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Abstract

We extend the traditional worst-case, minimax analysis of stochastic convex op-
timization by introducing a localized form of minimax complexity for individual
functions. Our main result gives function-specific lower and upper bounds on
the number of stochastic subgradient evaluations needed to optimize either the
function or its “hardest local alternative” to a given numerical precision. The
bounds are expressed in terms of a localized and computational analogue of the
modulus of continuity that is central to statistical minimax analysis. We show how
the computational modulus of continuity can be explicitly calculated in concrete
cases, and relates to the curvature of the function at the optimum. We also prove a
superefficiency result that demonstrates it is a meaningful benchmark, acting as
a computational analogue of the Fisher information in statistical estimation. The
nature and practical implications of the results are demonstrated in simulations.

1 Introduction

The traditional analysis of algorithms is based on a worst-case, minimax formulation. One studies
the running time, measured in terms of the smallest number of arithmetic operations required by any
algorithm to solve any instance in the family of problems under consideration. Classical worst-case
complexity theory focuses on discrete problems. In the setting of convex optimization, where the
problem instances require numerical rather than combinatorial optimization, Nemirovsky and Yudin
[12] developed an approach to minimax analysis based on a first order oracle model of computation.
In this model, an algorithm to minimize a convex function can make queries to a first-order “oracle,”
and the complexity is defined as the smallest error achievable using some specified minimum number
of queries needed. Specifically, the oracle is queried with an input point x 2 C from a convex domain
C, and returns an unbiased estimate of a subgradient vector to the function f at x. After T calls to the
oracle, an algorithm A returns a value bx

A

2 C, which is a random variable due to the stochastic nature
of the oracle, and possibly also due to randomness in the algorithm. The Nemirovski-Yudin analysis
reveals that, in the worst case, the number of calls to the oracle required to drive the expected error
E(f(bx

A

)� inf

x2C f(x)) below ✏ scales as T = O(1/✏) for the class of strongly convex functions,
and as T = O(1/✏2) for the class of Lipschitz convex functions.

In practice, one naturally finds that some functions are easier to optimize than others. Intuitively, if
the function is “steep” near the optimum, then the subgradient may carry a great deal of information,
and a stochastic gradient descent algorithm may converge relatively quickly. A minimax approach
to analyzing the running time cannot take this into account for a particular function, as it treats the
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worst-case behavior of the algorithm over all functions. It would be of considerable interest to be able
to assess the complexity of solving an individual convex optimization problem. Doing so requires a
break from traditional worst-case thinking.

In this paper we revisit the traditional view of the complexity of convex optimization from the point
of view of a type of localized minimax complexity. In local minimax, our objective is to quantify the
intrinsic difficulty of optimizing a specific convex function f . With the target f fixed, we take an
alternative function g within the same function class F , and evaluate how the maximum expected
error decays with the number of calls to the oracle, for an optimal algorithm designed to optimize
either f or g. The local minimax complexity R

T

(f ;F) is defined as the least favorable alternative g:

R
T

(f ;F) = sup

g2F
inf

A2A
T

max

h2{f,g}
error(A, h) (1)

where error(A, h) is some measure of error for the algorithm applied to function h. Note that here the
the algorithm A is allowed to depend on the function f and the selected worst-case g. In contrast, the
traditional global worst-case performance of the best algorithm, as defined by the minimax complexity
R

T

(F) of Nemirovsky and Yudin, is

R
T

(F) = inf

A2A
T

sup

g2F
error(A, g). (2)

The local minimax complexity can be thought of as the difficulty of optimizing the hardest alternative
to the target function. Intuitively, a difficult alternative is a function g for which querying the oracle
with g gives results similar to querying with f , but for which the value of x 2 C that minimizes g is
far from the value that minimizes f .

Our analysis ties this function-specific notion of complexity to a localized and computational analogue
of the modulus of continuity that is central to statistical minimax analysis [5, 6]. We show that the
local minimax complexity gives a meaningful benchmark for quantifying the difficulty of optimizing
a specific function by proving a superefficiency result; in particular, outperforming this benchmark
at some function must lead to a larger error at some other function. Furthermore, we propose an
adaptive algorithm in the one-dimensional case that is based on binary search, and show that this
algorithm automatically achieves the local minimax complexity, up to a logarithmic factor. Our study
of the algorithmic complexity of convex optimization is motivated by the work of Cai and Low [2],
who propose an analogous definition in the setting of statistical estimation of a one-dimensional
convex function. The present work can thus be seen as exposing a close connection between statistical
estimation and numerical optimization of convex functions. In particular, our results imply that
the local minimax complexity can be viewed as a computational analogue of Fisher information in
classical statistical estimation.

In the following section we establish our notation, and give a technical overview of our main results,
which characterize the local minimax complexity in terms of the computational modulus of continuity.
In Section 2.2, we demonstrate the phenomenon of superefficiency of the local minimax complexity.
In Section 3 we present the algorithm that adapts to the benchmark, together with an analysis of its
theoretical properties. We also present simulations of the algorithm and comparisons to traditional
stochastic gradient descent. Finally, we conclude with a brief review of related work and a discussion
of future research directions suggested by our results.

2 Local minimax complexity

In this section, we first establish notation and define a modulus of continuity for a convex function f .
We then state our main result, which links the local minimax complexity to this modulus of continuity.

Let F be the collection of Lipschitz convex functions defined on a compact convex set C ⇢ Rd.
Given a function f 2 F , our goal is to find a minimum point, x⇤

f

2 arg min
x2C f(x). However, our

knowledge about f can only be gained through a first-order oracle. The oracle, upon being queried
with x 2 C, returns f 0

(x) + ⇠, where f 0
(x) is a subgradient of f at x and ⇠ ⇠ N(0,�2I

d

). When
the oracle is queried with a non-differentiable point x of f , instead of allowing the oracle to return
an arbitrary subgradient at x, we assume that it has a deterministic mechanism for producing f 0

(x).
That is, when we query the oracle with x twice, it should return two random vectors with the same
mean f 0

(x). Such an oracle can be realized, for example, by taking f 0
(x) = arg min

z2@f(x)

kzk.
Here and throughout the paper, k · k denotes the Euclidean norm.
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Figure 1: Illustration of the flat set and the modulus of continuity. Both the function f (left) and its
derivative f 0 (right) are shown (black curves), along with one of the many possible alternatives, g
and its derivative g0 (solid gray curves), that achieve the sup in the definition of !

f

(✏). The flat set
contains all the points for which |f 0

(x)| < ✏, and !
f

(✏) is the larger half width of the flat set.

Consider optimization algorithms that make a total of T queries to this first-order oracle, and let A
T

be the collection of all such algorithms. For A 2 A
T

, denote by bx
A

the output of the algorithm. We
write err(x, f) for a measure of error for using x as the estimate of the minimum point of f 2 F . In
this notation, the usual minimax complexity is defined as

R
T

(F) = inf

A2A
T

sup

f2F
E
f

err(bx
A

, f). (3)

Note that the algorithm A queries the oracle at up to T points x
t

2 C selected sequentially, and the
output bx

A

is thus a function of the entire sequence of random vectors v
t

⇠ N(f 0
(x

t

),�2I
d

) returned
by the oracle. The expectation E

f

denotes the average with respect to this randomness (and any
additional randomness injected by the algorithm itself). The minimax risk R

T

(F) characterizes the
hardness of the entire class F . To quantify the difficulty of optimizing an individual function f , we
consider the following local minimax complexity, comparing f to its hardest local alternative

R
T

(f ;F) = sup

g2F
inf

A2A
T

max

h2{f,g}
E
h

err(bx
A

, h). (4)

We now proceed to define a computational modulus of continuity that characterizes the local minimax
complexity. Let X ⇤

f

= arg min
x2C f(x) be the set of minimum points of function f . We consider

err(x, f) = inf

y2X⇤
f

kx� yk as our measure of error. Define d(f, g) = inf

x2X⇤
f

,y2X⇤
g

kx� yk for
f, g 2 F . It is easy to see that err(x, f) and d(f, g) satisfy the exclusion inequality

err(x, f) <
1

2

d(f, g) implies err(x, g) � 1

2

d(f, g). (5)

Next we define
(f, g) = sup

x2C
kf 0

(x)� g0(x)k (6)

where f 0
(x) is the unique subgradient of f that is returned as the mean by the oracle when queried

with x. For example, if we take f 0
(x) = arg min

z2@f(x)

kzk, we have

(f, g) = sup

x2C
kProj

@f(x)

(0)� Proj
@g(x)

(0)k (7)

where Proj
B

(z) is the projection of z to the set B. Thus, d(f, g) measures the dissimilarity between
two functions in terms of the distance between their minimizers, whereas (f, g) measures the
dissimilarity by the largest separation between their subgradients at any given point.

Given d and , we define the modulus of continuity of d with respect to  at the function f by
!
f

(✏) = sup {d(f, g) : g 2 F ,(f, g)  ✏} . (8)

We now show how to calculate the modulus for some specific functions.
Example 1. Suppose that f is a convex function on a one-dimensional interval C ⇢ R. If we take
f 0
(x) = arg min

z2@f(x)

kzk, then

!
f

(✏) = sup

(

inf

x2X⇤
f

|x� y| : y 2 C, |f 0
(y)| < ✏

)

. (9)
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The proof of this claim is given in the appendix. This result essentially says that the modulus of
continuity measures the size (in fact, the larger half-width) of the the “flat set” where the magnitude
of the subderivative is smaller than ✏. See Figure 1 for an illustration Thus, for the class of symmetric
functions f(x) = 1

k

|x|k over C = [�1, 1], with k > 1,

!
f

(✏) = ✏
1

k�1 . (10)

For the asymmetric case f(x) = 1

k

l

|x|klI(�1  x  0) +

1

k

r

|x|krI(0 < x  1) with k
l

, k
r

> 1,

!
f

(✏) = ✏
1

k

l

_k

r

�1 . (11)
That is, the size of the flat set depends on the flatter side of the function.

2.1 Local minimax is characterized by the modulus

We now state our main result linking the local minimax complexity to the modulus of continuity. We
say that the modulus of the continuity has polynomial growth if there exists ↵ > 0 and ✏

0

, such that
for any c � 1 and ✏  ✏

0

/c
!
f

(c✏)  c↵!
f

(✏). (12)
Our main result below shows that the modulus of continuity characterizes the local minimax com-
plexity of optimization of a particular convex function, in a manner similar to how the modulus of
continuity quantifies the (local) minimax risk in a statistical estimation setting [2, 5, 6], relating the
objective to a geometric property of the function.
Theorem 1. Suppose that f 2 F and that !

f

(✏) has polynomial growth. Then there exist constants
C

1

and C
2

independent of T and T
0

> 0 such that for all T > T
0

C
1

!
f

✓

�p
T

◆

 R
T

(f ;F)  C
2

!
f

✓

�p
T

◆

. (13)

Remark 1. We use the error metric err(x, f) = inf

y2X⇤
f

kx � yk here. For a given a pair (err, d)
that satisfies the exclusion inequality (5), our proof technique applies to yield the corresponding
lower bound. For example, we could use err(x, f) = inf

y2X⇤
f

|vT (x� y)| for some vector v. This
error metric would be suitable when we wish to estimate vTx⇤

f

, for example, the first coordinate of
x⇤
f

. Another natural choice of error metric is err(x, f) = f(x)� inf

x2C f(x), with a corresponding
distance d(f, g) = inf

x2C |f(x)� inf

x

f(x) + g(x)� inf

x

g(x)|. For this case, while the proof of
the lower bound stays exactly the same, further work is required for the upper bound, which is beyond
the scope of this paper.
Remark 2. The results can be extended to oracles with more general noise models. In particular,
the lower bounds will still hold with more general noise distributions, as long as Gaussian noise is a
subclass. Indeed, in proving lower bounds assuming Gaussianity only makes solving the optimization
problem easier. Our algorithm and upper bound analysis will go through for all sub-Gaussian noise
oracles. For the ease of presentation, we will focus on Gaussian noise model for the current paper.
Remark 3. Although the theorem gives an upper bound for the local minimax complexity, this
does not guarantee the existence of an algorithm that achieves the local complexity for any function.
Therefore, it is important to design an algorithm that adapts to this benchmark for each individual
function. We solve this problem in the one-dimensional case in Section 3.

The proof of this theorem is given in the appendix. We now illustrate the result with examples that
verify the intuition that different functions should have different degrees of difficulty for stochastic
convex optimization.
Example 2. For the function f(x) =

1

k

|x|k with x 2 [�1, 1] for k > 1, we have R
T

(f ;F) =

O
�

T� 1
2(k�1)

�

. This agrees with the minimax risk complexity for the class of Lipschitz convex
functions that satisfy f(x)� f(x⇤

f

) � �

2

kx� x⇤
f

kk [14]. In particular, when k = 2, we recover the
strongly convex case, where the (global) minimax complexity is O

�

1/
p
T
�

with respect to the error
err(x, f) = inf

y2X⇤
f

kx� yk. We see a faster rate of convergence for k < 2. As k ! 1, we also see
that the error fails to decrease as T gets large. This corresponds to the worst case for any Lipschitz
convex function. In the asymmetric setting with f(x) = 1

k

l

|x|klI(�1  x  0) +

1

k

r

|x|krI(0 <

x  1) with k
l

, k
r

> 1, we have R
T

(f ;F) = O(T
� 1

2(k
l

_k

r

�1)
).

4



The following example illustrates that the local minimax complexity and modulus of continuity are
consistent with known behavior of stochastic gradient descent for strongly convex functions.
Example 3. In this example we consider the error err(x, f) = inf

y2X⇤
f

|vT (x� y)| for some vector
v, and let f be an arbitrary convex function satisfying r2f(x⇤

f

) � 0 with Hessian continuous around
x⇤
f

. Thus the optimizer x⇤
f

is unique. If we define g
w

(x) = f(x)� wTr2f(x⇤
f

)x, then g
w

(x) is a
convex function with unique minimizer and

(f, g
w

) = sup

x

�

�

�rf(x)� (rf(x)�r2f(x⇤
f

)w)
�

�

 

=

�

�r2f(x⇤
f

)w
�

� . (14)

Thus, defining �(w) = x⇤
f

� x⇤
g

w

,

!
f

✓

�p
T

◆

� sup

w

{|vT �(w)| :
�

�r2f(x⇤
f

)w
�

�  �/
p
T} � sup

u

�

�

�

�

vT �

✓

�p
T
r2f(x⇤

f

)

�1u

◆

�

�

�

�

.

(15)
By the convexity of g

w

, we know that x⇤
g

w

satisfies rf(x⇤
g

w

)�r2f(x⇤
f

)

�1w = 0, and therefore by
the implicit function theorem, x⇤

g

w

= x⇤
f

+ w + o(kwk) as w ! 0. Thus,

!
f

✓

�p
T

◆

� �p
T

�

�r2f(x⇤
f

)

�1v
�

�

+ o

✓

�p
T

◆

as T ! 1. (16)

In particular, we have the local minimax lower bound

lim inf

T!1

p
TR

T

(f ;F) � C
1

�
�

�r2f(x⇤
f

)

�1v
�

� (17)

where C
1

is the same constant appearing in Theorem 1. This shows that the local minimax complexity
captures the function-specific dependence on the constant in the strongly convex case. Stochastic
gradient descent with averaging is known to adapt to this strong convexity constant [16, 13, 10]. Note
that lower bounds of similar forms on the minimax complexity have been obtained in [11].

2.2 Superefficiency

Having characterized the local minimax complexity in terms of a computational modulus of continuity,
we would now like to show that there are consequences to outperforming it at some function. This
will strengthen the case that the local minimax complexity serves as a meaningful benchmark to
quantify the difficulty of optimizing any particular convex function.

Suppose that f is any one-dimensional function such that X ⇤
f

= [x
l

, x
r

], which has as asymptotic
expansion around {x

l

, x
r

} of the form

f(x
l

� �) = f(x
l

) + �
l

�kl

+ o(�kl

) and f(x
r

+ �) = f(x
r

) + �
r

�kr

+ o(�kr

) (18)

for � > 0, some powers k
l

, k
r

> 1, and constants �
l

,�
r

> 0. The following result shows that if
any algorithm significantly outperforms the local modulus of continuity on such a function, then it
underperforms the modulus on a nearby function.
Proposition 1. Let f be any convex function satisfying the asymptotic expansion (21) around its
optimum. Suppose that A 2 A

T

is any algorithm that satisfies

E
f

err(bx
A

, f) 
q

E
f

err(bx
A

, f)2  �
T

!
f

✓

�p
T

◆

, (19)

where �
T

< C
1

. Define g�1

(x) = f(x) � ✏
T

x and g
1

(x) = f(x) + ✏
T

x, where ✏
T

is given by

✏
T

=

q

�2

log

�

C1
�

T

�

/T . Then for some g 2 {g�1

, g
1

}, there exists T
0

such that T � T
0

implies

E
g

err(bx
A

, g) � C !
g

0

@

s

�2

log

�

C
1

/�
T

�

T

1

A (20)

for some constant C that only depends on k = k
l

_ k
r

.
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A proof of this result is given in the appendix, where it is derived as a consequence of a more general
statement. We remark that while condition (19) involves the squared error

p

E
f

err(bx
A

, f)2, we
expect that the result holds with only the weaker inequality on the absolute error E

f

err(bx
A

, f).

It follows from this proposition that if an algorithm A significantly outperforms the local minimax
complexity in the sense that (19) holds for some sequence �

T

! 0 with lim inf

T

eT �
T

= 1, then
there exists a sequence of convex functions g

T

with (f, g
T

) ! 0, such that

lim inf

T!1

E
g

T

err(bx
A

, g
T

)

!
g

T

⇣

q

�2

log

�

C1
�

T

�

/T
⌘ > 0. (21)

This is analogous to the phenomenon of superefficiency in classical parametric estimation problems,
where outperforming the asymptotically optimal rate given by the Fisher information implies worse
performance at some other point in the parameter space. In this sense, !

f

can be viewed as a
computational analogue of Fisher information in the setting of convex optimization. We note that
superefficiency has also been studied in nonparametric settings [1], and a similar result was shown by
Cai and Low [2] for local minimax estimation of convex functions.

3 An adaptive optimization algorithm

In this section, we show that a simple stochastic binary search algorithm achieves the local minimax
complexity in the one-dimensional case.

The general idea of the algorithm is as follows. Suppose that we are given a budget of T queries to
the oracle. We divide this budget into T

0

= bT/Ec queries over each of E = br log T c many rounds,
where r > 0 is a constant to be specified later. In each round, we query the oracle T

0

times for the
derivative at the mid-point of the current interval. Estimating the derivative by averaging over the
queries, we proceed to the left half of the interval if the estimated sign is positive, and to the right
half of the interval if the estimated sign is negative. The details are given in Algorithm 1.

Algorithm 1 Sign testing binary search
Input: T , r.
Initialize: (a

0

, b
0

), E = br log T c, T
0

= bT/Ec.
for e = 1, . . . , E do

Query x
e

= (a
e

+ b
e

)/2 for T
0

times to get Z(e)

t

for t = 1, . . . , T
0

.
Calculate the average ¯Z(e)

T0
=

1

T0

P

T0

t=1

Z(e)

t

.

If ¯Z(e)

T0
> 0, set (a

e+1

, b
e+1

) = (a
e

, x
e

).
If ¯Z(e)

T0
 0, set (a

e+1

, b
e+1

) = (x
e

, b
e

).
end for
Output: x

E

.

We will show that this algorithm adapts to the local minimax complexity up to a logarithmic factor.
First, the following result shows that the algorithm gets us close to the “flat set” of the function.
Proposition 2. For � 2 (0, 1), let C

�

= �
p

2 log(E/�). Define

I
�

=

⇢

y 2 dom(f) : |f 0
(y)| < C

�p
T
0

�

. (22)

Suppose that (a
0

, b
0

) \ I
�

6= ;. Then

dist(x
E

, I
�

)  2

�E

(b
0

� a
0

) (23)
with probability at least 1� �.

This proposition tells us that after E rounds of bisection, we are at most a distance 2

�E

(b
0

� a
0

)

from the flat set I
�

. In terms of the distance to the minimum point, we have

inf

x2X⇤
f

|x
E

� x|  2

�E

(b
0

� a
0

) + sup

n

inf

x2X⇤
f

|x� y| : y 2 I
�

o

. (24)

If the modulus of continuity satisfies the polynomial growth condition, we then obtain the following.
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Figure 2: Simulation results: Averaged risk versus number of queries T . The black curves correspond
to the risk of the stochastic binary search algorithm. The red and blue curves are for the stochastic
gradient descent methods, red for stepsize 1/t and blue for 1/

p
t. The dashed gray lines indicate the

optimal convergence rate. Note that the plots are on a log-log scale. The plots on the top panels are
for the symmetric cases f(x) = 1

k

|x� x⇤|k; the lower plots are for the asymmetric cases.

Corollary 1. Let ↵
0

> 0. Suppose !
f

satisfies the polynomial growth condition (12) with constant
↵  ↵

0

. Let r =

1

2

↵
0

. Then with probability at least 1� � and for large enough T ,

inf

x2X⇤
f

|x
E

� x|  eC!
f

✓

�p
T

◆

(25)

where the term eC hides a dependence on log T and log(1/�).

The proofs of these results are given in the appendix.

3.1 Simulations showing adaptation to the benchmark

We now demonstrate the performance of the stochastic binary search algorithm, making a comparision
to stochastic gradient descent. For the stochastic gradient descent algorithm, we perform T steps of
update

x
t+1

= x
t

� ⌘(t) · bg(x
t

) (26)
where ⌘(t) is a stepsize function, chosen as either ⌘(t) =

1

t

or ⌘(t) =

1p
t

. We first consider the
following setup with symmetric functions f :

1. The function to optimize is f
k

(x) = 1

k

|x� x⇤|k for k =

3

2

, 2 or 3.
2. The minimum point x⇤ ⇠ Unif(�1, 1) is selected uniformaly at random over the interval.
3. The oracle returns the derivative at the query point with additive N(0,�2

) noise, � = 0.1.
4. The optimization algorithms know a priori that the minimum point is inside the interval

(�2, 2). Therefore, the binary search starts with interval (�2, 2) and the stochastic gradient
descent starts at x

0

⇠ Unif(�2, 2) and project the query points to the interval (�2, 2).
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5. We carry out the simulation for values of T on a logarithmic grid between 100 and 10,000.
For each setup, we average the error |bx� x⇤| over 1,000 runs.

The simulation results are shown in the top 3 panels of Figure 2. Several properties predicted by
our theory are apparent from the simulations. First, the risk curves for the stochastic binary search
algorithm parallel the gray curves. This indicates that the optimal rate of convergence is achieved.
Thus, the stochastic binary search adapts to the curvature of different functions and yields the optimal
local minimax complexity, as given by our benchmark. Second, the stochastic gradient descent
algorithms with stepsize 1/t achieve the optimal rate when k = 2, but not when k = 3; with stepsize
1/
p
t SGD gets close to the optimal rate when k = 3, but not when k = 2. Neither leads to the faster

rate when k =

3

2

. This is as expected, since the stepsize needs to be adapted to the curvature at the
optimum in order to achieve the optimal rate.

Next, we consider a set of asymmetric functions. Using the same setup as in the symmetric case, we
consider the functions of the form f(x) = 1

k

l

|x�x⇤|klI(x�x⇤  0)+

1

k

r

|x�x⇤|krI(x�x⇤ > 0),
for exponent pairs (k

1

, k
2

) chosen to be ( 3
2

, 2), ( 3
2

, 3) and (2, 3). The simulation results are shown in
the bottom three panels of Figure 2. We observe that the stochastic binary search once again achieves
the optimal rate, which is determined by the flatter side of the function, that is, the larger of k

l

and k
r

.

4 Related work and future directions

In related recent work, Ramdas and Singh [14] study minimax complexity for the class of Lipschitz
convex functions that satisfy f(x)� f(x⇤

f

) � �

2

kx� x⇤
f

kk. They show that the minimax complexity

under the function value error is of the order T� k

2(k�1) . Juditski and Nesterov [8] also consider
minimax complexity for the class of k-uniformly convex functions for k > 2. They give an
adaptive algorithm based on stochastic gradient descent that achieves the minimax complexity up
to a logarithmic factor. Connections with active learning are developed in [15], with related ideas
appearing in [3]. Adaptivity in this line of work corresponds to the standard notion in statistical
estimation, which seeks to adapt to a large subclass of a parameter space. In contrast, the results in
the current paper quantify the difficulty of stochastic convex optimization at a much finer scale, as
the benchmark is determined by the specific function to be optimized.

The stochastic binary search algorithm presented in Section 3, despite being adaptive, has a few
drawbacks. It requires the modulus of continuity of the function to satisfy polynomial growth, with
a parameter ↵ bounded away from 0. This rules out cases such as f(x) = |x|, which should have
an error that decays exponentially in T ; it is of interest to handle this case as well. It would also be
of interest to construct adaptive optimization procedures tuned to a fixed numerical precision. Such
procedures should have different running times depending on the hardness of the problem. Progress
on both problems has been made, and will be reported elsewhere.

Another challenge is to remove the logarithmic factors appearing in the binary search algorithm
developed in Section 3. In one dimension, stochastic convex optimization is intimately related to a
noisy root finding problem for a monotone function taking values in [�a, a] for some a > 0. Karp
and Kleinberg [9] study optimal algorithms for such root finding problems in a discrete setting. A
binary search algorithm that allows backtracking is proposed, which saves log factors in the running
time. It would be interesting to study the use of such techniques in our setting.

Other areas that warrant study involve the dependence on dimension. The scaling with dimension
of the local minimax complexity and modulus of continuity is not fully revealed by the current
analysis. Moreover, the superefficiency result and the adaptive algorithm presented here are only for
the one-dimensional case. We note that a form of adaptive stochastic gradient algorithm for the class
of uniformly convex functions in general, fixed dimension is developed in [8].

Finally, a more open-ended direction is to consider larger classes of stochastic optimization problems.
For instance, minimax results are known for functions of the form f(x) := EF (x; ⇠) where ⇠ is a
random variable and x 7! F (x; ⇠) is convex for any ⇠, when f is twice continuously differentiable
around the minimum point with positive definite Hessian. However, the role of the local geometry
is not well understood. It would be interesting to further develop the local complexity techniques
introduced in the current paper, to gain insight into the geometric structure of more general stochastic
optimization problems.
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