
Fast RPCA: Supplemental Material

In this document, we collect all the proofs and technical lemmas for the theoretical results established
in the main paper.

A Proofs

In this section we provide the proofs for our main theoretical results in Theorems 1–4 and Corollar-
ies 1–2.

A.1 Proof of Theorem 1

Let Y := Y − Sinit. As Y = M∗ + S∗, we have Y −M∗ = S∗ − Sinit. We obtain Y −M∗ ∈ S2α

because S∗, Sinit ∈ Sα.

We claim that ‖Y −M∗‖∞ ≤ 2‖M∗‖∞. Denote the support of S∗, Sinit by Ω∗ and Ω respectively.
Since Y −M∗ is supported on Ω ∪ Ω∗, to prove the claim it suffices to consider the following three
cases.

• For (i, j) ∈ Ω∗ ∩ Ω, due to rule of sparse estimation, we have (S∗ − Sinit)(i,j) = 0.

• For (i, j) ∈ Ω∗ \ Ω, we must have |S∗(i,j)| ≤ 2‖M∗‖∞. Otherwise, we have |Y(i,j)| =

|(S∗ + M∗)(i,j)| > ‖M∗‖∞. So |Y(i,j)| is larger than any uncorrupted entries in its row
and column. Since there are at most α fraction corruptions per row and column, we have
Y(i,j) ∈ Ω, which violates the prior condition (i, j) ∈ Ω∗ \ Ω.

• For the last case (i, j) ∈ Ω \ Ω∗, since (Sinit)(i,j) = M∗(i,j), trivially we have |(Sinit)(i,j)| ≤
‖M∗‖∞.

The following result, proved in Section B.1, relates the operator norm of Y −M∗ to its infinite norm.

Lemma 1. For any matrix A ∈ Rd1×d2 that belongs to Sα given in (3), we have

|||A|||op ≤ α
√
d1d2‖A‖∞.

We thus obtain

|||Y −M∗|||op ≤ 2α
√
d1d2‖Y −M∗‖∞ ≤ 4α

√
d1d2‖M∗‖∞ = 4αµrσ∗1 . (16)

In the last step, we use the fact that M∗ satisfies the µ-incoherent condition, which leads to

‖M∗‖∞ ≤ |||M∗|||op‖L∗‖2,∞‖R∗‖2,∞ ≤
µr√
d1d2

|||M∗|||op. (17)

We denote the i-th largest singular value of Y by σi. By Weyl’s theorem, we have |σ∗i − σi| ≤
|||Y −M∗|||op for all i ∈ [d1 ∧ d2]. Since σ∗r+1 = 0, we have σr+1 ≤ |||Y −M∗|||op. Recall that U0V

>
0

is the best rank r approximation of Y . Accordingly, we have

|||U0V
>
0 −M∗|||op ≤ |||U0V

>
0 − Y |||op + |||Y −M∗|||op

= σr+1 + |||Y −M∗|||op ≤ 2|||Y −M∗|||op ≤ 8αµrσ∗1 .

Under condition αµr ≤ 1
16κ , we obtain |||U0V

>
0 −M∗|||op ≤ 1

2σ
∗
r . Applying Lemma 5.14 in [24] (we

provide it as Lemma 15 for the sake of completeness), we obtain

d2(U0, V0;U∗, V ∗) ≤ 2√
2− 1

|||U0V
>
0 −M∗|||2F
σ∗r

≤
10r|||U0V

>
0 −M∗|||2op

σ∗r
.

Plugging the upper bound of |||U0V
>
0 −M∗|||op into the above inequality completes the proof.
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A.2 Proof of Theorem 2

We essentially follow the general framework developed in [12] for analyzing the behaviors of gradient
descent in factorized low-rank optimization. But it is worth to note that [12] only studies the
symmetric and positive semidefinite setting, while we avoid such constraint on M∗. The techniques
for analyzing general asymmetric matrix in factorized space is inspired by the recent work [24] on
solving low-rank matrix equations. In our setting, the technical challenge is to verify the local descent
condition of the loss function (8), which not only has a bilinear dependence on U and V , but also
involves our sparse estimator (4).

We begin with some notations. Define the equivalent set of optimal solution as

E(M∗) :=
{

(A,B) ∈ Rd1×r × Rd2×r
∣∣ A = L∗Σ∗1/2Q,B = R∗Σ∗1/2Q, where Q ∈ Qr

}
.

(18)

Given (U0, V0) ∈ B2

(
c2
√
σ∗r/κ

)
, by (11), we have |||U0V

>
0 −M∗|||op ≤ 1

2σ
∗
r when c2 is sufficiently

small. By Weyl’s theorem We thus have√
σ∗1/2 ≤ |||U0|||op ≤

√
3σ∗1/2, and

√
σ∗1/2 ≤ |||V0|||op ≤

√
3σ∗1/2.

As a result, for U ,V constructed according to (7), we have

E(M∗) ⊆ U × V, and U ⊆ U ,V ⊆ V, (19)

where

U :=

{
A ∈ Rd1×r

∣∣ ‖A‖2,∞ ≤√3µrσ∗1
d1

}
, V :=

{
A ∈ Rd2×r

∣∣ ‖A‖2,∞ ≤√3µrσ∗1
d2

}
.

We let
G(U, V ) :=

1

8
|||U>U − V >V |||2F . (20)

For L(U, V ;S), we denote the gradient with respect to M by∇ML(U, V ;S), i.e. ∇ML(U, V ;S) =
UV > + S − Y .

The local descent property is implied by combining the following two results, which are proved in
Section A.7 and A.8 respectively.
Lemma 2 (Local descent property of L). Suppose U ,V satisfy (19). For any (U, V ) ∈ (U ×
V) ∩ B2(

√
σ∗1), we let S = Tγα

[
Y − UV >

]
, where we choose γ = 2. Then we have that for

(Uπ∗ , Vπ∗) ∈ argmin(A,B)∈E(M∗) |||U −A|||2F + |||V −B|||2F and β > 0,

〈〈∇ML(U, V ;S), UV > − Uπ∗V >π∗ + ∆U∆>V 〉〉 ≥ |||UV > − Uπ∗V >π∗ |||2F − νσ∗1δ − 3
√
σ∗1δ

3. (21)

Here ∆U := U − Uπ∗ , ∆V := V − Vπ∗ , δ := |||∆U |||2F + |||∆V |||2F , and ν := 9(β + 6)αµr + 5β−1.

Lemma 3 (Local descent property of G). For any (U, V ) ∈ B2(
√
σ∗r ) and

(Uπ∗ , Vπ∗) ∈ arg min
(A,B)∈E(M∗)

|||U −A|||2F + |||V −B|||2F,

we have

〈〈∇UG(U, V ), U − Uπ∗〉〉+ 〈〈∇V G(U, V ), V − Vπ∗〉〉

≥ 1

8
|||U>U − V >V |||2F +

1

8
σ∗rδ −

√
σ∗1δ

3

2
− 1

2
|||UV > − Uπ∗V >π∗ |||2F,

where δ is defined according to Lemma 2.

As another key ingredient, we establish the following smoothness condition, proved in Section A.9,
which indicates that the Frobenius norm of gradient decreases as (U, V ) approaches the optimal
manifold.
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Lemma 4 (Smoothness). For any (U, V ) ∈ B2(
√
σ∗1), we let S = Tγα

[
Y − UV >

]
, where we

choose γ = 2. We have that
|||∇ML(U, V ;S)|||2F ≤ 6|||UV > −M∗|||2F, (22)

and
|||∇UG(U, V )|||2F + |||∇V G(U, V )|||2F ≤ 2σ∗1 |||U>U − V >V |||2F. (23)

With the above results in hand, we are ready to prove Theorem 2.

Proof of Theorem 2. We use shorthands
δt := d2(Ut, Vt;U

∗, V ∗), Lt := L(Ut, Vt;St), and Gt := G(Ut, Vt).

For (Ut, Vt), let (U tπ∗ , V tπ∗) := argmin(A,B)∈E(M∗) |||Ut−A|||2F +|||Vt−B|||2F . Define ∆t
U := Ut−U tπ∗ ,

∆t
V := Vt − V tπ∗ .

We prove Theorem 2 by induction. It is sufficient to consider one step of the iteration. For any t ≥ 0,
under the induction hypothesis (Ut, Vt) ∈ B2

(
c2
√
σ∗r/κ

)
. We find that

δt+1 ≤ |||Ut+1 − U tπ∗ |||2F + |||Vt+1 − V tπ∗ |||2F
≤ |||Ut − η∇ULt − η∇UGt − U tπ∗ |||2F + |||Vt − η∇V Lt − η∇V Gt − V tπ∗ |||2F
≤ δt − 2η 〈〈∇ULt +∇UGt, Ut − U tπ∗〉〉︸ ︷︷ ︸

W1

−2η 〈〈∇V Lt +∇V Gt, Vt − V tπ∗〉〉︸ ︷︷ ︸
W2

+ η2 |||∇ULt +∇UGt|||2F︸ ︷︷ ︸
W3

+η2 |||∇V Lt +∇V Gt|||2F︸ ︷︷ ︸
W4

, (24)

where the second step follows from the non-expansion property of projection onto U ,V , which is
implied by E(M∗) ⊆ U × V shown in (19). Since ∇ULt = [∇MLt]V and ∇V Lt = [∇MLt]> U ,
we have
〈〈∇ULt, Ut − U tπ∗〉〉+ 〈〈∇V Lt, Vt − V tπ∗〉〉 = 〈〈∇MLt, UtV >t − U tπ∗V t>π∗ + ∆t

U∆t>
V 〉〉.

Combining Lemma 2 and 3, under condition δt < σ∗r , we have that

W1 +W2 ≥
1

2
|||UtV >t −M∗|||2F +

1

8
|||U>t Ut − V >t Vt|||2F +

1

8
σ∗rδt − νσ∗1δt − 4

√
σ∗1δ

3
t .

On the other hand, we have
W3 +W4 ≤ 2|||∇ULt|||2F + 2|||∇UGt|||2F + 2|||∇V Lt|||2F + 2|||∇V Gt|||2F

≤ 2(|||Ut|||2op + |||Vt|||2op)|||∇MLt|||2F + 2|||∇UGt|||2F + 2|||∇V Gt|||2F
≤ 36σ∗1 |||UtV >t −M∗|||2F + 4σ∗1 |||U>t Ut − V >t Vt|||2F ,

where the last step is implied by Lemma 4 and the assumption (Ut, Vt) ∈ B2

(
c2
√
σ∗r/κ

)
that leads

to |||Ut|||op ≤
√

3σ∗1/2, |||Vt|||op ≤
√

3σ∗1/2.

By the assumption η = c/σ∗1 for any constant c ≤ 1/36, we thus have

−2η(W1 +W2) + η2(W3 +W4) ≤ −1

4
ησ∗rδt + 2ηνσ∗1δt + 8η

√
σ∗1δ

3
t .

In Lemma 2, choosing β = 320κ and assuming α . 1/(κ2µr), we can have ν ≤ 1/(32κ). Assuming
δt . σ∗r/κ leads to 14

√
σ∗1δ

3
t ≤ 1

16σ
∗
rδt. We thus obtain

δt+1 ≤
(

1− ησ∗r
8

)
δt. (25)

Under initial condition δ0 . σ∗r/κ, we obtain that such condition holds for all t since estimation error
decays geometrically after each iteration. Then applying (25) for all iterations, we conclude that for
all t = 0, 1, . . .,

δt ≤
(

1− ησ∗r
8

)t
δ0.
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A.3 Proof of Corollary 1

We need α . 1
κ2µr due to the condition of Theorem 2. In order to ensure the linear convergence

happens, it suffices to let the initial error shown in Theorem 1 be less than the corresponding condition
in Theorem 2. Accordingly, we need

28
√
καµr

√
r
√
σ∗1 .

√
σ∗r/κ,

which leads to α . 1
µ
√
rκ3 .

Using the conclusion that gradient descent has linear convergence, choosing T = O(κ log(1/ε)), we
have

d2(UT , VT ;U∗, V ∗) ≤ ε2d2(U0, V0;U∗, V ∗) . ε2σ
∗
r

κ
.

Finally, applying the relationship between d(UT , VT ;U∗, V ∗) and |||UTV >T −M∗|||F shown in (11),
we complete the proof.

A.4 Proof of Theorem 3

Let Y := 1
p (Y − Sinit). Similar to the proof of Theorem 1, we first establish an upper bound on

|||Y −M∗|||op. We have that

|||Y −M∗|||op ≤ |||Y −
1

p
ΠΦM

∗|||op + |||1
p

ΠΦ(M∗)−M∗|||op. (26)

For the first term, we have Y − 1
pΠΦM

∗ = 1
p (ΠΦ(S∗)−Sinit) because Y = ΠΦ(M∗+S∗). Lemma

10 shows that under condition p & log d
α(d1∧d2) , there are at most 3

2pα-fraction nonzero entries in each
row and column of ΠΦ(S∗) with high probability. Since Sinit ∈ S2pα, we have

ΠΦ(S∗)− Sinit ∈ S4pα. (27)

In addition, we prove below that

‖ΠΦ(S∗)− Sinit‖∞ ≤ 2‖M∗‖∞. (28)

Denote the support of ΠΦ(S∗) and Sinit by Ω∗o and Ω. For (i, j) ∈ Ω∗o ∩ Ω and (i, j) ∈ Ω \ Ω∗o, we
have (ΠΦ(S∗) − Sinit)(i,j) = 0 and (ΠΦ(S∗) − Sinit)(i,j) = −M∗(i,j), respectively. To prove the
claim, it remains to show that for (i, j) ∈ Ω∗o \ Ω, |S∗(i,j)| < 2‖M∗‖∞. If this is not true, then we
must have |Y(i,j)| > ‖M∗‖∞. Accordingly, |Y(i,j)| is larger than the magnitude of any uncorrupted
entries in its row and column. Note that on the support Φ, there are at most 3

2pα corruptions per row
and column, we have (i, j) ∈ Ω, which violates our prior condition (i, j) ∈ Ω∗o \ Ω.

Using these two properties (27), (28) and applying Lemma 1, we have

|||Y − 1

p
ΠΦM

∗|||op ≤ 4α
√
d1d2‖ΠΦ(S∗)− Sinit‖∞ ≤ 8α

√
d1d2‖M∗‖∞ ≤ 8αµrσ∗1 , (29)

where the last step follow from (17).

For the second term in (26), we use the following lemma proved in [10].

Lemma 5 (Lemma 2 in [10]). Suppose A ∈ Rd1×d2 is a fixed matrix. We let d := max{d1, d2}.
There exists a constant c such that with probability at least 1−O(d−1),

|||1
p

ΠΦ(A)−A|||op ≤ c

(
log d

p
‖A‖∞ +

√
log d

p
max

{
‖A‖2,∞, ‖A>‖2,∞

})
.

Given the SVD M∗ = L∗ΣR∗>, for any i ∈ [d1], we have

‖M∗(i,·)‖2 = ‖L∗(i,·)ΣR
∗>‖2 ≤ σ∗1‖L∗(i,·)‖2 ≤ σ

∗
1

√
µr

d1
.
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We can bound ‖M∗>‖2,∞ similarly. Lemma 5 leads to

|||1
p

ΠΦ(M∗)−M∗|||op ≤ c′
log d

p

µr√
d1d2

σ∗1 + c′

√
log d

p

√
µr

d1 ∧ d2
σ∗1 ≤ c′εσ∗1/

√
r (30)

under condition p ≥ 4µr2 log d
ε2(d1∧d2) .

Putting (29) and (30) together, we obtain

|||Y −M∗|||op ≤ 8αµrσ∗1 + c′εσ∗1/
√
r.

Then using the fact that U0V
>
0 is the best rank r approximation of Y and applying Wely’s theorem

(see the proof of Theorem 1 for a detailed argument), we have

|||U0V
>
0 −M∗|||op ≤ |||U0V

>
0 − Y |||op + |||Y −M∗|||op

≤ 2|||Y −M∗|||op ≤ 16αµrσ∗1 + 2c′εσ∗1/
√
r

Under our assumptions, we have 16αµrσ∗1 + 2c′εσ∗1/
√
r ≤ 1

2σ
∗
r . Accordingly, Lemma 15 gives

d2(U0, V0;U∗, V ∗) ≤ 2√
2− 1

|||U0V
>
0 −M∗|||2F
σ∗r

≤
10r|||U0V

>
0 −M∗|||2op

σ∗r
.

We complete the proof by combining the above two inequalities.

A.5 Proof of Theorem 4

In this section, we turn to prove Theorem 4. Similar to the proof of Theorem 2, we rely on establishing
the local descent and smoothness conditions. Compared to the full observation setting, we replace
L by L̃ given in (6), while the regularization term G̃(U, V ) := 1

64 |||U
>U − V >V |||2F merely differs

from G(U, V ) given in (20) by a constant factor. It is thus sufficient to analyze the properties of L̃.

Define E(M∗) according to (18). Under the initial condition, we still have

E(M∗) ⊆ U × V, and U ⊆ U ,V ⊆ V. (31)

We prove the next two lemmas in Section A.10 and A.11 respectively. In both lemmas, for any
(U, V ) ∈ U × V , we use shorthands

(Uπ∗ , Vπ∗) = arg min
(A,B)∈E(M∗)

|||U −A|||2F + |||V −B|||2F ,

∆U := U − Uπ∗ , ∆V := V − Vπ∗ , and δ := |||∆U |||2F + |||∆V |||2F . Recall that d := max{d1, d2}.
Lemma 6 (Local descent property of L̃). Suppose U ,V satisfy (31). Suppose we let

S = Tγpα
[
ΠΦ

(
Y − UV >

)]
,

where we choose γ = 3. For any β > 0 and ε ∈ (0, 1
4 ), we define ν := (14β + 81)αµr + 26

√
ε+

18β−1. There exist constants {ci}2i=1 such that if

p ≥ c1
(
µ2r2

ε2
+

1

α
+ 1

)
log d

d1 ∧ d2
, (32)

then with probability at least 1− c2d−1,

〈〈∇M L̃(U, V ;S), UV > − Uπ∗V >π∗ + ∆U∆>V 〉〉 ≥
3

16
|||UV >−Uπ∗V >π∗ |||2F−νσ∗1δ−10

√
σ∗1δ

3−2δ2

(33)
for all (U, V ) ∈ (U × V) ∩ B2

(√
σ∗1
)
.

Lemma 7 (Smoothness of L̃). Suppose U ,V satisfy (31). Suppose we let S =
Tγαp

[
ΠΦ

(
Y − UV >

)]
for γ = 3. There exist constants {ci}3i=1 such that for any ε ∈ (0, 1

4 ),
when p satisfies condition (32), with probability at least 1 − c2d−1, we have that for all (U, V ) ∈
(U × V) ∩ B2(

√
σ∗1),

|||∇U L̃(U, V ;S)|||2F + |||∇V L̃(U, V ;S)|||2F ≤ c3
[
µrσ∗1 |||UV > − Uπ∗V >π∗ |||2F + µrσ∗1δ(δ + εσ∗1)

]
.

(34)
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In the remainder of this section, we condition on the events in Lemma 6 and 7. Now we are ready to
prove Theorem 4.

Proof of Theorem 4. We essentially follow the process for proving Theorem 2. Let the following
shorthands be defined in the same fashion: δt, (U tπ∗ , V tπ∗), (∆t

U ,∆
t
V ), L̃t, G̃t.

Here we show error decays in one step of iteration. The induction process is the same as the proof of
Theorem 2, and is thus omitted. For any t ≥ 0, similar to (24) we have that

δt+1 ≤ δt − 2η 〈〈∇U L̃t +∇U G̃t, Ut − U tπ∗〉〉︸ ︷︷ ︸
W1

−2η 〈〈∇V L̃t +∇V G̃t, Vt − V tπ∗〉〉︸ ︷︷ ︸
W2

+ η2 |||∇U L̃t +∇U G̃t|||2F︸ ︷︷ ︸
W3

+η2 |||∇V L̃t +∇V G̃t|||2F︸ ︷︷ ︸
W4

.

We also have

〈〈∇U L̃t, Ut − U tπ∗〉〉+ 〈〈∇V L̃t, Vt − V tπ∗〉〉 = 〈〈∇M L̃t, UtV >t − U tπ∗V t>π∗ + ∆t
U∆t>

V 〉〉,

which can be lower bounded by Lemma 6. Note that G̃ differs from G by a constant, we can still
leverage Lemma 3. Hence, we obtain that

W1 +W2 ≥
1

8
|||UtV >t −M∗|||2F +

1

64
|||U>t Ut − V >t Vt|||2F +

1

64
σ∗rδt − νσ∗1δt − 11

√
σ∗1δ

3
t − 2δ2

t .

On the other hand, we have

W3 +W4 ≤ 2|||∇U L̃t|||2F + 2|||∇U G̃t|||2F + 2|||∇V L̃t|||2F + 2|||∇V G̃t|||2F
≤ c

[
µrσ∗1 |||UtV >t −M∗|||2F + µrσ∗1δt(δt + εσ∗1) + σ∗1 |||U>t Ut − V >t Vt|||2F

]
,

where c is a constant, and the last step is implied by Lemma 4 and Lemma 7.

By the assumption η = c′/[µrσ∗1 ] for sufficiently small constant c′, we thus have

−2η(W1 +W2) + η2(W3 +W4) ≤ − 1

32
ησ∗rδt + 2ηνσ∗1δt + 22η

√
σ∗1δ

3
t + 4ηδ2

t .

Recall that ν := (14β + 81)αµr + 26
√
ε + 18β−1. By letting β = c1κ, ε = c2/κ

2 and assuming
α ≤ c3/(µrκ

2) and δt ≤ c4σ
∗
r/κ for some sufficiently small constants {ci}4i=1, we can have

−2η(W1 +W2) + η2(W3 +W4) ≤ − 1
64ησ

∗
rδt, which implies that

δt+1 ≤
(

1− ησ∗r
64

)
δt,

and thus completes the proof.

A.6 Proof of Corollary 2

We need α . 1
µκ2r due to the condition of Theorem 4. Letting the initial error provided in Theorem

3 be less than the corresponding condition in Theorem 4, we have

51
√
καµr

√
r
√
σ∗1 + 7c1ε

√
κσ∗1 .

√
σ∗r/κ,

which leads to
α .

1

µ
√
r3κ3

, ε .
1√
κ3
.

Plugging the above two upper bounds into the second term in (13), it suffices to have

p &
κ3µr2 log d

d1 ∧ d2
.

Comparing the above bound with the second term in (14) completes the proof.
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A.7 Proof of Lemma 2

Let M := UV >. We observe that

∇ML(U, V ;S) = M + S −M∗ − S∗.

Plugging it back into the left hand side of (21), we obtain

〈〈∇ML(U, V ;S), UV > − Uπ∗V >π∗ + ∆U∆>V 〉〉 = 〈〈M + S −M∗ − S∗, M −M∗ + ∆U∆>V 〉〉
≥ |||M −M∗|||2F − |〈〈S − S∗, M −M∗〉〉|︸ ︷︷ ︸

T1

− |〈〈M + S −M∗ − S∗, ∆U∆>V 〉〉|︸ ︷︷ ︸
T2

. (35)

Next we derive upper bounds of T1 and T2 respectively.

Upper bound of T1. We denote the support of S, S∗ by Ω and Ω∗ respectively. Since S − S∗ is
supported on Ω∗ ∪ Ω, we have

T1 ≤ |〈〈ΠΩ(S − S∗), M −M∗〉〉|︸ ︷︷ ︸
W1

+ |〈〈ΠΩ∗\Ω(S − S∗), M −M∗〉〉|︸ ︷︷ ︸
W2

.

Recall that for any (i, j) ∈ Ω, we have S(i,j) = (M∗ + S∗ −M)(i,j). Accordingly, we have

W1 = |||ΠΩ(M −M∗)|||2F . (36)

Now we turn to bound W2. Since S(i,j) = 0 for any (i, j) ∈ Ω∗ \ Ω, we have

W2 = |〈〈ΠΩ∗\ΩS
∗, M −M∗〉〉|.

Let ui be the i-th row of M −M∗, and vj be the j-th column of M −M∗. For any k ∈ [d2], we let
u

(k)
i denote the element of ui that has the k-th largest magnitude. Similarly, for any k ∈ [d1], we let
v

(k)
j denote the element of vj that has the k-th largest magnitude.

From the design of sparse estimator (4), we have that for any (i, j) ∈ Ω∗ \Ω, |(M∗ + S∗ −M)(i,j)|
is either smaller than the γαd2-th largest entry of the i-th row of M∗ + S∗ −M or smaller than
the γαd1-th largest entry of the j-th column of M∗ + S∗ −M . Note that S∗ only contains at most
α-fraction nonzero entries per row and column. As a result, |(M∗+S∗−M)(i,j)| has to be less than
the magnitude of u(γαd2−αd2)

i or v(γαd1−αd1)
j . Formally, we have for (i, j) ∈ Ω∗ \ Ω,

|(M∗ + S∗ −M)(i,j)| ≤ max
{
|u(γαd2−αd2)
i |, |v(γαd1−αd1)

j |
}

︸ ︷︷ ︸
bij

. (37)

Furthermore, we obtain

b2ij ≤ |u
(γαd2−αd2)
i |2 + |v(γαd1−αd1)

j |2 ≤ ‖ui‖22
(γ − 1)αd2

+
‖vj‖22

(γ − 1)αd1
. (38)

Meanwhile, for any (i, j) ∈ Ω∗ \ Ω, we have

|S∗(i,j) · (M −M
∗)(i,j)| = |(M∗ + S∗ −M −M∗ +M)(i,j) · (M −M∗)(i,j)|

≤ |(M −M∗)(i,j)|2 + |(M∗ + S∗ −M)(i,j)| · |(M −M∗)(i,j)|
≤ |(M −M∗)(i,j)|2 + bij · |(M −M∗)(i,j)|

≤
(

1 +
β

2

)
|(M −M∗)(i,j)|2 +

b2ij
2β
, (39)
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where β in the last step can be any positive number. Combining (38) and (39) leads to

W2 ≤
∑

(i,j)∈Ω∗\Ω

|S∗(i,j) · (M −M
∗)(i,j)|

≤
(

1 +
β

2

)
|||ΠΩ∗\Ω(M −M∗)|||2F +

∑
(i,j)∈Ω∗\Ω

b2ij
2β

≤
(

1 +
β

2

)
|||ΠΩ∗\Ω(M −M∗)|||2F +

1

2β

∑
(i,j)∈Ω∗\Ω

(
‖ui‖22

(γ − 1)αd2
+

‖vj‖22
(γ − 1)αd1

)

≤
(

1 +
β

2

)
|||ΠΩ∗\Ω(M −M∗)|||2F +

1

β(γ − 1)
|||M −M∗|||2F . (40)

In the last step, we use∑
(i,j)∈Ω∗\Ω

(
1

d2
‖ui‖22 +

1

d1
‖vj‖22

)
≤

∑
(i,j)∈Ω∗

(
1

d2
‖ui‖22 +

1

d1
‖vj‖22

)
≤
∑
i∈[d]

∑
j∈Ω∗

(i,·)

1

d2
‖ui‖22 +

∑
j∈[d]

∑
i∈Ω∗

(·,j)

1

d1
‖vj‖22

≤ α
∑
i∈[d]

‖ui‖22 + α
∑
j∈[d]

‖vj‖22 = 2α|||M −M∗|||2F . (41)

We introduce shorthand δ := |||∆U |||2F + |||∆V |||2F . We prove the following inequality in the end of this
section.

|||M −M∗|||F ≤
√

5σ∗1δ. (42)

Combining (36), (40) and (42) leads to

T1 ≤ |||ΠΩ(M −M∗)|||2F +

(
1 +

β

2

)
|||ΠΩ∗\Ω(M −M∗)|||2F +

5σ∗1δ

β(γ − 1)

≤ 9(2γ + β + 2)αµrσ∗1δ +
5σ∗1δ

β(γ − 1)
, (43)

where the last step follows from Lemma 14 by noticing that ΠΩ(M −M∗) has at most γα-fraction
nonzero entries per row and column.

Upper bound of T2. To ease notation, we let C := M + S −M∗ − S∗. We observe that C is
supported on Ωc, we have

T2 ≤ |〈〈ΠΩ∗c∩Ωc(M −M∗), ∆U∆>V 〉〉|︸ ︷︷ ︸
W3

+ |〈〈ΠΩ∗∩ΩcC, ∆U∆>V 〉〉|︸ ︷︷ ︸
W4

.

By Cauchy-Swartz inequality, we have

W3 ≤ |||ΠΩ∗c∩Ωc(M −M∗)|||F|||∆U∆>V |||F ≤ |||M −M∗|||F|||∆U |||F|||∆V |||F ≤
√

5σ∗1δ
3/2,

where the last step follows from (42) and |||∆U |||F|||∆V |||F ≤ δ/2.

It remains to bound W4. By Cauchy-Swartz inequality, we have
W4 ≤ |||ΠΩ∗∩ΩcC|||F|||∆U∆>V |||F ≤ |||ΠΩ∗∩Ωc(M

∗ + S∗ −M)|||F|||∆U∆>V |||F

(a)

≤
√ ∑

(i,j)∈Ω∗\Ω

b2ij |||∆U |||F|||∆V |||F
(b)

≤

 ∑
(i,j)∈Ω∗\Ω

‖ui‖22
(γ − 1)αd2

+
‖vj‖22

(γ − 1)αd1

1/2

|||∆U |||F|||∆V |||F.

(c)

≤
√

2

γ − 1
|||M −M∗|||F|||∆U |||F|||∆V |||F ≤

√
5σ∗1δ

3

2(γ − 1)
,

where step (a) is from (37), step (b) follows from (38), and step (c) follows from (41). Combining
the upper bounds of W3 and W4, we obtain

T2 ≤
√

5σ∗1δ
3/2 +

√
5σ∗1δ

3

2(γ − 1)
. (44)
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Combining pieces. Now we choose γ = 2. Then inequality (43) implies that

T1 ≤ [9(β + 6)αµr + 5β−1]σ∗1δ.

Inequality (44) then implies that
T2 ≤ 3

√
σ∗1δ

3.

Plugging the above two inequalities into (35) completes the proof.

Proof of inequality (42). We find that

|||M −M∗|||2F ≤
[√

σ∗1(|||∆V |||F + |||∆U |||F) + |||∆U |||F|||∆V |||F
]2

≤
[√

σ∗1(|||∆V |||F + |||∆U |||F) +
1

2

√
σ∗1 |||∆U |||F +

1

2

√
σ∗1 |||∆V |||F

]2

≤ 5σ∗1(|||∆U |||2F + |||∆V |||2F ),

where the first step follows from the upper bound of |||M −M∗|||F shown in Lemma 12, and the
second step follows from the assumption |||∆U |||F, |||∆V |||F ≤

√
σ∗1 .

A.8 Proof of Lemma 3

We first observe that

∇UG(U, V ) =
1

2
U(U>U − V >V ), ∇V G(U, V ) =

1

2
V (V >V − U>U),

Therefore, we obtain

〈〈∇UG(U, V ), U − Uπ∗〉〉+ 〈〈∇V G(U, V ), V − Vπ∗〉〉

=
1

2
〈〈U>U − V >V , U>U − V >V − U>Uπ∗ + V >Vπ∗〉〉

=
1

4
|||U>U − V >V |||2F +

1

4
〈〈U>U − V >V , U>U − V >V − 2U>Uπ∗ + 2V >Vπ∗〉〉

=
1

4
|||U>U − V >V |||2F +

1

4
〈〈U>U − V >V , U>U − V >V − 2∆>UUπ∗ + 2∆>V Vπ∗〉〉, (45)

where the last step follows from ∆>UUπ∗ −∆>V Vπ∗ = U>Uπ∗ − V >Vπ∗ since U>π∗Uπ∗ = V >π∗Vπ∗ .
Note that

U>U − V >V = (Uπ∗ + ∆U )>(Uπ∗ + ∆U )− (Vπ∗ + ∆V )>(Vπ∗ + ∆V )

= U>π∗∆U + ∆>UUπ∗ + ∆>U∆U − V >π∗∆V −∆>V Vπ∗ −∆>V ∆V ,

where we use U>π∗Uπ∗ = V >π∗Vπ∗ again in the last step. Furthermore, since U>U − V >V is
symmetric, we have

〈〈U>U − V >V , U>π∗∆U + ∆>UUπ∗ − V >π∗∆V −∆>V Vπ∗〉〉
= 〈〈U>U − V >V , 2∆>UUπ∗ − 2∆>V Vπ∗〉〉.

Using these arguments, for the second term in (45), denoted by T2, we have

T2 =
1

4
〈〈U>U − V >V , ∆>U∆U −∆>V ∆V 〉〉.

Furthermore, we have

4T2 ≤ |〈〈U>U − V >V , ∆>U∆U −∆>V ∆V 〉〉| ≤ |||U>U − V >V |||F
(
|||∆U |||2F + |||∆V |||2F

)
≤
(
|||U>U − U>π∗Uπ∗ |||F + |||V >V − V >π∗Vπ∗ |||F

)
δ

≤ 2 (|||Uπ∗ |||op|||∆U |||F + |||Vπ∗ |||op|||∆V |||F) δ ≤ 2
√

2σ∗1δ
3. (46)

It remains to find a lower bound of |||U>U − V >V |||F. The following inequality, which we turn to
prove later, is true:

|||U>U − V >V |||2F ≥ |||UU> − Uπ∗U>π∗ |||2F + |||V V > − Vπ∗V >π∗ |||2F − 2|||UV > − Uπ∗V >π∗ |||2F . (47)
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Proceeding with the first term in (45) by using (47), we get

1

4
|||U>U − V >V |||2F =

1

8
|||U>U − V >V |||2F +

1

8
|||U>U − V >V |||2F

≥ 1

8
|||U>U − V >V |||2F +

1

8
|||UU> − Uπ∗U>π∗ |||2F +

1

8
|||V V > − Vπ∗V >π∗ |||2F −

1

4
|||UV > − Uπ∗V >π∗ |||2F

=
1

8
|||U>U − V >V |||2F +

1

8
|||FF> − Fπ∗F>π∗ |||2F −

1

2
|||UV > − Uπ∗V >π∗ |||2F , (48)

where we let

F :=

[
U
V

]
, Fπ∗ :=

[
Uπ∗

Vπ∗

]
.

Introduce ∆F := F − Fπ∗ . Recall that δ := |||∆U |||2F + |||∆V |||2F . Equivalently δ = |||∆F |||2F . We have

|||FF> − Fπ∗F>π∗ |||F = |||∆FF
>
π∗ + Fπ∗∆>F + ∆F∆>F |||F

≥ |||∆FF
>
π∗ + Fπ∗∆>F |||F − |||∆F |||2F = |||∆FF

>
π∗ + Fπ∗∆>F |||F − δ.

For the first term, we have

|||∆FF
>
π∗ + Fπ∗∆>F |||2F = 2|||∆FF

>
π∗|||2F + 〈〈∆FF

>
π∗, Fπ∗∆>F 〉〉

≥ 2σr(Fπ∗)2|||∆F |||2F + 〈〈∆FF
>
π∗, Fπ∗∆>F 〉〉 = 4σ∗r |||∆F |||2F + 〈〈∆FF

>
π∗, Fπ∗∆>F 〉〉.

For the cross term, by the following result, proved in [12] (we also provide a proof in Section B.5 for
the sake of completeness), we have 〈〈∆FF

>
π∗, Fπ∗∆>F 〉〉 ≥ 0.

Lemma 8. When |||F − Fπ∗ |||op <
√

2σ∗r , we have that ∆>FFπ∗ is symmetric.

Accordingly, we have |||FF>−Fπ∗F>π∗ |||F ≥ 2
√
σ∗rδ−δ ≥

√
σ∗rδ under condition δ ≤ σ∗r . Plugging

this lower bound into (48), we obtain

1

4
|||U>U − V >V |||2F ≥

1

8
|||U>U − V >V |||2F +

1

8
σ∗rδ −

1

2
|||UV > − Uπ∗V >π∗ |||2F .

Putting (45), (46) and the above inequality together completes the proof.

Proof of inequality (47). For the term on the left hand side of (47), it is easy to check that

|||U>U − V >V |||2F = |||UU>|||2F + |||V V >|||2F − 2|||UV >|||2F . (49)

The property U>π∗Uπ∗ = V >π∗Vπ∗ implies that |||Uπ∗U>π∗ |||F = |||Vπ∗V >π∗ |||F = |||Uπ∗V >π∗ |||F. Therefore,
expanding those quadratic terms on the right hand side of (47), one can show that it is equal to

|||UU>|||2F + |||V V >|||2F − 2|||U>π∗U |||2F − 2|||V >π∗V |||2F + 4〈〈U>π∗U, V >π∗V 〉〉 − 2|||UV >|||2F . (50)

Comparing inequalities (49) and (50), it thus remains to show that

−2|||U>π∗U |||2F − 2|||V >π∗V |||2F + 4〈〈U>π∗U, V >π∗V 〉〉 ≤ 0.

Equivalently, we always have |||U>π∗U − V >π∗V |||2F ≥ 0, and thus prove (47).

A.9 Proof of Lemma 4

First, we turn to prove (23). As

∇UG(U, V ) =
1

2
U(U>U − V >V ), ∇V G(U, V ) =

1

2
V (V >V − U>U),

we have

|||∇UG(U, V )|||2F + |||∇V G(U, V )|||2F ≤
1

4

(
|||U |||2op + |||V |||2op

)
|||U>U − V >V |||2F .

As (U, V ) ∈ B2(
√
σ∗1), we thus have |||U |||op ≤ |||Uπ∗ |||op + |||Uπ∗ − U |||op ≤ 2

√
σ∗1 , and similarly

|||V |||op ≤ 2
√
σ∗1 . We obtain

|||∇UG(U, V )|||2F + |||∇V G(U, V )|||2F ≤ 2σ∗1 |||U>U − V >V |||2F .
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Now we turn to prove (22). We observe that

∇ML(U, V ;S) = M + S −M∗ − S∗,

where we let M := UV >. We denote the support of S, S∗ by Ω and Ω∗ respectively. Based on the
sparse estimator (4) for computing S,∇ML(U, V ;S) is only supported on Ωc. We thus have

|||∇ML(U, V ;S)|||F ≤ |||ΠΩc\Ω∗(M −M∗)|||F + |||ΠΩc∩Ω∗(M −M∗ − S∗)|||F
≤ |||M −M∗|||F + |||ΠΩc∩Ω∗(M −M∗ − S∗)|||F.

It remains to upper bound the second term on the right hand side. Following (37) and (38), we have

|||ΠΩc∩Ω∗(M −M∗ − S∗)|||2F ≤
∑

(i,j)∈Ωc∩Ω∗

‖ui‖22
(γ − 1)αd2

+
‖vj‖22

(γ − 1)αd1
≤ 2

γ − 1
|||M −M∗|||2F ,

where the last step is proved in (41). By choosing γ = 2, we thus conclude that

|||∇ML(U, V ;S)|||F ≤ (1 +
√

2)|||M −M∗|||F.

A.10 Proof of Lemma 6

We denote the support of ΠΦ(S∗), S by Ω∗o and Ω. We always have Ω∗o ⊆ Φ and Ω ⊆ Φ.

In the sequel, we establish several results that characterize the properties of Φ. The first result, proved
in Section B.2, shows that the Frobenius norm of any incoherent matrix whose row (or column) space
are equal to L∗ (or R∗) is well preserved under partial observations supported on Φ.

Lemma 9. Suppose M∗ ∈ Rd1×d2 is a rank r and µ-incoherent matrix that has SVD M∗ =
L∗Σ∗R∗>. Then there exists an absolute constant c such that for any ε ∈ (0, 1), if p ≥ c µr log d

ε2(d1∧d2) ,
then with probability at least 1− 2d−3, we have that for all A ∈ Rd2×r, B ∈ Rd1×r,

(1− ε)|||L∗A> +BR∗>|||2F ≤ p−1|||ΠΦ

(
L∗A> +BR∗>

)
|||2F ≤ (1 + ε)|||L∗A> +BR∗>|||2F.

We need the next result, proved in Section B.3, to control the number of nonzero entries per row and
column in Ω∗o and Φ.

Lemma 10. If p ≥ 56
3

log d
α(d1∧d2) , then with probability at least 1− 6d−1, we have

∣∣|Φ(i,·)| − pd2

∣∣ ≤ 1

2
pd2,

∣∣|Φ(·,j)| − pd1

∣∣ ≤ 1

2
pd1, |Ω∗o(i,·)| ≤

3

2
αpd2, |Ω∗o(·,j)| ≤

3

2
αpd1,

for all i ∈ [d1] and j ∈ [d2].

The next lemma, proved in Section B.4, can be used to control the projection of small matrices to Φ.

Lemma 11. There exists constant c such that for any ε ∈ (0, 1), if p ≥ c µ
2r2 log d

ε2(d1∧d2) , then with
probability at least 1 − O(d−1), for all matrices Z ∈ Rd1×d2 , U ∈ Rd1×r and V ∈ Rd2×r that
satisfy ‖U‖2,∞ ≤

√
µr/d1,‖V ‖2,∞ ≤

√
µr/d2, we have

p−1|||ΠΦ(UV >)|||2F ≤ |||U |||2F|||V |||2F + ε|||U |||F|||V |||F; (51)

p−1|||ΠΦ(Z)V |||2F ≤ 2µr|||ΠΦ(Z)|||2F; (52)

p−1|||U>ΠΦ(Z)|||2F ≤ 2µr|||ΠΦ(Z)|||2F. (53)

In the remainder of this section, we condition on the events in Lemmas 9, 10 and 11. Now we are
ready to prove Lemma 6.

Proof of Lemma 6. Using shorthand M := UV >, we have

∇M L̃(U, V ;S) = p−1ΠΦ (M + S −M∗ − S∗) .
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Plugging it back into the left hand side of (21), we obtain

〈〈∇M L̃(U, V ;S), UV > − Uπ∗V >π∗ + ∆U∆>V 〉〉

=
1

p
〈〈ΠΦ (M + S −M∗ − S∗), M −M∗ + ∆U∆>V 〉〉

≥ 1

p
|||ΠΦ (M −M∗) |||2F︸ ︷︷ ︸

T1

− 1

p
|〈〈ΠΦ (S − S∗), M −M∗〉〉|︸ ︷︷ ︸

T2

− 1

p
|〈〈ΠΦ (M + S −M∗ − S∗), ∆U∆>V 〉〉|︸ ︷︷ ︸

T3

.

(54)

Next we derive lower bounds of T1, upper bounds of T2 and T3 respectively.

Lower bound of T1. We observe that M −M∗ = U∗π∗∆>V + ∆UV
>
π∗ + ∆U∆>V . By triangle

inequality, we have

|||ΠΦ(M −M∗)|||F ≥ |||ΠΦ(Uπ∗∆>V + ∆UV
>
π∗)|||F − |||ΠΦ(∆U∆>V )|||F.

Note that when c ≥ a− b for a, b ≥ 0, we always have c2 ≥ 1
2a

2 − b2. We thus have

T1 ≥
1

2p
|||ΠΦ(Uπ∗∆>V + ∆UV

>
π∗)|||2F −

1

p
|||ΠΦ(∆U∆>V )|||2F

≥ 1

2
(1− ε)|||Uπ∗∆>V + ∆UV

>
π∗ |||2F −

1

p
|||ΠΦ(∆U∆>V )|||2F

≥ 1

2
(1− ε)|||M −M∗ −∆U∆>V |||2F − |||∆U |||2F |||∆V |||2F − 9εσ∗1 |||∆U |||F|||∆V |||F

≥ 1

4
(1− ε)|||M −M∗|||2F −

1

2
(1− ε)|||∆U∆V |||2F − |||∆U |||2F |||∆V |||2F − 9εσ∗1 |||∆U |||F|||∆V |||F

≥ 1

4
(1− ε)|||M −M∗|||2F − 2δ2 − 5εσ∗1δ.

where the second step is implied by Lemma 9, the third step follows from (51) in Lemma 11 by
noticing that ‖∆U‖2,∞ ≤ 3

√
µrσ∗1/d1 and ‖∆V ‖2,∞ ≤ 3

√
µrσ∗1/d1, which is further implied by

(31).

Upper bound of T2. Since S − S∗ is supported on Ω∗0 ∪ Ω, we have

pT2 ≤ |〈〈ΠΩ∗
o\Ω(S∗), ΠΩ∗

o\Ω(M −M∗)〉〉|+ |〈〈ΠΩ(S − S∗), ΠΩ(M −M∗)〉〉|. (55)

For any (i, j) ∈ Ω, we have (S − S∗)(i,j) = (M∗ −M)(i,j). Therefore, for the second term on the
right hand side, we have

|〈〈ΠΩ(S − S∗), ΠΩ(M −M∗)〉〉| ≤ |||ΠΩ(M −M∗)|||2F ≤ 18γpαµrσ∗1δ, (56)

where the last inequality follows from Lemma 14 and the fact that |Ω(i,·)| ≤ γpαd2, |Ω(·,j)| ≤ γpαd1

for all i ∈ [d1], j ∈ [d2].

We denote the i-th row of ΠΦ(M −M∗) by ui, and we denote the j-th column of ΠΦ(M −M∗) by
vj . We let u(k)

i denote the element of ui that has the k-th largest magnitude. We let v(k)
j denote the

element of vj that has the k-th largest magnitude.

For the first term on the right hand side of (55), we first observe that for (i, j) ∈ Ω∗o \ Ω, |(M∗ +
S∗ −M)(i,j)| is either less than the γpαd2-th largest element in the i-th row of ΠΦ(M∗ + S∗ −M),
or less than γpαd1-th largest element in the j-th row of ΠΦ(M∗ + S∗ −M). Based on Lemma
10, ΠΦ(S∗) has at most 3pαd2/2 nonzero entries per row and at most 3pαd1/2 nonzero entries per
column. Therefore, we have

|(M∗ + S∗ −M)(i,j)| ≤ max
{
|u((γ−1.5)pαd2)
i |, |v((γ−1.5)pαd1)

j |
}
. (57)
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In addition, we observe that

|〈〈ΠΩ∗
o\Ω(S∗), ΠΩ∗

o\Ω(M −M∗)〉〉|

≤
∑

(i,j)∈Ω∗
o\Ω

|(M∗ + S∗ −M)(i,j)||(M∗ −M)(i,j)|+ |(M∗ −M)(i,j)|2

≤
(

1 +
β

2

)
|||ΠΩ∗

o
(M∗ −M)|||2F +

1

2β

∑
(i,j)∈Ω∗

o\Ω

|(M∗ + S∗ −M)(i,j)|2,

≤ (27 + 14β)pαµrσ∗1δ +
1

2β

∑
(i,j)∈Ω∗

o\Ω

|(M∗ + S∗ −M)(i,j)|2, (58)

where the second step holds for any β > 0 and the last step follows from Lemma 14 under the size
constraints of Ω∗o shown in Lemma 10. For the second term in (58), using (57), we have∑

(i,j)∈Ω∗
o\Ω

|(M∗ + S∗ −M)(i,j)|2 ≤
∑

(i,j)∈Ω∗
o

|u((γ−1.5)pαd2)
i |2 + |v((γ−1.5)pαd1)

j |2

=
∑
i∈[d1]

∑
j∈Ω∗

o(i,·)

|u((γ−1.5)pαd2)
i |2 +

∑
j∈[d2]

∑
i∈Ω∗

o(·,j)

|v((γ−1.5)pαd1)
j |2

≤
∑
i∈[d1]

1.5

γ − 1.5
‖ui‖22 +

∑
j∈[d2]

1.5

γ − 1.5
‖vj‖22 ≤

3

γ − 1.5
|||ΠΦ(M −M∗)|||2F . (59)

Moreover, we have

|||ΠΦ(M −M∗)|||2F ≤ 2|||ΠΦ(Uπ∗∆>V + ∆UV
>
π∗)|||2F + 2|||ΠΦ(∆U∆>V )|||2F

≤ 2(1 + ε)p|||Uπ∗∆>V + ∆UV
>
π∗ |||2F + 2p|||∆U |||2F |||∆V |||2F + 18pεσ∗1 |||∆U |||F|||∆V |||F

≤ 4(1 + ε)p
(
|||Uπ∗ |||2op|||∆V |||2F + |||Vπ∗ |||2op|||∆U |||2F

)
+ 2p|||∆U |||2F |||∆V |||2F + 18pεσ∗1 |||∆U |||F|||∆V |||F

≤ (4 + 13ε)pσ∗1δ + 2pδ2, (60)

where the second step follows from Lemma 9 and inequality (51) in Lemma 11. Putting (55)-(60)
together, we obtain

T2 ≤ (18γ + 14β + 27)αµrσ∗1δ +
3[(2 + 7ε)σ∗1δ + δ2]

β(γ − 1.5)
.

Upper bound of T3. By Cauchy-Schwarz inequality, we have

pT3 ≤ |||ΠΦ(M −M∗ + S − S∗)|||F|||ΠΦ(∆U∆>V )|||F

≤ |||ΠΦ(M −M∗ + S − S∗)|||F
√
p|||∆U |||2F |||∆V |||2F + 9pεσ∗1 |||∆U |||F|||∆V |||F

≤ |||ΠΦ(M −M∗ + S − S∗)|||F
√
pδ2 + 5pεσ∗1δ.

where we use (51) in Lemma 11 in the second step.

We observe that ΠΦ(M −M∗ + S − S∗) is supported on Φ \ Ω. Therefore, we have

|||ΠΦ(M −M∗ + S − S∗)|||F ≤ |||ΠΦ∩Ωc∩Φ∗c(M −M∗)|||F + |||ΠΦ∩Ωc∩Φ∗(M −M∗ − S∗)|||F
≤ |||ΠΦ(M −M∗)|||F + |||ΠΩc∩Φ∗(M −M∗ − S∗)|||F

≤ |||ΠΦ(M −M∗)|||F +

√
3

γ − 1.5
|||ΠΦ(M −M∗)|||F

≤
(

1 +

√
3

γ − 1.5

)√
(4 + 13ε)pσ∗1δ + 2pδ2,

where the third step follows from (59), and the last step is from (60). Under assumptions γ = 3,
ε ≤ 1/4 and δ ≤ σ∗1 , we have

T3 ≤ 3
√

9σ∗1δ + 2δ2
√
δ2 + 5εσ∗1δ ≤ 10

√
σ∗1δ

3 + 23
√
εσ∗1δ.
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Combining pieces. Under the aforementioned assumptions, putting all pieces together leads to

〈〈∇M L̃(U, V ;S), UV > − Uπ∗V >π∗ + ∆U∆>V 〉〉

≥ 3

16
|||M −M∗|||2F − (14β + 81)αµrσ∗1δ −

(
26
√
ε+

18

β

)
σ∗1δ − 10

√
σ∗1δ

3 − 2δ2.

A.11 Proof of Lemma 7

Let M := UV >. We find that

∇U L̃(U, V ;S) = p−1ΠΦ (M + S −M∗ − S∗)V,

∇V L̃(U, V ;S) = p−1ΠΦ (M + S −M∗ − S∗)> U.

Conditioning on the event in Lemma 11, since (U, V ) ∈ U × V , inequalities (52) and (53) imply that

|||∇U L̃(U, V ;S)|||2F + |||∇V L̃(U, V ;S)|||2F ≤
12

p
µrσ∗1 |||ΠΦ (M + S −M∗ − S∗) |||2F .

It remains to bound the term |||ΠΦ (M + S −M∗ − S∗) |||2F . Let Ω∗o and Ω be the support of ΠΦ(S∗)
and S respectively. We observe that

|||ΠΦ (M + S −M∗ − S∗) |||2F = |||ΠΩ∗
o\Ω (M −M∗ − S∗) |||2F + |||ΠΦ∗c∩Ωc∩Φ (M −M∗) |||2F

≤ |||ΠΩ∗
o\Ω (M −M∗ − S∗) |||2F + |||ΠΦ (M −M∗) |||2F .

In the proof of Lemma 6, it is shown in (59) that

|||ΠΩ∗
o\Ω (M −M∗ − S∗) |||2F ≤

3

γ − 1.5
|||ΠΦ(M −M∗)|||2F .

Moreover, following (60), we have that

|||ΠΦ(M −M∗)|||2F ≤ 2(1 + ε)p|||Uπ∗∆>V + ∆UV
>
π∗ |||2F + 2p|||∆U |||2F |||∆V |||2F + 18pεσ∗1 |||∆U |||F|||∆V |||F

≤ 4(1 + ε)p|||M −M∗|||2F + (6 + 4ε)p|||∆U |||2F |||∆V |||2F + 18pεσ∗1 |||∆U |||F|||∆V |||F
≤ 4(1 + ε)p|||M −M∗|||2F + (6 + 4ε)pδ2 + 9pεσ∗1δ.

We thus finish proving our conclusion by combining all pieces and noticing that γ = 3 and ε ≤ 1/4.

B Proofs for Technical Lemmas

In this section, we prove several technical lemmas that are used in the proofs of our main theorems.

B.1 Proof of Lemma 1

We observe that
|||A|||op = sup

x∈Sd1−1

sup
y∈Sd2−1

x>Ay.

We denote the support of A by Ω. For any x ∈ Rd1 , y ∈ Rd2 and β > 0, we have

x>Ay =
∑

(i,j)∈Ω

xiA(i,j)yj ≤
∑

(i,j)∈Ω

1

2
‖A‖∞(β−1x2

i + βy2
j )

=
1

2
‖A‖∞

∑
i

∑
j∈Ω(i,·)

β−1x2
i +

∑
j

∑
i∈Ω(·,j)

βy2
j


≤ 1

2
‖A‖∞

(
αd2β

−1‖x‖22 + αd1β‖y‖22
)
.

It is thus implied that |||A|||op ≤ 1
2α(β−1d2 + βd1)‖A‖∞. Choosing β =

√
d2/d1 completes the

proof.
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B.2 Proof of Lemma 9

We define a subspace K ⊆ Rd1×d2 as

K :=
{
X
∣∣ X = L∗A> +BR∗> for some A ∈ Rd2×r, B ∈ Rd1×r

}
.

Let ΠK be Euclidean projection ontoK. Then according to Theorem 4.1 in [7], under our assumptions,
for all matrices X ∈ Rd1×d2 , inequality

p−1||| (ΠKΠΦΠK − pΠK)X|||F ≤ ε|||X|||F (61)

holds with probability at least 1− 2d−3.

In our setting, by restricting X = L∗A> +BR∗>, we have ΠKX = X . Therefore, (61) implies that

|||ΠKΠΦX − pX|||F ≤ pε|||X|||F.

For |||ΠΦX|||2F , we have

|||ΠΦX|||2F = 〈〈ΠΦX, ΠΦX〉〉 = 〈〈ΠΦX, X〉〉
= 〈〈ΠKΠΦX, X〉〉 ≤ |||ΠKΠΦX|||F|||X|||F ≤ p(1 + ε)|||X|||2F .

On the other hand, we have

|||ΠΦX|||2F = 〈〈ΠKΠΦX, X〉〉 = 〈〈ΠKΠΦX − pX + pX, X〉〉
= p|||X|||2F − 〈〈X, −ΠKΠΦX + pX〉〉
≥ p|||X|||2F − |||X|||F|||ΠKΠΦX − pX|||F ≥ p(1− ε)|||X|||2F .

Combining the above two inequalities, we complete the proof.

B.3 Proof of Lemma 10

We observe that |Φ(i,·)| is a summation of d2 i.i.d. binary random variables with mean p and variance
p(1− p). By Bernstein’s inequality, for any i ∈ [d1],

Pr

[∣∣|Φ(i,·)| − pd2

∣∣ ≥ 1

2
pd2

]
≤ 2 exp

(
−

− 1
2 (pd2/2)2

d2p(1− p) + 1
3 (pd2/2)

)
≤ 2 exp

(
− 3

28
pd2

)
.

By probabilistic union bound, we have

Pr

[
sup
i∈[d1]

∣∣|Φ(i,·)| − pd2

∣∣ ≥ 1

2
pd2

]
≤ 2d1 exp

(
− 3

28
pd2

)
≤ 2d−1,

where the last inequality holds by assuming p ≥ 56
3

log d
d2

.

The term |Ω∗o(i,·)| is a summation of at most αd2 i.i.d. binary random variables with mean p and
variance p(1− p). Again, applying Bernstein’s inequality leads to

Pr

[
|Ω∗o(i,·)| − E

[
|Ω∗o(i,·)|

]
≥ 1

2
pαd2

]
≤ exp

(
− 3

28
pαd2

)
.

Accordingly, by the assumption p ≥ 56
3

log d
αd2

, we obtain

Pr

[
sup
i∈[d1]

|Ω∗o(i,·)| − pk ≥
1

2
pk

]
≤ d1 exp

(
− 3

28
pαd2

)
≤ d−1.

The proofs for |Φ(·,j)| and |Ω∗o(·,j)| follow the same idea.
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B.4 Proof of Lemma 11

According to Lemma 3.2 in [5], under condition p ≥ c1 µ log d
d1∧d2 , for any fixed matrix A ∈ Rd1×d2 , we

have

|||A− p−1ΠΦA|||op ≤ c2

√
d log d

p
‖A‖∞,

holds with probability at least 1−O(d−3). Letting A be all-ones matrix, then we have that for all
u ∈ Rd1 , v ∈ Rd2 , ∑

(i,j)∈Φ

uivj ≤ p‖u‖1‖v‖1 + c2
√
pd log d‖u‖2‖v‖2.

We find that

|||ΠΦ(UV >)|||2F ≤
∑

(i,j)∈Φ

‖U(i,·)‖22‖V(j,·)‖22

≤ p|||U |||2F |||V |||2F + c2
√
pd log d

√∑
i∈[d1]

‖U(i,·)‖42
√∑
j∈[d2]

‖V(j,·)‖42

≤ p|||U |||2F |||V |||2F + c2
√
pd log d|||U |||F|||V |||F‖U‖2,∞‖V ‖2,∞

≤ p|||U |||2F |||V |||2F + c2

√
pµ2r2d log d

d1d2
|||U |||F|||V |||F.

By the assumption p & µ2r2 log d
ε2(d1∧d2) , we finish proving (51).

According to the proof of Lemma 10, if p ≥ c log d
d1∧d2 , with probability at least 1−O(d−1), we have

|Φ(i,·)| ≤ 3
2pd2 and |Φ(·,j)| ≤ 3

2pd1 for all i ∈ [d1] and j ∈ [d2]. Conditioning on this event, we
have

|||ΠΦ(Z)V |||2F =
∑
i∈[d1]

∑
k∈[r]

〈(ΠΦ(Z))(i,·), H(·,k)〉2

≤
∑
i∈[d1]

∑
k∈[r]

‖(ΠΦ(Z))(i,·)‖22
∑

j∈Ω(i,·)

V 2
(j,k)

= |||ΠΦZ|||2F
∑

j∈Ω(i,·)

‖V(i,·)‖22

≤ |||ΠΦZ|||2F
3

2
pd2 · ‖V ‖22,∞ ≤ 2µrp|||ΠΦZ|||2F .

We thus finish proving (52). Inequality (53) can be proved in the same way.

B.5 Proof of Lemma 8

Recall that we let F := [U ;V ] and Fπ∗ := [U∗;V ∗]Q for some matrix Q ∈ Qr, which minimizes
the following function

|||F − [U∗;V ∗]Q|||2F . (62)
Let F ∗ := [U∗;V ∗]. Expanding the above term, we find that Q is the maximizer of 〈〈F, F ∗Q〉〉 =
Tr(F>F ∗Q). Suppose F>F ∗ has SVD with form Q1ΛQ>2 for Q1, Q2 ∈ Qr. When the minimum
diagonal term of Λ is positive, we conclude that the minimizer of (62) is unique and Q = Q2Q

>
1 . To

prove this argument, we note that

Tr(F>F ∗Q) =
∑
i∈[r]

Λ(i,i)〈pi, qi〉,

where pi is the i-th column of Q1 and qi is the i-th column of Q>Q2. Hence, Tr(F>F ∗Q) ≤∑
i∈[r] Λ(i,i) and the equality holds if and only if pi = qi for all i ∈ [r] since every Λ(i,i) > 0. We

have Q1 = Q>Q2 and thus finish proving the argument.
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Under our assumption |||F − Fπ∗ |||op <
√

2σ∗r , for any nonzero vector u ∈ Rr, we have

‖F>Fπ∗u‖2 ≥ ‖F>π∗Fπ∗u‖2 − ‖(Fπ∗ − F )>Fπ∗u‖2 ≥ (
√

2σ∗r − |||Fπ∗ − F |||op)|||Fπ∗u|||F > 0.

In the second step, we use the fact that the singular values of Fπ∗ are equal to the diagonal terms of√
2Σ∗1/2. Hence, F>Fπ∗ has full rank. Furthermore, it implies that F>F ∗ has full rank and only

contains positive singular values.

Proceeding with the proved argument, we have

F>Fπ∗ = Q1ΛQ>2 Q2Q
>
1 = Q1ΛQ>1 ,

which implies that F>Fπ∗ is symmetric. Accordingly, we have (F − Fπ∗)>Fπ∗ is also symmetric.

C Supporting Lemmas

In this section, we provide several technical lemmas used for proving our main results.

Lemma 12. For any (U∗, V ∗) ∈ E(M∗), U ∈ Rd1×r and V ∈ Rd2×r, we have

|||UV > − U∗V ∗>|||F ≤
√
σ∗1(|||∆V |||F + |||∆U |||F) + |||∆U |||F|||∆V |||F,

where ∆U := U − U∗, ∆V := V − V ∗.

Proof. We observe that UV > − U∗V ∗> = U∗∆>V + ∆UV
∗> + ∆U∆>V . Hence,

|||UV > − U∗V ∗>|||F ≤ |||U∗∆>V |||F + |||∆UV
∗>|||F + |||∆U∆>V |||F

≤ |||U∗|||op|||∆V |||F + |||V ∗|||op|||∆U |||F + |||∆U |||F|||∆V |||F.

Furthermore, assuming (U, V ) ∈ U × V , where U and V satisfy the conditions in (19), we have the
next result.

Lemma 13. For any (i, j) ∈ [d1]× [d2], we have

|(UV > − U∗V ∗>)(i,j)| ≤ 3

√
µrσ∗1
d1
‖∆V (j,·)‖2 + 3

√
µrσ∗1
d2
‖∆U(i,·)‖2 (63)

Proof. We observe that

|(UV > −M∗)(i,j)| ≤ |〈U∗(i,·), ∆V (j,·)〉|+ |〈V ∗(j,·), ∆U(i,·)〉|+ |〈∆U(i,·), ∆V (j,·)〉|

≤
√
µrσ∗1
d1
‖∆V (j,·)‖2 +

√
µrσ∗1
d2
‖∆U(i,·)‖2 +

1

2
‖∆U‖2,∞‖∆V (j,·)‖2 +

1

2
‖∆V ‖2,∞‖∆U(i,·)‖2.

By noticing that

‖∆U‖2,∞ ≤ ‖U∗‖2,∞ + ‖U‖2,∞ ≤ 3

√
µrσ∗1
d1

, ‖∆V ‖2,∞ ≤ ‖V ∗‖2,∞ + ‖V ‖2,∞ ≤ 3

√
µrσ∗1
d2

,

we complete the proof.

Lemma 13 can be used to prove the following result.

Lemma 14. For any α ∈ [0, 1], suppose Ω ⊆ [d1]× [d2] satisfies |Ω(i,·)| ≤ αd2 for all i ∈ [d1] and
|Ω(·,j)| ≤ αd1 for all j ∈ [d2]. Then we have

|||ΠΩ(UV > − U∗V ∗>)|||2F ≤ 18αµrσ∗1(|||∆V |||2F + |||∆U |||2F).
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Proof. Using Lemma 13 for bounding each entry of UV > − U∗V ∗>, we have that

|||ΠΩ(UV > − U∗V ∗>)|||2F ≤
∑

(i,j)∈Ω

|(UV > − U∗V ∗>)(i,j)|2

≤
∑

(i,j)∈Ω

18µrσ∗1
d1

‖∆V (j,·)‖22 +
18µrσ∗1
d2

‖∆U(i,·)‖22

≤
∑
j

∑
i∈Ω(·,j)

18µrσ∗1
d1

‖∆V (j,·)‖22 +
∑
i

∑
j∈Ω(i,·)

18µrσ∗1
d2

‖∆U(i,·)‖22

≤ 18αµrσ∗1(|||∆V |||2F + |||∆U |||2F ).

Denote the i-th largest singular value of matrix M by σi(M).

Lemma 15 (Lemma 5.14 in [24]). Let M1,M2 ∈ Rd1×d2 be two rank r matrices. Suppose they have
SVDs M1 = L1Σ1R

>
1 and M2 = L2Σ2R

>
2 . Suppose |||M1 −M2|||op ≤ 1

2σr(M1). Then we have

d2(L2Σ
1/2
2 , R2Σ

1/2
2 ;L1Σ

1/2
1 , R1Σ

1/2
1 ) ≤ 2√

2− 1

|||M2 −M1|||2F
σr(M1)

.

D Parameter Settings and More Results for FB Separation Experiments

We approximate the FB separation problem by the RPCA framework with r = 10, α = 0.2, µ = 10.
Our algorithmic parameters are set as γ = 1, η = 1/(2σ̂∗1), where σ̂∗1 is an estimate of σ∗1 obtained
from the initial SVD. The parameters of AltProj are kept as provided in the default setting. For IALM,
we use the tradeoff paramter λ = 1/

√
d1, where d1 is the number of pixels in each frame (the number

of rows in Y ).

Note that both IALM and AltProj use the stopping criterion

|||Y −Mt − St|||F/|||Y |||F ≤ 10−3.

Our algorithm for the partial observation setting never explicitly forms the d1-by-d2 matrix Mt =
UtV

>
t , which is favored in large scale problems, but also renders the above criterion inapplicable.

Instead, we use the following stopping criterion

|||Ut+1 − Ut|||2F + |||Vt+1 − Vt|||2F
|||Ut|||2F + |||Vt|||2F

≤ 4× 10−4.

This rule checks whether the iterates corresponding to low-rank factors become stable. In fact, our
stopping criterion seems more natural and practical because in most real applications, matrix Y
cannot be strictly decomposed into low-rank M and sparse S that satisfy Y = M + S. Instead of
forcing M + S to be close to Y , our rule relies on seeking a robust subspace that captures the most
variance of Y .

Figure 3 shows the recovery results for several more frames. Our algorithms enjoy better running
time and outperform AltProj and IALM in separating persons from the background images.
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Original GD (49.8s) GD, 20% sample (18.1s) AltProj (101.5s) IALM (434.6s)

Original GD (49.8s) GD, 20% sample (18.1s) AltProj (101.5s) IALM (434.6s)

Original GD (87.3s) GD, 20% sample (43.4s) AltProj (283.0s) IALM (801.4s)

Original GD (87.3s) GD, 20% sample (43.4s) AltProj (283.0s) IALM (801.4s)

Figure 3: More results of FB separation in Restaurant and ShoppingMall videos. The leftmost images are
original frames. The right four columns show the results from our algorithms with p = 1, p = 0.2, AltProj [21],
and IALM [20]. The runtime of each algorithm is written in the title.
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