
Supplementary Material
Multi-armed Bandits: Competing with Optimal Sequences

A Analysis of the Deterministic Feedback Setting

In this section we present an intermediate setting, in which `t(i) = µt(i) for any t 2 [T ] and i 2 [k]
(that is, the feedback is noiseless). This setting demonstrates some of the techniques later used in the
more complex stochastic feedback scenario. Our solution is given in Algorithm 2.

Let t(j, ⌧) denote the time index of the ⌧ -th round in the j-th block.
Initialize: OVBj = 0 for j � 1.
Algorithm: In each block j = 1, 2, . . .

(Exploration phase)

(1) Select actions 1, . . . , k.
(2) Define the corresponding losses as the k-dimensional vector `0.

(Exploitation phase) Set ⌧ = k + 1. While ⌧  k
4OV2

Bj

do

(1) Select action it(j,⌧) =

⇢
argmini{`0(i)} w.p. 1� (k/⌧)1/2,
Uni{1, . . . , k} otherwise.

(2) Update OVBj = |`t(j,⌧)(it(j,⌧))� `0(it(j,⌧))| and increment ⌧ .

Algorithm 2: An algorithm for the intermediate setting, in which the feedback is noiseless.

Theorem A.1. With probability at least 1� 2

T the regret of Algorithm 2 is bounded by

RT =

TX

t=1

µt(it)� µt(i
⇤
t )  10 log(T )k1/2T 1/2

+ 20 log(T )k1/3T 2/3V1/3
T .

Proof. In what follows we provide a high probability regret bound stating that given some event A,
that occurs w.h.p. over the internal randomness of our algorithm, the regret is bounded. Our analysis
applies for every block separately hence the high level structure of our proof is as follows. We fix
some initial time point tstart and consider the algorithm’s performance on a block starting at tstart. We
show that w.h.p. the regret of the algorithm is bounded in that block hence via union bound over all
possible values of tstart we obtain a high probability bound in each block.

We start with some definitions in order to characterize the random bits used by our algorithm. For
any tstart 2 [T ] we define an sequence i

(tstart)

k+1

, i
(tstart)

k+2

, . . . , of random elements in [k] such that i(tstart)
t is

equal to 1 w.p. 1 � (k/t)1/2 and uniform in [k] otherwise. Notice that these random numbers can
completely characterize the behavior of the algorithm; For a block Bj starting at time tstart, the arms
are chosen according to the sequence of numbers corresponding to the time stamp tstart. Specifically,
the arms are assigned numbers according to their rank in the exploration phase, performed at times
tstart through tstart + k and during the exploration phase, the chosen arm at time t > tstart + k is the
one corresponding to the chosen random number.

We continue to define the mentioned event A w.r.t. a single block B. Assume first w.l.o.g., for ease of
notations that tstart = 1, and that during the exploration phase, the ranking of the arms via their losses
exactly matches their indices. We also write it in short for i(1)t according to the above definition of
the random sequence. The event we are interested in is the intersection of two sub-events. The first
informally states that the best performing arm in the exploration phase is chosen in all but a small
fraction of the time during the exploitation phase of a block. Formally, event A

1

occurs if for all tend
(denoting a possible value for the end of the block) we have that

|{k < t  tend|it 6= 1}| 
p

11 log(T )ktend (2)
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Lemma A.2. Event A
1

occurs with probability at least 1� 1

T 2 .

Proof. The claim is a direct application of Hoeffding’s inequality (given in Theorem B.1). Using the
notation there, we define It as the indicator of whether it+k 6= 1, and n = tend � k. The expected
value of It is (k/(t+ k))1/2 hence

E
"

nX

t=1

It

#
=

nX

t=1

(k/(t+ k))1/2  2

p
k(n+ k + 1)

Setting " =

p
1.5 log(T )k(n+k+1)

n gives

Pr

 
nX

t=1

It > 2

p
k(n+ k + 1) +

p
1.5 log(T )k(n+ k + 1)

!
 e�2n"2  1/T 3

where the last inequality holds since 2n"2 = 3 log(T )
q

k(n+k+1)

n � 3 log(T ). Restated in terms of
the claim we obtain

Pr

⇣
|{k < t  tend|it 6= 1}| >

p
11 log(T )ktend

⌘
 1/T 3

and the required result follows via a union bound over the T possible values of tend.

The next event informally states that the overall regret of a policy choosing the arm that performed
best during the exploration phase has a small regret. We denote by i⇤ the best action in the exploration
phase of the block (that is w.l.o.g. assumed to be 1), that is,

i⇤ = arg min

⌧2[k]
{`⌧ (⌧)},

For t > k, representing a possible time index of the exploitation phase of the block, define �t =

`t(i
⇤
) � `t(i

⇤
t ), where i⇤t is the best action at time t, and �t = 1{�t � (k/t)1/2}. Additionally

denote by {tn}1n=1

the rounds in which �tn = 1, sorted according to the cardinality of tn, and define

smin = argmin

s

(
sX

n=1

1p
k(tn)

� 2 log(T )

)
. (3)

If no such s exists, define smin = T . Let Y denote the total number of rounds in the block for which
�t = 1, that is, Y =

P
t2B �t. Event A

2

is the event in which Y  smin. In Lemma A.4 below we
prove that this occurs w.p. at least 1� 1

T 2 .

Now that the events are defined we prove the regret bound conditioned on them. For a block B
starting at some fixed time (w.l.o.g. 1), the regret endured during the block can be written as follows

RB =

|B|X

t=1

(`t(it)� `t(i
⇤
t )) =

|B|X

t=1

(`t(it)� `t(i
⇤
))

| {z }
R(1)

B

+

|B|X

t=1

(`t(i
⇤
)� `t(i

⇤
t ))

| {z }
R(2)

B

. (4)

The occurrence of event A
1

, along with the fact that the losses are in [0, 1], guarantees that regardless
of the value of |B| it holds that

R(1)

B =

|B|X

t=1

(`t(it)� `t(i
⇤
))  k + |{k < t  |B||it 6= 1}|  k +

p
11 log(T )k|B|

The occurrence of event A
2

guarantees that for the variable Y described above

Y � 1p
ktY


Y�1X

n=1

1p
ktn

< 2 log(T ),
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or equivalently5, Y < 1 + 2 log(T )
p
ktY  3 log(T )k1/2|B|1/2. It follows that

R(2)

B =

X

t2B

`t(i
⇤
)� `t(i

⇤
t ) =

X

t2B;�t=1

`t(i
⇤
)� `t(i

⇤
t ) +

X

t2B;�t 6=1

`t(i
⇤
)� `t(i

⇤
t )

 Y +

|B|X

t=1

✓
k

t

◆
1/2

 3 log(T )k1/2|B|1/2 + 2k1/2|B|1/2
 5 log(T )k1/2|B|1/2.

Combining the bounds on the regret types lead to RB  10 log(T )k1/2|B|1/2. Now, by taking a
union bound over all possible T starting points for a block we get that w.p. at least 1� 2

T , the total
regret is bounded by the following expression, where N denotes the overall number of blocks

RT  10 log(T )

NX

j=1

k1/2|Bj |1/2. (5)

Finally, we use Hölder’s inequality and the guaranteed bound on the variation in each block to achieve
the final regret bound

NX

j=1

k1/2|Bj |1/2 = k1/2|BN |1/2 + k1/3
N�1X

j=1

|Bj |2/3 (k/|Bj |)1/6

 k1/2T 1/2
+ k1/3

 
N�1X

j=1

|Bj |
!

2/3 N�1X

j=1

(k/|Bj |)1/2
!

1/3

(a)
 k1/2T 1/2

+ k1/3T 2/3

0

@
2

N�1X

j=1

OVBj

1

A
1/3

(b)
 k1/2T 1/2

+ 2k1/3T 2/3V1/3
T ,

where (a) follows by the stopping condition of the exploitation phase; and (b) holds since the observed
variation is only less or equal the true variation. Specifically, for any ⌧ > k and block j with over ⌧
rounds, it holds that

OVBj = |`t(j,⌧)(it)� `t(j,it)(it)| 
⌧X

s=it+1

|`t(j,s)(i)� `t(j,s)�1

(i)|  VBj .

The reason for separately dealing with the last block is because this block has no lower bound guaran-
tee on the observed variation since it is terminated due to the end of the time horizon. Substituting
the above in Eq. (5) gives the result stated in the theorem.

We turn to prove the technical lemma bounding Yj in the above theorem. To this end, we begin with
an auxiliary lemma analyzing the probability of stopping a block in a round in which �t(j,⌧) = 1.
Lemma A.3. Consider a block Bj and let t(⌧, j) 2 Bj be such that �t(j,⌧) = 1. Then, the probability
that Algorithm 2 stops at round t (given that it did not stop before) is at least 1/

p
k⌧ .

Proof. Using our notation, we know that �t = `t(i
⇤
Bj

) � `t(i
⇤
t ) � (k/⌧)1/2 for the t specified in

the lemma. Denote `
0

(i) = `t(j,i)(i), that is, the value assigned to action i in the exploration phase
of block Bj . Thus, we can write

`t(i
⇤
Bj

)� `
0

(i⇤Bj
) + `

0

(i⇤t )� `t(i
⇤
t ) + `

0

(i⇤Bj
)� `

0

(i⇤t ) � (k/⌧)1/2,

5If smin = T , then it must hold that
Ps

n=1
1p
k⌧n

< 2 log(T ) for any s and in particular for Y .
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where `
0

(i⇤Bj
)� `

0

(i⇤t )  0 from the definition. This implies that either

(a) `t(i⇤Bj
)� `

0

(i⇤Bj
) � 1

2

(k/⌧)1/2 or (b) `
0

(i⇤t )� `t(i
⇤
t ) �

1

2

(k/⌧)1/2.

Recall that Algorithm 2 stops whenever it encounters an action i such that |`t(i)�`
0

(i)| � 1

2

(k/⌧)1/2.
Thus, if (a) holds then Algorithm 2 stops with probability 1 � (k/⌧)1/2 + (k/⌧)1/2(1/k), which
is the probability of choosing action i⇤Bj

. If (b) holds, then Algorithm 2 stops with probability
(k/⌧)1/2(1/k) = 1/

p
k⌧ , which is the probability of choosing action i⇤t . We therefore get that the

probability of stopping at round t is at least 1/
p
k⌧ , as required.

Lemma A.4. Set j and let smin and ⌧smin be as defined in Eq. (3) for block Bj . Then, it holds that

P (|Bj |  ⌧smin) � 1� 1

T 2

.

Proof. We bound log (P (|Bj | > ⌧smin)) from above and the result will follow. Here and on the sequel,
log refers to the natural logarithm. Thus,

log (P (|Bj | > ⌧smin))  log

 
sminY

n=1

✓
1� 1p

k⌧n

◆!

=

sminX

n=1

log

✓
1� 1p

k⌧n

◆


sminX

n=1

� 1p
k⌧n

 �2 log(T ),

where we use the fact that when �t(j,⌧) = 1, then the probability of stopping is at least 1/
p
k⌧ as

shown in Lemma A.3. The rounds in which �t(j,⌧) = 0 can simply be ignored for this calculation, as
the algorithm cannot stop at these rounds. It follows that P (|Bj |  ⌧smin) � 1� 1

T 2 .

B Analysis of the Statistical Tests

Proof of Claim 2.3. The lemma is an immediate corollary of the following two versions of Hoeffd-
ing’s inequality [12], denoted Hoeffding-1 and Hoeffding-2.

Theorem B.1 (Hoeffding-1). Let Xn
= {Xi}ni=1

2 [0, c]n be a sequence of independent random
variables, such that E [Xi] = µi. Then, it holds that

P
��� ¯X

1:n � µ̄
1:n

�� � "
�  2e�

2n"2

c2 .

Corollary (Hoeffding-2). Let Xn+m
= {Xi}n+m

i=1

2 [0, c]n+m be a sequence of independent
random variables, such that E [Xi] = µi. Then, it holds that

P
��� ¯X

1:n � ¯Xn+1:n+m � (µ̄
1:n � µ̄n+1:n+m)

�� � "
�  2e

� 2"2

(n�1+m�1)c2 .

Claim B.2. Let Xn
= {Xi}ni=1

2 [0, c]n be a sequence generated from µn, and assume that Xn is
concentrated. Then, by executing TEST 1 on Xn and µ

0

2 [0, 1] we know that:

(1) if µn is weakly stationary and |µ̄
1:n � µ

0

|  n�1/2
log

1/2
(T ), then the test is never wrong

(that is, it always classifies µn as weakly stationary).

(2) if it classifies µn as weakly stationary and V
1:n � �p10c+ 2

�
log

1/2
(T )n�1/2, then

nX

i=1

|µi � µ
0

|  �
p
10c+ 2

�
2/3

log

1/3
(T )n2/3V1/3

1:n .

(3) if it classifies µn as weakly stationary and V
1:n  �p10c + 2

�
log

1/2
(T )n�1/2, then for

any i 2 [n] it holds that

|µi � µ
0

|  2

�p
10c+ 2

�
log

1/2
(T )n�1/2.
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Proof. To prove (1), assume that Xn is concentrated and µn is weakly stationary. Thus, for any
n
1

, n
2

2 [n] it holds that
�� ¯Xn1:n2 � µ

0

��
=

�� ¯Xn1:n2 � µ̄n1:n2 + µ̄n1:n2 � µ̄
1:n + µ̄

1:n � µ
0

��
(a)
 �� ¯Xn1:n2 � µ̄n1:n2

��
+ |µ̄n1:n2 � µ̄

1:n|+ |µ̄
1:n � µ

0

|
(b)
 �

2.5c2 log(T )
�
1/2

"
1

(n
1

, n
2

) + n�1/2
+ n�1/2

log

1/2
(T )

 �
p
2.5c+ 2

�
log

1/2
(T )"

1

(n
1

, n
2

) ,

where (a) follows by the triangle inequality; and (b) holds since Xn is concentrated and µn is weakly
stationary. It follows that TEST 1 classifies Xn as weakly stationary.

To prove (2), assume that TEST 1 classified µn as weakly stationary. Thus, for any n
1

, n
2

2 [n] it
holds that

�� ¯Xn1:n2 � µ
0

��  �
p
2.5c+ 2

�
log

1/2
(T )"

1

(n
1

, n
2

)

Let n
1

, . . . , nm be rounds for which {µni � µ
0

and µni+1

< µ
0

} or {µni < µ
0

and µni+1

� µ
0

}.
We deal with the case where m = 0 later. Additionally, denote n

0

= 0 and nm+1

= n. Now, the
term we are interested in bounding can be written equivalently as follows

nX

i=1

|µi � µ
0

| =
mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ

0

��

=

mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ

0

��2/3 ��µ̄ni+1:ni+1 � µ
0

��1/3 . (6)

Next, we bound the terms of the form
��µ̄ni+1:ni+1 � µ

0

��.
��µ̄ni+1:ni+1 � µ

0

��  ��µ̄ni+1:ni+1 � ¯Xni+1:ni+1

��
+

�� ¯Xni+1:ni+1 � µ
0

��


p
2.5c log1/2(T )"

1

(ni + 1, ni+1

) +

�p
2.5c+ 2

�
log

1/2
(T )"

1

(ni + 1, ni+1

)

=

�p
10c+ 2

�
log

1/2
(T )"

1

(ni + 1, ni+1

).

By substituting this in Eq. (6) we get that

nX

i=1

|µi � µ
0

| 
mX

i=0

(ni+1

� ni) (
p
10c+ 2)

2/3
log

1/3
(T ) (ni+1

� ni)
�1/3 ��µ̄ni+1:ni+1 � µ

0

��1/3

=

�p
10c+ 2

�
2/3

log

1/3
(T )

mX

i=0

(ni+1

� ni)
2/3 ��µ̄ni+1:ni+1 � µ

0

��1/3

(a)
 �p

10c+ 2

�
2/3

log

1/3
(T )

 
mX

i=0

(ni+1

� ni)

!
2/3 mX

i=0

��µ̄ni+1:ni+1 � µ
0

��
!

1/3

 �
p
10c+ 2

�
2/3

log

1/3
(T )

 
mX

i=0

(ni+1

� ni)

!
2/3 mX

i=1

��µ̄ni+1:ni+1 � µ̄ni�1+1:ni

��
!

1/3

(b)
 �p

10c+ 2

�
2/3

log

1/3
(T )

 
mX

i=0

(ni+1

� ni)

!
2/3 mX

i=1

Vni�1+1:ni+1

!
1/3

(c)
 �p

10c+ 2

�
2/3

log

1/3
(T )n2/3V1/3

1:n ,

where (a) follows from Hölder’s inequality; (b) has a technical proof given in Claim B.3 below; and
(c) follows from the fact that

Pm
i=1

Vni�1+1:ni+1  V
1:n.
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We deal now with the case of m = 0 (that is, µ
0

62 [mini{µi},maxi{µi}]). In this case, we can
bound the term of interest as follows:

nX

i=1

|µi � µ
0

| = |µ̄
1:n � µ

0

| · n  ���µ̄
1:n � ¯X

1:n

��
+

�� ¯X
1:n � µ

0

��� · n


⇣p

2.5c log1/2(T )"
1

(1, n) +
�p

2.5c+ 2

�
log

1/2
(T )"

1

(1, n)
⌘
· n

 �
p
10c+ 2

�
log

1/2
(T )n1/2.

Now, since we assumed that V
1:n � �p10c + 2

�
log

1/2
(T )n�1/2, then we can replace the bound

above with
nX

i=1

|µi � µ
0

|  �
p
10c+ 2

�
2/3

log

1/3
(T )n2/3V1/3

1:n ,

which proves the statement of the claim for the case of m = 0 as well.

To prove (3), assume that (a) V
1:n  �p

10c + 2

�
log

1/2
(T )n�1/2; (b) that the sequence is con-

centrated; and (c) that the test classified the sequence as weakly stationary. Repeating the same
calculation from before gives

|µi � µ
0

|  |µi � µ̄
1:n|+

��µ̄
1:n � ¯X

1:n

��
+

�� ¯X
1:n � µ

0

��

 �
p
10c+ 2

�
log

1/2
(T )n�1/2

+

p
2.5c log1/2(T )n�1/2

+

�p
2.5c+ 2

�
log

1/2
(T )n�1/2

 2

�p
10c+ 2

�
log

1/2
(T )n�1/2,

for any i 2 [n], as required.

Claim B.3. Let µ
1

, . . . , µn be a sequence of scalars, and let m < n. Assume that {µ
1

, . . . , µm � 0

and µm+1

, . . . , µn  0} or {µ
1

, . . . , µm  0 and µm+1

, . . . , µn � 0}. Then,
�����
1

m

mX

i=1

µi � 1

n�m

nX

i=m+1

µi

����� 
n�1X

i=1

|µi+1

� µi|.

Proof. Assume without loss of generality that {µ
1

, . . . , µm  0 and µm+1

, . . . , µn � 0}, and let
i
1

= argmini2{1,...,m}{µi} and i
2

= argmaxi2{m+1,...,n}{µi}. Thus, we have
�����
1

m

mX

i=1

µi � 1

n�m

nX

i=m+1

µi

�����  µi2 � µi1 =

i2�1X

i=i1

µi+1

� µi 

i2�1X

i=i1

|µi+1

� µi| 
n�1X

i=1

|µi+1

� µi|.

Claim B.4. Let XQ
= {Xi}Qi=1

2 [0, c]Q be a sequence generated from µQ and revealed to us
gradually (one realization after the other). Assume further that XQ is strongly concentrated. Then,
by executing TEST 2 on XQ we know that:

(1) if µQ is weakly stationary, then the test classifies it as weakly stationary.

(2) if it classifies µQ as weakly stationary, then
QX

i=1

|µi � µ̄
1:Q| =

�p
40c+ 2

�
2/3

log

1/3
(T )Q2/3V1/3

1:Q .

(3) if it classifies the sequence µQ as non-stationary at round S, then
S�1X

i=1

|µi � µ̄
1:S�1

| = �
p
40c+ 2

�
2/3

log

1/3
(T )S2/3V1/3

1:S .
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Proof. To prove (1), we assume that µQ is weakly stationary (that is, V
1:n  1/

p
n for any n 2 [Q]),

and upper-bound
�� ¯Xn1:n2 � ¯Xc

n1:n2

��. Thus, set some n 2 [Q] and n
1

, n
2

2 [n].

�� ¯Xn1:n2 � ¯Xc
n1:n2

��
=

�� ¯Xn1:n2 � ¯Xc
n1:n2

� µ̄n1:n2 + µ̄c
n1:n2

+ µ̄n1:n2 � µ̄c
n1:n2

��

 �� ¯Xn1:n2 � ¯Xc
n1:n2

� µ̄n1:n2 + µ̄c
n1:n2

��
+

��µ̄n1:n2 � µ̄c
n1:n2

��
(a)


p
2.5c log1/2(T )"

2

(n
1

, n
2

) + log

1/2
(T )"

2

(n
1

, n
2

)

=

�p
2.5c+ 1

�
log

1/2
(T )"

2

(n
1

, n
2

) ,

where (a) holds since XQ is strongly concentrated and µQ is weakly stationary. It follows that TEST
2 classifies µn as weakly stationary.

To prove (2), assume that TEST 2 classified µQ as weakly stationary. Thus, for any n
1

, n
2

2 [Q] it
holds that

�� ¯Xn1:n2 � ¯Xc
n1:n2

��  �
p
2.5c+ 1

�
log

1/2
(T )"

2

(n
1

, n
2

) .

Let n
1

, . . . , nm be rounds for which {µni � µ̄
1:Q and µni+1

< µ̄
1:Q} or {µni < µ̄

1:Q and µni+1

�
µ̄
1:Q}. Additionally, denote n

0

= 0 and nm+1

= n. Now, the term we are interested in bounding
can be written equivalently as follows

QX

i=1

|µi � µ̄
1:Q| =

mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ̄

1:Q

��

=

mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ̄

1:Q

��1/3 ��µ̄ni+1:ni+1 � µ̄
1:Q

��2/3 . (7)

Next, we bound the terms of the form
��µ̄ni+1:ni+1 � µ̄

1:Q

��. By the triangle inequality it holds that

��µ̄ni+1:ni+1 � µ̄
1:Q

��  ��µ̄ni+1:ni+1 � ¯Xni+1:ni+1

��
+

�� ¯Xni+1:ni+1 � ¯X
1:Q

��
+

�� ¯X
1:Q � µ̄

1:Q

�� .

Since XQ is concentrated, we know that |µ̄ni+1:ni+1 � ¯Xni+1:ni+1 | 
p
2.5c log1/2(T )"

1

(ni +

1, ni+1

), and also that |µ̄
1:Q� ¯X

1:Q| 
p
2.5c log1/2(T )"

1

(1, Q). Trivially, it holds that "
1

(1, Q) 
"
1

(ni + 1, ni+1

). The third term requires a somewhat longer argument. Notice we can write

�� ¯Xni+1:ni+1 � ¯X
1:Q

��
=

������
1

ni+1

� ni

ni+1X

j=ni+1

Xj � 1

Q

X

j2[Q]

Xj

������

=

������
1

ni+1

� ni

ni+1X

j=ni+1

✓
Xj � ni+1

� ni

Q
Xj

◆
� 1

Q� ni+1

+ ni

X

j /2{ni+1,...,ni+1}

Q� ni+1

+ ni

Q
Xj

������

=

������
1

ni+1

� ni

ni+1X

j=ni+1

Q� ni+1

+ ni

Q
Xj � 1

Q� ni+1

+ ni

X

j /2{ni+1,...,ni+1}

Q� ni+1

+ ni

Q
Xj

������

=

��� ¯Xni+1:ni+1 � ¯Xc
ni+1:ni+1

���
Q� ni+1

+ ni

Q
.

Now, since the test classified the sequence as weakly stationary we know that | ¯Xni+1:ni+1 �
¯Xc
ni+1:ni+1

|  �p2.5c+ 1

�
log

1/2
(T )"

2

(n
1

, n
2

), which implies that

| ¯Xni+1:ni+1 � ¯X
1:Q| 

�p
2.5c+ 1

�
log

1/2
(T )

✓
Q� ni+1

+ ni

Q

◆
"
2

(ni + 1, ni+1

).
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By substituting the value of "
2

(ni + 1, ni+1

) we get that
�� ¯Xni+1:ni+1 � ¯X

1:Q

��  �
p
2.5c+ 1

�
log

1/2
(T )

✓
Q� ni+1

+ ni

Q

◆✓
1

ni+1

� ni
+

1

Q� ni+1

+ ni

◆
1/2

 �
p
2.5c+ 1

�
log

1/2
(T )

✓
Q� ni+1

+ ni

Q

◆✓
1

ni+1

� ni

◆
1/2

+

�p
2.5c+ 1

�
log

1/2
(T )

✓
Q� ni+1

+ ni

Q

◆✓
1

Q� ni+1

+ ni

◆
1/2

 �
p
2.5c+ 1

�
log

1/2
(T )

✓
1

ni+1

� ni

◆
1/2

+

�p
2.5c+ 1

�
log

1/2
(T )

✓
Q� ni+1

+ ni

Q2

◆
1/2

 �
p
2.5c+ 1

�
log

1/2
(T )

✓
1

ni+1

� ni

◆
1/2

+

�p
2.5c+ 1

�
log

1/2
(T )

✓
1

Q

◆
1/2

 �
p
10c+ 1

�
log

1/2
(T )

✓
1

ni+1

� ni

◆
1/2

 �
p
10c+ 1

�
log

1/2
(T )"

1

(ni + 1, ni+1

).

Combining all three calculations gives
��µ̄ni+1:ni+1 � µ̄

1:Q

��  �p40c+2

�
log

1/2
(T )"

1

(ni+1, ni+1

).
Substituting this in Eq. (7) yields
QX

i=1

|µi � µ̄
1:Q| 

mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ̄

1:Q

��1/3 �p
40c+ 2

�
2/3

log

1/3
(T )"

1

(ni + 1, ni+1

)

2/3

=

�p
40c+ 2

�
2/3

log

1/3
(T )

mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ

1:Q

��1/3
(ni+1

� ni)
�1/3

 �
p
40c+ 2

�
2/3

log

1/3
(T )

mX

i=0

(ni+1

� ni)
2/3 ��µ̄ni+1:ni+1 � µ

1:Q

��1/3

(a)
 �p

40c+ 2

�
2/3

log

1/3
(T )

 
mX

i=0

(ni+1

� ni)

!
2/3 mX

i=0

��µ̄ni+1:ni+1 � µ
1:Q

��
!

1/3

(b)
 �p

40c+ 2

�
2/3

log

1/3
(T )

 
mX

i=0

(ni+1

� ni)

!
2/3 mX

i=1

��µ̄ni+1:ni+1 � µ̄ni�1+1:ni

��
!

1/3

(c)
 �p

40c+ 2

�
2/3

log

1/3
(T )Q2/3V1/3

1:Q

where (a) follows from Hölder’s inequality; (b) holds since
�
µ̄ni+1:ni+1 � µ

1:Q

�
and�

µ̄ni�1+1:ni � µ
1:Q

�
have different signs, according to the definition of ni. Inequality (c)

follows from Claim B.3 and the fact that
Pm

i=1

Vni�1+1:ni+1  V
1:n.

The proof of (3) resembles the proof of (2) in its techniques, but is somewhat more subtle. Thus,
denote by S the round in which TEST 2 classified the sequence as non-stationary, and let n

1

, . . . , nm

be rounds for which {µni � µ̄
1:S�1

and µni+1

< µ̄
1:S�1

} or {µni < µ̄
1:S�1

and µni+1

� µ̄
1:S�1

}.
Additionally, denote n

0

= 0 and nm+1

= S. Now, the term we are interested in can be written as
follows:

S�1X

i=1

|µi � µ̄
1:S�1

| =
mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ̄

1:S�1

��

=

mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ̄

1:S�1

��1/3 ��µ̄ni+1:ni+1 � µ̄
1:S�1

��2/3 .
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As for the proof of part (2), it holds that
��µ̄ni+1:ni+1 � µ

1:S�1

��  �p
40c + 2

�
log

1/2
(T )"

1

(ni +

1, ni+1

). Substituting this above gives

S�1X

i=1

|µi � µ̄
1:S�1

| 
mX

i=0

(ni+1

� ni)
��µ̄ni+1:ni+1 � µ̄

1:S�1

��1/3 �p
40c+ 2

�
2/3

log

1/3
(T )"

1

(ni + 1, ni+1

)

2/3

 �
p
40c+ 2

�
2/3

log

1/3
(T )S2/3V1/3

1:S ,

where the same arguments from the proof of (2) apply here also.

C Analysis of the Stochastic Feedback Setting

In this section we provide an analysis of the performance of our main algorithm. In our analysis we
partition the randomness into two independent sources. The first is that originating from the noisy
observations `t(i), combined with the source of random bits based on which the algorithm determines
the realizations of the random variables Xt. The second source of randomness is that determining
during the exploitation phase whether we pick argmin{µ̂

0

(i)} or not, in each bin. Notice that the
first source can be thought of as if we generate a random sequence �T 2 {1, 2}T beforehand, and
define two new sequences:

Xt(i) =

⇢
2`t(�t) if i = �t
0 otherwise.

Thus, we overall have four sequences ({`t(i)}Tt=1

and {Xt(i)}Tt=1

, for i = 1, 2), that encapsulate the
first source of randomness. During the analysis we condition on this source, and assume it is such
that all four sequences are strongly concentrated. By Claim 2.3 we know that this event occurs w.p.
of at least 1� 4

T .

The second source of randomness can also be controlled beforehand, exactly as detailed in the proof
of Theorem A.1. Essentially, we show that with high probability the worst arm is picked throughout
at most log(T )N1�✓

j bins in block Bj . In addition, we show that the number of “bad” bins we
encounter in block Bj is at most log(T )N✓

j . The definition of these “bad” bins (non-flat bins), along
with the proofs of these two observation are given below.

Definition C.1. (flat bin) We say that a bin A is flat if either
X

t2A

|µt(i)� µ̂
0

(i)|  �
p
10 + 2

�
2/3

log

1/3
(T )|A|2/3V1/3

A

or
|µt(i)� µ̂

0

(i)|  2

�p
10 + 2

�
log

1/2
(T )|A|�1/2 , 8t 2 A

for any action i 2 {1, 2}; otherwise we say it is non-flat.

From hereon, whenever j is set and block Bj is considered, we denote by �a the indicator of the
event {the a-th bin in block Bj is non-flat}.

Lemma C.2. Assuming ✓  1/2, the following event occurs with probability at least 1� 1

T . For any
block Bj that reached the exploitation phase, with Nj bins in total, the total number of bins in which
the worst arm (according to the estimates of the exploration phase) is chosen is upper bounded by
5 log

1/2
(T )

(1�✓) N1�✓
j .

Proof. Fix some block Bj . Notice that given the realization of the source of randomness determining
our actions in the exploration phase and the observed losses, both �, µ̂

0

(i) for i = {1, 2}, and the
starting point for the exploitation phase are determined only based on the starting time tstart of the
block. As a result, the lengths of the bins and the flatness of each bin is also deterministic given the
mentioned source of randomness and tstart. We prove a high probability result for any starting time
and value Nj and obtain the result via a union bound argument.
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Define Ia as the indicator of the event {the worst arm was picked throughout bin Aj,a}. The ex-
pected value of It is 1

2

a�✓, hence

E
"

nX

t=1

It

#
=

nX

t=1

1

2

a�✓  1

2(1� ✓)
n1�✓,

for any n 2 [T ]. Setting " = 4 log

1/2
(T )

1�✓ n�✓ gives

Pr

 
nX

t=1

Xt >
1

2(1� ✓)
n1�✓

+

4 log

1/2
(T )

1� ✓
n1�✓

!
 e�2n"2  1/T 4,

where the last inequality holds since 2n"2 =

16 log(T )

(1�✓)2 n1�2✓ � 4 log(T ) for ✓  1/2. As there are at
most T possible values of both n and tstart, the result follows via union bound.

Lemma C.3. The following event occurs w.p. at least 1� 1

T . For any j, in which Algorithm 1 reached
the exploitation phase in block Bj , the total number of non-flat bins in this block is upper-bounded
by 9 log(T )N✓

j .

Proof. Set j and look at block Bj . Let �a be as defined before, and denote by {an}1n=1

the bins in
which �an = 1. Notice that given the realization of the source of randomness determining our actions
in the exploration phase and the observed losses, both �, µ̂

0

(i) for i = {1, 2}, and the starting point
for the exploitation phase are determined only based on the starting time tstart of the block. As a result,
the sequence {an}1n=1

is also deterministic given the mentioned source of randomenss and tstart.

Define

smin = argmin

s

(
sX

n=1

a�✓
n � 8 log(T )

)
.

We have that for a fixed tstart,

log (P (|Nj | > asmin))  log

sminY

n=1

✓
1� 1

2

a�✓
n

◆
=

sminX

n=1

log

✓
1� 1

2

a�✓
n

◆


sminX

n=1

✓
�1

2

a�✓
n

◆
 �4 log(T ),

where we use the fact that when �a = 1, the probability of stopping is at least 1

2

a�✓
n by Algorithm 1.

It follows that P (|Nj |  asmin) � 1� 1

T 4 . Now, let Yj denote the total number of bins in block Bj

for which �a = 1. From the calculation above we know that

(Yj � 1)a�✓
Yj


Yj�1X

n=1

a�✓
n < 8 log(T ),

or equivalently, Yj < 1 + 8 log(T )a✓Yj
 9 log(T )N✓

j . If smin does not exist, then it must hold
that

Ps
n=1

a�✓
n < 8 log(T ) for any s and in particular for Yj . Using the argument above gives

Yj  8 log(T )N✓
j for this case.

By taking a union bound over all possible tstart, it follows that with probability of at least 1� 1

T we
have that the number of non-flat bins in any block Bj is upper-bounded by 9 log(T )N✓

j .

After establishing these two lemmas, we condition the game on the high probability events described
in them. We use this at the end of the section to provide a high probability bound on the overall regret.
We begin by bounding the regret in the blocks where we never reach the exploitation phase. We
proceed to refine the bound via a lower bound on the variation in these blocks. To ease the notation,
we denote µ̄D(i) = 1

|D|
P

t2D µt(i) and ¯XD(i) = 1

|D|
P

t2D Xt(i), where D can be any subset of
rounds (in particular, a block or a bin). In addition, we denote by RD the regret suffered in rounds
t 2 D. That is, RD =

P
t2D µt(it) � µt(i

⇤
t ). Thus, fix a block index j and recall that Ej,1 de-

notes the set of round indices in the exploration phase of the block and VEj,1 denotes the variation in it.
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Lemma C.4. Fix a block index j and consider its exploration phase. It holds that

REj,1  12 log

1/3
(T )|Ej,1|2/3V1/3

Ej,1
+ 460 log

1/2
(T )|Ej,1|1��/2.

Proof. We divide the analysis into two cases: (1) the exploration phase ended since the condition
lower bounding � was met; and (2) the exploration phase ended since the test identified non-
stationarity. If we are in the first case then from Claim B.4 part (2), by substituting c by 2, we know
that X

t2Ej,1

|µt(i)� µ̄Ej,1(i)|  6 log

1/3
(T )|Ej,1|2/3V1/3

Ej,1

for both i = 1, 2. Thus,
X

t2Ej,1

µt(it)� µt(i
⇤
t ) 

X

t2Ej,1

|µt(1)� µt(2)|

(a)


X

t2Ej,1

|µt(1)� µ̄Ej,1(1)|+
X

t2Ej,1

|µ̄Ej,1(1)� ¯XEj,1(1)|

+

X

t2Ej,1

| ¯XEj,1(1)� ¯XEj,1(2)|+
X

t2Ej,1

| ¯XEj,1(2)� µ̄Ej,1(2)|

+

X

t2Ej,1

|µ̄Ej,1(2)� µt(2)|

(b)


X

t2Ej,1

| ¯XEj,1(1)� ¯XEj,1(2)|+ 12 log

1/3
(T )|Ej,1|2/3V1/3

Ej,1

+ 7|Ej,1| log1/2(T )"1(1, |Ej,1|) (8)

where (a) follows by the triangle inequality; and (b) holds because the feedback is concentrated. Now,
since Algorithm 1 did not stop at round t(j, |Ej,1|� 1) we know that

| ¯XEj,1(1)� ¯XEj,1(2)| = | ¯Xt(j,1):t(j,|Ej,1|)(1)� ¯Xt(j,1):t(j,|Ej,1|)(2)|
 1

|Ej,1| + | ¯Xt(j,1):t(j,|Ej,1|�1)

(1)� ¯Xt(j,1):t(j,|Ej,1|�1)

(2)|

 1

|Ej,1| + 16

�p
10 + 2

�
2

log(T ) (|Ej,1|� 1)

��/2
.

Substituting the above in Eq. (8) yields the result stated in the lemma for the first case. The proof of
the second case follows similarly to the first case, albeit using part (3) of Claim B.4 instead of part (2)
and using the fact that | ¯XEj,1(1)� ¯XEj,1(2)|  16

�p
10 + 2

�
2

log(T )|Ej,1|��/2 for this case.

Lemma C.5. The total regret suffered throughout blocks in which Algorithm 1 did not reach the
exploitation phase is upper-bounded by

12 log

1/3
(T )T 2/3V1/3

T + 460 log(T )T 1��/3V�/3
T + 460 log(T )T 1��/2.

Proof. By Claim B.4 part (1) we know that the algorithm never misclassifies a sequence as non-
stationary during the exploration phase (since the the feedback to the test is strongly concentrated).
Now, let

J
2

= {j | TEST 2 identified non-stationarity during the exploration of block Bj}.
Using this notation, we know that for every j 2 J

2

it holds that VBj � |Bj |�1/2. In addition, by
Lemma C.4 we know that for every j 2 J

2

it holds that

RBj  12 log

1/3
(T )|Bj |2/3V1/3

Bj
+ 460 log(T )|Bj |1��/2.
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Thus, we can writeX

j2J2

RBj  12 log

1/3
(T )

X

j2J2

|Bj |2/3V1/3
Bj

+ 460 log(T )
X

j2J2

|Bj |1��/2

= 12 log

1/3
(T )

X

j2J2

|Bj |2/3V1/3
Bj

+ 460 log(T )
X

j2J2

|Bj |1��/3|Bj |��/6

(a)
 12 log

1/3
(T )

 
X

j2J2

|Bj |
!

2/3 X

j2J2

VBj

!
1/3

+ 460 log(T )

 
X

j2J2

|Bj |
!

1��/3 X

j2J2

|Bj |�1/2

!�/3

 12 log

1/3
(T )T 2/3V1/3

T + 460 log(T )T 1��/3V�/3
T ,

where (a) follows by Hölder’s inequality. Notice that J
2

might not include the last block in the game
(even if Algorithm 1 did not reach the exploitation phase in this block), simply because this block
can be terminated due to the end of the time horizon. Thus, an extra term 460 log(T )|Bj |1��/2 
460 log(T )T 1��/2 is added to the regret in this case.

We now proceed to bound the regret in the blocks in which the exploitation phase is reached. We
begin by providing a bound with an additive element dependent only on the block size and not its
variation, and will prove later on a satisfactory bound on this quantity.

Lemma C.6. Set j, and assume that Algorithm 1 reached the exploitation phase in block Bj . Then,
for any flat bin Aj,a 2 Bj in which the best arm was chosen it holds that

X

t2Aj,a

µt(it)� µt(i
⇤
t )  6 log

1/3
(T )|Aj,a|2/3V1/3

Aj,a
.

Proof. Assume without loss of generality that action 1 was the better action in the exploration phase,
that is, 1 = argmini2{1,2}{µ̂0

(i)}. Thus, we have
X

t2Aj,a

µt(it)� µt(i
⇤
t ) =

X

t2Aj,a

(µt(1)� µt(i
⇤
t )) =

X

t2Aj,a,i⇤t=2

(µt(1)� µt(2)) .

In order to bound
P

i⇤t=2

(µt(1)� µt(2)) we use the guarantee of the bin flatness, and divide the
analysis into three cases: In the first case we assume that

X

t2Aj,a

|µt(i)� µ̂
0

(i)|  �
p
10 + 2

�
2/3

log

1/3
(T )|Aj,a|2/3V1/3

Aj,a

for i 2 {1, 2}. Thus, by Claim B.2 part (2) we have that
X

t2Aj,a,i⇤t=2

(µt(1)� µt(2)) =

X

t2Aj,a,i⇤t=2

(µt(1)� µ̂
0

(1) + µ̂
0

(1)� µ̂
0

(2) + µ̂
0

(2)� µt(2))


X

t2Aj,a

|µt(1)� µ̂
0

(1)|+
X

t2Aj,a

|µt(2)� µ̂
0

(2)|+
X

t2Aj,a,i⇤t=2

(µ̂
0

(1)� µ̂
0

(2))

 2

�p
10 + 2

�
2/3

log

1/3
(T )|Aj,a|2/3V1/3

Aj,a
+

X

t2Aj,a,i⇤t=2

(µ̂
0

(1)� µ̂
0

(2)) .

Now, since action 1 is assumed to be the better action (in the exploration phase of the block), then it
must hold that

P
t2Aj,a,i⇤t=2

(µ̂
0

(1)� µ̂
0

(2))  0, which proves the lemma for this case.

In the second case we assume that |µt(i)� µ̂
0

(i)|  2

�p
10c + 2

�
log

1/2
(T )|Aj,a|�1/2 for any

t 2 Aj,a and i 2 {1, 2}. Notice that the term (µ̂
0

(1)� µ̂
0

(2)) can be bounded as follows:
µ̂
0

(1)� µ̂
0

(2) =

¯XEj,1(1)� ¯XEj,1(2)

 �16

�p
10 + 2

�
2

log(T )|Ej,1|��/2

 �4

�p
10 + 2

�
log

1/2
(T )|Aj,a|�1/2,

21



hence it must be the case that for all i 2 {1, 2} and t 2 Aj,a

µt(1)  µ̂
0

(1) + 2

�p
10 + 2

�
log

1/2
(T )|Aj,a|�1/2

 µ̂
0

(2)� 2

�p
10 + 2

�
log

1/2
(T )|Aj,a|�1/2  µt(2).

Therefore, there are no rounds t 2 Aj,a in which i⇤t = 2, hence
P

t2Aj,a,i⇤t=2

(µt(1)� µt(2)) = 0.

In the third case we have w.l.o.g. that for i = 1

X

t2Aj,a

|µt(1)� µ̂
0

(1)|  �
p
10 + 2

�
2/3

log

1/3
(T )|Aj,a|2/3V1/3

Aj,a
,

and for i = 2

|µt(2)� µ̂
0

(2)|  2

�p
10 + 2

�
log

1/2
(T )|Aj,a|�1/2 , 8t 2 Aj,a.

Using the bound above for µ̂
0

(1) � µ̂
0

(2) we get that for all t 2 Aj,a it holds that µt(2) � µ̂
0

(1),
hence in any round where i⇤t = 2 we have µt(1)� µt(2)  µt(1)� µ̂

0

(1) leading to
X

t2Aj,a,i⇤t=2

(µt(1)� µt(2)) 
X

t2Aj,a,i⇤t=2

(µt(1)� µ̂
0

(1))


X

t2Aj,a

|µt(1)� µ̂
0

(1)|

 �
p
10c+ 2

�
2/3

log

1/3
(T )|Aj,a|2/3V1/3

Aj,a
.

To bound the regret throughout flat bins in which the worse arm was picked, we simply use the
guarantee presented in Lemma C.2 on the total amount of such bins.

Lemma C.7. Set j, and assume that Algorithm 1 reached the exploitation phase in block Bj . Then,
the total regret suffered throughout flat bins in which the worst arm was chosen is at most

5 log

1/2
(T )

(1� ✓)
|Bj |1�✓(1��)

Proof. From Lemma C.2 we know that the total number of flat bins in which the worst arm was
chosen is upper-bounded by

5 log

1/2
(T )

(1� ✓)
N1�✓

j .

In each of these bins, the regret we suffer is naturally at most |Aj,a|. Thus, we can bound the total
regret as follows:

5 log

1/2
(T )

(1� ✓)
N1�✓

j |Aj,a| = 5 log

1/2
(T )

(1� ✓)
|Aj,a|

✓ |Ej,2|
|Aj,a|

◆
1�✓

=

5 log

1/2
(T )

(1� ✓)
|Ej,2|1�✓|Aj,a|✓.

Now, since |Ej,2|  |Bj | and |Aj,a|  |Ej,1|�  |Bj |� by the algorithm (for blocks in which the
exploitation phase was reached), we overall get the result stated in the lemma.

Lemma C.8. Set j, and assume that Algorithm 1 reached the exploitation phase in block Bj . Then,
the total regret suffered in flat bins throughout block Bj is bounded by

NjX

a=1

(1� �a)RAj,a  6 log

1/3
(T )|Bj |2/3V1/3

Bj
+

5 log

1/2
(T )

(1� ✓)
|Bj |1�✓(1��).

Proof. The result follows via simple aggregation of Lemmas C.6 and C.7, and simple application of
Hölder’s inequality.
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We proceed to bound the regret suffered due to non-flat bins. Here, rather than bound the regret inside
such bins we bound the total number of such bins.
Lemma C.9. Set j, and assume that Algorithm 1 reached the exploitation phase in block Bj . Then,
the total regret suffered in non-flat bins throughout block Bj is bounded by

NjX

a=1

�aRAj,a  9 log(T )|Bj |1�(1�✓)(1��).

Proof. Set j and look at block Bj . Since we condition the game on the high probability event of
Lemma C.3 we know that the number of non-flat bins in this block is upper-bounded by 9 log(T )N✓

j .
In each of these bins, the regret suffered is upper-bounded by the length of the bin, |Aj,a|. Thus, by
summing over all non-flat bins we get that

NjX

a=1

�aRAj,a  9 log(T )|Aj,a|N✓
j = 9 log(T )|Aj,a|

✓ |Ej,2|
|Aj,a|

◆✓

= 9 log(T )|Ej,2|✓|Aj,a|1�✓.

Now, since |Ej,2|  |Bj | and |Aj,a|  |Ej,1|�  |Bj |� by the algorithm (for blocks in which the
exploitation phase was reached), we overall get the result stated in the lemma.

From the above we get a bound on the regret inside each block. The bound has an additive term
dependent only on |Bj | and not VBj that does not trivially add up to a sub-linear term in T . In the
following we use a lower bound on VBj to deal with this issue, and get our final regret bound for
blocks in which the exploitation phase is reached.
Lemma C.10. The total regret suffered throughout blocks in which Algorithm 1 reached the exploita-
tion phase is upper-bounded by

6 log

1/3
(T )T 2/3V1/3

T + 20 log

1/2
(T )T

1+2�
2+� V

1��
2+�

T + 20 log(T )T 1� 1
2 (1��),

if we set ✓ =

1

2

.

Proof. By Claim B.2 part (1) we know that the algorithm never misclassifies a sequence as non-
stationary during the exploration phase (if the feedback is concentrated). Now, let

J
1

= {j | TEST 1 identified non-stationarity during the exploitation of block Bj}.
Denote by |Aj,a| the bin length in block Bj . Using this notation, we know that for every j 2 J

1

it
holds that VBj � |Aj,a|�1/2 � |Ej,1|��/2 � |Bj |��/2. From Lemmas C.8 and C.9, we obtain that
for every j 2 J

1

we can upper-bound

RBj  6 log

1/3
(T )|Bj |2/3V1/3

Bj
+ 20 log(T )|Bj |1� 1

2 (1��),

if ✓ =

1

2

. Thus, we can write
X

j2J1

RBj  8 log

1/3
(T )

X

j2J1

|Bj |2/3V1/3
Bj

+ 8 log(T )
X

j2J1

|Bj |1� 1
2 (1��)

= 6 log

1/3
(T )

X

j2J1

|Bj |2/3V1/3
Bj

+ 20 log(T )
X

j2J1

|Bj |
1+2�
2+� |Bj |�

�(1��)
2(2+�)

(a)
 6 log

1/3
(T )

 
X

j2J1

|Bj |
!

2/3 X

j2J1

VBj

!
1/3

+ 20 log(T )

 
X

j2J1

|Bj |
! 1+2�

2+�
 
X

j2J1

|Bj |��/2

! 1��
2+�

 6 log

1/3
(T )T 2/3V1/3

T + 20 log(T )T
1+2�
2+� V

1��
2+�

T ,

where (a) follows by Hölder’s inequality. Notice that J
1

might not include the last block in the game
(even if Algorithm 1 reached the exploitation phase in this block), simply because this block can
be terminated due to the end of the time horizon. Thus, an extra term 20 log

1/2
(T )|Bj |1� 1

2 (1��) 
20 log

1/2
(T )T 1� 1

2 (1��) needs to be added to the regret in this case.
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We are now ready to combine the results above, and to prove Theorem 2.4.

Proof of Theorem 2.4. We start with the case where the feedback received throughout the game is
strongly concentrated, and the high probability events of Lemmas C.2 and C.3 occur (as discussed in
the beginning of the section). From Lemma C.5, we know that the total regret suffered throughout
blocks in which Algorithm 1 did not reach the exploitation phase is upper-bounded by

12 log

1/3
(T )T 2/3V1/3

T + 460 log(T )T 1��/3V�/3
T + 460 log(T )T 1��/2.

Additionally, from Lemma C.10 we know that the total expected regret suffered over blocks in which
Algorithm 1 reached the exploitation phase is upper-bounded by

6 log

1/3
(T )T 2/3V1/3

T + 20 log

1/2
(T )T

1+2�
2+� V

1��
2+�

T + 20 log(T )T 1� 1
2 (1��),

for the case where ✓ =

1

2

. Summing the above together and substituting � =

p
37�5

2

gives

RT =

TX

t=1

µt(it)�
TX

t=1

µt(i
⇤
t )  500 log(T )T 0.82V0.18

T + 500 log(T )T 0.771.

for this case. Now, recall that the probability of the feedback being strongly concentratedis 1� 4

T
(Claim 2.3). Additionally, by taking union bound on the high probability events described in Lemmas
C.2 and C.3, we get the upper bound above on the total regret (suffered throughout the entire game)
with probability of at least 1� 10

T .

D Extending the Result to k Arms

Our results can be extended to the case of k > 2, using the same core techniques of the k = 2 case.
Due to the technical nature of the algorithm and its analysis, we omit it from this version of the paper
and defer it to a full version. The high-level idea is to replace the exploration phase of Algorithm 1
with a soft elimination tournament: Initially, the algorithm explores all arms (i.e., chooses each arm
with probability of 1/k in each round). Once an arm is exhibiting significantly worse performance
compared to the leading arm, this arm enters the pool of eliminated arms. From this point on, the
algorithm works in bins with length proportional to the inverted squared gap between the leading
arm and the arm that was lastly eliminated. The bin counter (denoted by a in Algorithm 1) resets
every time an arm is eliminated. Within each bin, the algorithm either:

(1) explores non-eliminated arms (i.e., chooses an arm from the set of non-eliminated arms
uniformly in each round) with probability 1� o(1).

(2) or otherwise samples one of the eliminated arms (and pulls it throughout the bin).

E Discussion and Conclusion

In this work we showed that the regret with respect to the optimal sequence of actions in the MAB
setting can be non-trivially bounded if the environment is guaranteed to vary sufficiently slow. The
important contribution over previous works that considered the same setting is the ability to adapt
to the changes of the environment without requiring any prior knowledge on them whatsoever. An
interesting open question is whether our bounds can be improved to match the current known lower
bound for the problem ⌦

�
T 2/3V1/3

T

�
[8]. It would also be interesting to extend our techniques to the

BCO setting, in which the decision set is continuous and the losses are general convex functions.
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