) operator is a mask operation on a square matrix such that only the first i
blocks on the ith column are revealed. It is easy to verify that (56) is correct since the diagonal blocks of Ñ are
all zero matrices. The norm of Ñ is bounded by two times the norm of the sum of first n terms on the right hand
side of (56). Since the n terms are independent, we can use Bernstein inequality.

We observe that,

E
[
Ñ:i

]
= 0, ‖Ñ:i‖ ≤

1 + p

p

1√
didmin

, (57)

∥∥∥∑
i

E
[
N:iN

T
:i

]∥∥∥ =
∥∥∥∑

i

E
[
NT

:iN:i

]∥∥∥ ≤ max
i

 1

di

∑
j∈N(i)

1

dj

 1− p2

p2
≤ 1

dmin

1− p2

p2
. (58)

Therefore, as long as dmin = Ω (lnn), (55) is dominant by the variance term. Accordingly, ‖Ñ‖ =

O

( √
lnn

p
√
dmin

)
, w.h.p..

�

D.2 Lemma D.2

Lemma D.2. Introduce matrix series Ak,i, 0 ≤ i ≤ k, which are recursively defined as

A1,1 = Im,A1,0 = Im, (59)

Ak,0 =

k−1∑
i=0

Ak−1,iBi,Ak,i = Ak−1,i−1, 1 ≤ i ≤ k. (60)

where Bi =
(
sT ⊗ Im

)
Ei (s⊗ Im). Then,

Uk =

k∑
i=0

Ei (s⊗Ak,i) . (61)

Also,
Ak+1,0 = UTk (s⊗ Im) =

(
sT ⊗ Im

)
Mk (s⊗ Im) (62)
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Proof. The proof is quite straightforward and use mathematical induction. When k = 1, (61) is true because
1∑
i=0

Ei (s⊗A1,i) = E (s⊗ Im) + (s⊗ Im) =
(
E + ssT

)
(s⊗ Im) = M (s⊗ Im) = U1. (63)

Suppose (61) is true when k ≤ j − 1, j ≥ 2. Then

Uj =
((
ssT
)
⊗ Im + E

) j−1∑
i=0

Ei (s⊗Aj−1,i) (64)

=

j−1∑
i=0

((
ssT
)
⊗ Im + E

)
Ei (s⊗Aj−1,i) (65)

=

j−1∑
i=0

(
Ei+1 (s⊗Aj−1,i) + (s⊗ Im)

(
sT ⊗ Im

)
Ei (s⊗ Im)Aj−1,i

)
(66)

=

j∑
i=1

Ei (s⊗Aj−1,i) + s⊗Aj,0 (67)

=

j∑
i=0

Ei (s⊗Aj−1,i) . (68)

�

D.3 Lemma D.3

Lemma D.3. Ak,i is close to Im. For all k ≤ 10 log(n), we have

‖Ak,i − Im‖ ≤
3(k − i)

√
lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2, 0 ≤ i ≤ k. (69)

Proof. We prove this by using mathematical induction. When k = 1, (69) is trivial because the left side
is 0. Now, suppose (69) is true for k ≤ j, and let us consider k = j + 1. It is clear that we only need
to show that Aj+1,0 satisfies (69), as the rest of Aj+1,i follow directly according to definition. Notice that
‖Ñ‖ = O(

√
lnn

p
√
dmin

), it follows that we can choose sufficient large n such that

3k
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2 ≤ 1

2
, 1 ≤ k ≤ 10 log(n). (70)

For Aj+1,0, we bound the difference between Aj+1,0 and Im as follows:

‖Aj+1,0 − Im‖ ≤‖Aj,0 − Im‖+

j∑
i=1

‖Aj,i‖‖Bi‖ (71)

≤ 3j
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2 +

j∑
i=1

(1 +
3(j − i)

√
lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2)‖Bi‖ (72)

≤ 3j
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2 + (1 +

3(j − 1)
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2)‖B1‖+

j∑
i=2

2‖Bi‖ (73)

≤ 3j
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2 + 2p

√
lnn‖Ñ‖2 +

j∑
i=2

2(‖Ñ‖+ ρ)i−2‖Ñ‖2 (74)

≤ (3j + 3)
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2. (75)

Hence, Aj+1,0 also satisfies (69). Therefore, the lemma is proved. �

D.4 Lemma D.4

Lemma D.4. The spectral norm of Bi is upper bounded as follows:

‖B1‖ ≤
c
√

lnn

p
√∑

di
, w.h.p. ‖Bi‖ ≤

(
‖Ñ‖+ ρ

)i−2

‖Ñ‖2, ∀i ≥ 2. (76)
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Proof. In our problem, according to the definition of Nij , it is easy to find that

E[NijN
T
ij ] =

1− p2

p2

(
Im −

1

m
1m · 1m

T

)
(77)

Therefore, if we let k be the number of matrices (in the form of Nij) in the summation Z, then, plug in the result
to (54) and (55), we have:

v(Z) = k · 1− p2

p2
, L =

1 + p

p
. (78)

Now, if we let Z =
∑

(i,j)∈Z Nij and k = |Z|. Then,

E[‖Z‖] =

√
2k

1− p2

p2
log (2m) +

1 + p

3p
log (2m), (79)

P(‖Z‖ ≥ t) ≤ 2m · exp(
−t2/2

k · 1−p2
p2

+ (1+p)t
3p

) ≤ δ. (80)

Here, we let the right hand side of the above equation (80) to be less than some value δ, then we have the
following restriction for t when solving the inequality on the right:

t ≥ −1 + p

3p
ln(

δ

2m
) +

1

p

√
(1 + p)2

9
ln2(

δ

2m
)− 2k(1− p2) ln(

δ

2m
). (81)

If we let δ to be in the scale of 1
k

, then it is not hard to find that the restriction of t in (81) (in order to have a high
probability guarantee on ‖Z‖) is in O(

√
k lnn).

According to definition,

B1 = (sT ⊗ Im)E(s⊗ Im) = (sT ⊗ Im)(V ΛV T ⊗ Im + Ñ)(s⊗ Im) = (sT ⊗ Im)Ñ(s⊗ Im). (82)

Therefore, the spectral norm of B1 satisfies:

‖B1‖ = ‖(sT ⊗ Im)Ñ(s⊗ Im)‖ (83)

= ‖
∑

(i,j)∈[n]×[n]

Ñijsisj‖ (84)

≤ ‖
∑

(i,j)∈[n]×[n]

N̄ijsisj‖ (85)

≤ 1∑
di
‖

∑
(i,j)∈[n]×[n]

Nij‖ (86)

≤ c1
√

lnn

p
√∑

di
w.h.p. (87)

(88)

On the other hand, the proof of the bound for ‖Bi‖ is as follows:

‖Bi‖ ≤‖(sT ⊗ Im)E‖‖E‖i−2‖E(s⊗ Im)‖ (89)

≤(‖Ñ‖+ ‖Λ‖)i−2‖Ñ(s⊗ Im)‖2 (90)

≤(‖Ñ‖+ ρ)i−2‖Ñ‖2. (91)

�

D.5 Lemma D.5

Lemma D.5. For each fixed k ≥ 2,

‖Ek(s⊗ Im)‖B ≤
ck
√
m
√

lnn

pdmin
(92)

Proof. Now, we proceed to bound the term ‖Ek(s ⊗ Im)‖B , and we start with simple case when k is small
(and just consider spectral norm, since there is only a

√
m difference). After deriving the bound for small k
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values, we will use recursion to bound k in general.
k = 1. Then,

‖(eT1 ⊗ Im)E(s⊗ Im)‖ (93)

=‖(eT1 ⊗ Im)Ñ(s⊗ Im)‖ (94)

=‖
∑
i

Ñ1isi‖ (95)

=
s1

d1
‖
∑
i

N1i‖ (96)

≤ c
√

lnn

p
√∑

di
(97)

≤c
√

lnn

pdmin
. (98)

Assume that we have a result in the form of the following:

‖(eT1 ⊗ Im)Ek(s⊗ Im)‖ ≤ CA(k)
√

lnn (99)

Proposition D.2.

P[‖
∑
i,j

(V ΛV T )t1iÑijsj‖ >
cρt
√

lnn

p
√∑

di
] = O(

1

n
). (100)

This is easy to check using Bernstein inequality and the property that
∑
i(V ΛV T )2t

1i ≤ ρ2t.

Let’s consider general k = O(logn). Denote E2:n,2:n as the block matrix that removes the first row block and
column block from E, denote Ei11 as the block submatrix of Ei at position (1, 1) (instead of E11 to the i-th
power). Also, let ej−1,n−1 be the (n− 1)× 1 vector where the (j − 1)-th entry is 1 and all other entries are 0.
We have

‖(eT1 ⊗ Im)Ek(s⊗ Im)‖F (101)

=‖(eT1 ⊗ Im)Ek−1Ñ(s⊗ Im)‖F (102)

=‖(Ek−1
11 )(eT1 ⊗ Im)Ñ(s⊗ Im) +

k−1∑
i=1

(Ek−1−i
11 )

n∑
j=2

E1j((e
T
j−1,n−1 ⊗ Im)Ei−1

2:n,2:nÑ2:n(s⊗ Im))‖F

(103)

≤‖Ek−1
11 ‖F ‖(e

T
1 ⊗ Im)Ñ(s⊗ Im)‖+

k−1∑
i=1

‖(Ek−1−i
11 )‖F ‖

n∑
j=2

E1j((e
T
j−1,n−1 ⊗ Im)Ei−1

2:n,2:nÑ2:n(s⊗ Im))‖.

(104)

≤
√
m(ρ+ ‖Ñ‖)k−1‖(eT1 ⊗ Im)Ñ(s⊗ Im)‖ (105)

+

k−1∑
i=1

√
m(ρ+ ‖Ñ‖)k−1−i‖

n∑
j=2

Ñ1j((e
T
j−1,n−1 ⊗ Im)Ei−1

2:n,2:nÑ2:n(s⊗ Im))‖ (106)

+

k−1∑
i=1

√
m(ρ+ ‖Ñ‖)k−1−i‖

n∑
j=2

(V ΛV T )1j((e
T
j−1,n−1 ⊗ Im)Ei−1

2:n,2:nÑ2:n(s⊗ Im))‖. (107)

In the above equations, we have used the following properties:

‖Ei11‖2F =

m∑
j=1

σ2
j (Ei11) ≤ m · ‖Ei11‖2 ≤ m · ‖Ei‖2 ≤ m(ρ+ ‖Ñ‖)2i, (108)

To simplify the above equation (106), we define:

N (i, φ, k) ,
∑
j∈φ

Ñkj((e
T
j ⊗ Im)Ei−1

φ,φ Ñφ(s⊗ Im)) (109)

=
∑
j∈φ

Ñkj((e
T
j ⊗ Im)Ei−1

φ,φ Ñφ,φ(sφ ⊗ Im)) +
∑
j∈φ

Ñkj((e
T
j ⊗ Im)Ei−1

φ,φ Ñφ,φ̄(sφ̄ ⊗ Im)),

(110)
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where φ is a subset of [n] and n− |φ| ≤ k = O(logn).

For the first term in (110), we treat the part ((eTj ⊗ Im)Ei−1
φ,φ Ñφ(sφ ⊗ Im) as fixed matrices, thenN (i, φ, k) is

a sum of independent random variables. Using matrix Bernstein inequality, we have

v(N (i, φ, k)) = ‖E[
∑
j∈φ

(sTφ ⊗ Im)ÑφE
i−1
φ (ej ⊗ Im)ÑT

kjÑkj(e
T
j ⊗ Im)Ei−1

φ Ñφ(sφ ⊗ Im)]‖ (111)

= ‖
∑
j∈φ

1− p2

p2

1

dkdj
(sTφ ⊗ Im)ÑφE

i−1
φ (ej ⊗ Im)(eTj ⊗ Im)Ei−1

φ Ñφ(sφ ⊗ Im)‖ (112)

≤ 1

p2
‖Ñ‖2(ρ+ ‖Ñ‖)2i−2 1

dkdmin
(113)

and each term is bounded by 1+p
p

1√
dkdj

CA(i)
√

lnn.

For the second term in (110), since φ̄ includes O(lnn) terms, we can separately bound the parts in it:

‖
∑
j∈φ

Ñkj((e
T
j ⊗ Im)Ei−1

φ,φ Ñφ,φ̄(sφ̄ ⊗ Im))‖ (114)

=‖
∑

j,l∈φ,r∈φ̄

Ñkj((e
T
j ⊗ Im)Ei−1

φ,φ (el ⊗ Im)Ñlr(sr ⊗ Im))‖ (115)

≤‖
∑
j∈φ

Ñkj‖ · (ρ+ ‖Ñ‖)i−1 · ‖
∑

l∈φ,r∈φ̄

Ñlrsr‖ (116)

≤‖Ñ‖(ρ+ ‖Ñ‖)i−1 c
√

lnn

pdmin
(117)

Therefore, combining the bounds for the first and second term in (110) using (113), (117):

‖N (i, φ, k)‖ ≤ 1

p
(ρ+ ‖Ñ‖)i−1‖Ñ‖c

√
lnn

dmin
, (118)

On the other hand, in order to simplify (107), define:

Λ(i, 1, [n]/1) ,
∑

j∈[n]/1

(V ΛV T )1j(e
T
j ⊗ Im)Ei−1

2:n,2:nÑ2:n(s⊗ Im) (119)

=
∑

j∈[n]/1

(V ΛV T )1j [(E
i−1
2:n )jj(e

T
j ⊗ Im)Ñ2:n(s⊗ Im) (120)

+

i−1∑
i
′
=1

(Ei−1−i
′

2:n )jj

n∑
j
′
=2,j

′ 6=j

Ejj′ (e
T
j
′ ⊗ Im)Ei

′
−1

2:n/j
′
,2:n/j

′ Ñ2:n/j
′ (s⊗ Im)], (121)

where the second parameter 1 represents the number of (V ΛV T ) terms in the expansion. Accordingly,
‖Λ(i, 1, [n]/1)‖ (122)

≤‖(Ei−1
2:n )jj‖ · ‖

n∑
j=2

∑
k 6=j

(V ΛV T )1jÑjksk‖ (123)

+

i−1∑
i
′
=1

‖(Ei−1−i
′

2:n )jj‖ · ‖
n∑
j=2

∑
j
′

(V ΛV T )1jÑjj′ (e
T
j
′ ⊗ Im)Ei

′
−1

2:n/j
′ Ñ2:n/j

′ (s⊗ Im)‖ (124)

+

i−1∑
i
′
=1

‖(Ei−1−i
′

2:n )jj‖ · ‖
n∑
j=2

∑
j
′

(V ΛV T )1j(V ΛV T )jj′ (e
T
j
′ ⊗ Im)Ei

′
−1

2:n/j
′ Ñ2:n/j

′ (s⊗ Im)‖ (125)

Notice that for (124), we can separate it into two terms to maintain the independence of Ñjj′ :

‖
n∑
j=2

∑
j
′

(V ΛV T )t1jÑjj′ (e
T
j
′ ⊗ Im)Ei

′
−1

2:n/j
′ Ñ2:n/j

′ (s⊗ Im)‖ (126)

≤‖
n∑
j=2

∑
j
′
>j

(V ΛV T )t1jÑjj′ (e
T
j
′ ⊗ Im)Ei

′
−1

2:n/j
′ Ñ2:n/j

′ (s⊗ Im)‖ (127)

+‖
n∑
j=2

∑
j
′
<j

(V ΛV T )t1jÑjj′ (e
T
j
′ ⊗ Im)Ei

′
−1

2:n/j
′ Ñ2:n/j

′ (s⊗ Im)‖ (128)
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For each term above, we can treat it as a sum of independent random variables. Using similar arguments for
boundingN , we get the following bound:

‖
n∑
j=2

∑
j
′

(V ΛV T )t1jÑjj′ (e
T
j
′ ⊗ Im)Ei

′
−1

2:n/j
′ Ñ2:n/j

′ (s2:n/j
′ ⊗ Im)‖ (129)

≤ ρt

p
(ρ+ ‖Ñ‖)i

′
−1‖Ñ‖c

√
lnn

dmin
. (130)

Recursively, we have:

‖Λ(i, t, φ)‖ ≤(ρ+ ‖Ñ‖)i−1 cρ
t
√

lnn

p
√∑

di
(131)

+

i−1∑
i
′
=1

(ρ+ ‖Ñ‖)i−1−i
′ ρt

p
(ρ+ Ñ)i

′
−1‖Ñ‖c

√
lnn

dmin
(132)

+

i−1∑
i
′
=1

(ρ+ ‖Ñ‖)i−1−i
′

· ‖Λ(i
′
, t+ 1, φ/j

′
)‖. (133)

This gives the bound for Λ:

‖Λ(k, t, φ)‖ ≤ (2ρ+ 2‖Ñ‖)k−1 cρ
t
√

lnn

pdmin
. (134)

On the other hand,

CA(k) ≤(ρ+ ‖Ñ‖)k−1CA(1) (135)

+

k−1∑
i=1

(ρ+ ‖Ñ‖)k−1−i(ρ+ ‖Ñ‖)i−1

√
lnn‖Ñ‖
pdmin

(136)

+

k−1∑
i=1

(ρ+ ‖Ñ‖)k−1−i‖Λ(i, 1, φ)‖/
√

lnn. (137)

In the base case when k = 1, we have:

CA(1) ≤ c

pdmin
. (138)

After recursion steps based on (137), we have:

‖Ek(s⊗ Im)‖B ≤ k(2ρ+ 2‖Ñ‖)k−1 c
√
m
√

lnn

pdmin
≤ ck

√
m
√

lnn

pdmin
(139)

with high probability, where we require ρ+ ‖Ñ‖ ≤ 1/2.

�

D.6 Lemma D.6

As we already know, M = UΣUT + U2Σ2U
T
2 . Now, define Fk = ΣkUT (s⊗ Im), we have:

Lemma D.6. Let Fk be defined as above. Then, for k ≥ 2

log ( 2
1+ρ

)
:

‖U2Σk2U
T
2 ‖ ≤

1

n2
, ‖FTk Fk − Im‖ ≤

(6k + 4)
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2. (140)

Proof. According to the eigenvalue stability and assumption (27), we have the following:

σm+1 < ρ+ ‖N̄‖ < (1 + ρ)/2. (141)

Taking k = 2

log( 2
1+ρ

)
logn = O(logn),

‖U2Σk2U
T
2 ‖ = σkm+1(M) ≤ 1

n2
. (142)
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Based on the bound of the noises, we will show that Fk is close to Im.

‖FTk Fk − Im‖ (143)

=‖FTk UTUFk − Im‖ (144)

=‖(Mk(s⊗ Im)− U2Σk2U
T
2 (s⊗ Im))T (Mk(s⊗ Im)− U2Σk2U

T
2 (s⊗ Im))− Im‖ (145)

≤‖(sT ⊗ Im)M2k(s⊗ Im)− Im‖+ 2‖U2Σk2U
T
2 (s⊗ Im)‖‖Uk‖+ ‖U2Σk2U

T
2 (s⊗ Im)‖2 (146)

≤‖A2k+1,0 − Im‖+
3

n2
( since ‖Uk‖ ≤ ‖A2k+1,0‖

1
2 ) (147)

≤ (6k + 4)
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2. (148)

�

The spectral norm bound described above indicates the singular values of Fk fall in[
1− (3k + 2)

√
lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖, 1 +

(3k + 2)
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖

]
.

This means that the singular values of F−1
k fall in[

1− 4k lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖, 1 +

4k lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖

]
,

(which implicitly assumes that
√

lnn‖Ñ‖2

1−(ρ+‖Ñ‖) <
k−2

4k(3k+2)
and is true for large n). Thus, there exists a rotation

matrix R, such that

‖F−1
k −R‖ ≤ 4k

√
lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2. (149)

D.7 Proof of Lemma 3.1

Lemma D.7. With assumption (27), we can conclude that

dist(U, s⊗ Im) ≤ c1
√

ln3 n

p2d
3/2
min

+
c2
n2

+
c3
√

ln5 n

p
√
ndmin

= O(

√
ln5 n

p
√
ndmin

). (150)

with high probability, where c1, c2, c3 are global constants.

Proof.
dist(U, s⊗ Im) ≤ dist(U, s⊗Ak,0) + dist(s⊗Ak,0, s⊗ Im). (151)

In the following, we will bound the two terms on the right hand side of (151) separately. First, let R be the
minimizer in the rotation matrix class described in (149). Then,

dist(U, s⊗Ak,0) (152)
≤‖U − (s⊗Ak,0)R‖B (153)

=‖Mk(s⊗ Im)F−1
k − U2Σk2U

T
2 (s⊗ Im)F−1

k − (s⊗Ak,0)R‖B (154)

=‖Mk(s⊗ Im)(F−1
k −R)−U2Σk2U

T
2 (s⊗ Im)F−1

k +(Mk(s⊗ Im)−(s⊗Ak,0))R‖B (155)

≤‖Mk(s⊗ Im)‖B‖F−1
k −R‖+ ‖U2Σk2U

T
2 (s⊗ Im)‖B‖F−1

k ‖+ ‖(Mk(s⊗ Im)−(s⊗Ak,0))R‖B .
(156)

We bound each term in (156).

‖Mk(s⊗ Im)‖B (157)

≤‖Mk(s⊗ Im)‖F (158)

≤
√
m‖Mk(s⊗ Im)‖ (159)

=
√
m‖A2k+1,0‖

1
2 (160)

≤
√

2m. (161)
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‖U2Σk2U
T
2 (s⊗ Im)‖B ≤

√
m

n
10k·ln 1

ρ+‖N‖
≤
√
m

n2
. (162)

‖(Mk(s⊗ Im)−(s⊗Ak,0))R‖B (163)

=‖
k∑
i=1

(Ei(s⊗ Im)Ak,i)‖B (164)

≤2

k∑
i=1

ck
√
m
√

lnn

pdmin
(165)

≤c
√
m
√

ln5 n

pdmin
. (166)

Finally, we have

‖U − (s⊗Ak,0)R‖B ≤
4k
√

2m
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2 +

2
√
m

n2
+
c
√
m
√

ln5 n

pdmin
. (167)

On the other hand,
dist(s⊗Ak,0, s⊗ Im) (168)
≤max(s)dist(Ak,0, Im) (169)
≤max(s)‖Ak,0, Im‖F (170)

≤ 1√
dmin

√
m‖Ak,0 − Im‖ (171)

≤ 1√
dmin

3k
√
m
√

lnn

1− (ρ+ ‖Ñ‖)
‖Ñ‖2. (172)

Therefore, combining (167) and (172), dist(U, s⊗ Im) is bounded by:

dist(U, s⊗ Im) ≤ c1
√

ln3 n

p2d
3/2
min

+
c2
n2

+
c3
√

ln5 n

pdmin
= O(

√
ln5 n

pdmin
). (173)

with high probability, where c1, c2, c3 are some global constants. Therefore, the distance is bounded by
O(
√

ln5 n
pdmin

). �

Now, we are able to show that there exists some rotation matrix R, such that dist(U, s⊗ Im) is in the order of
o( 1√

n
), then it is straightforward to prove Lemma 3.1. This is because:

‖UiUTj − (si · Im)(sj · Im)‖ (174)

=‖UiRRTUTj − (si · Im)(sj · Im)‖ (175)

=‖UiR(RTUTj − (sj · Im)T ) + (UiR− si · Im)(sj · Im)T ‖ (176)
≤‖Ui‖ · dist(U, s⊗ Im) + dist(U, s⊗ Im) · ‖sj · Im‖ (177)

Therefore,

‖
∑n
i=1 di√
didj

UiU
T
j − Im‖ (178)

≤dist(U, s⊗ Im) max(si, sj)

∑n
i=1 di√
didj

(179)

≤dist(U, s⊗ Im)

√
n
√
davg

√
dmin

. (180)

If we assume that davg = O(dmin), for dmin = Ω(
√
n ln3 n), we need:

p ≥ C · (lnn)3

dmin/
√
n
. (181)

Without this assumption on the average degree, we need a stronger assumption on the minimum degree, i.e.,
dmin = Ω((ndavg)1/3 ln2 n), and we need:

p ≥ C · (lnn)3(ndavg)1/2

d
3/2
min

. (182)
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