Fast RPCA: Supplemental Material

In this document, we collect all the proofs and technical lemmas for the theoretical results established
in the main paper.

A Proofs

In this section we provide the proofs for our main theoretical results in Theorems [[H4]and Corollar-

ies(ll

A.1 Proof of Theorem[I]

LetY :=Y — Sipir. AsY = M* + S*, wehave Y — M* = §* — S;,. Weobtain Y — M* € Sy,
because S™, Sinit € Sa.

We claim that ||Y" — M*||o < 2||M*||. Denote the support of S*, Siy by Q* and 2 respectively.
Since Y — M* is supported on €2 U 2%, to prove the claim it suffices to consider the following three
cases.

e For (7,7) € 2* N, due to rule of sparse estimation, we have (S* — Siuit)i,;) = 0.

e For (i,7) € Q*\ Q, we must have |Sz‘ij)| < 2||M*||o. Otherwise, we have |Y; ;)| =
[(S* + M*)i 5| > [[M*||oo. So |Y(; ;)| is larger than any uncorrupted entries in its row
and column. Since there are at most « fraction corruptions per row and column, we have
Y{; ;) € €2, which violates the prior condition (7, 7) € Q* \ Q.

e For the last case (i,7) € 2\ 7, since (Sinit) (i,) = M(; ;) trivially we have |(Sinic) (i,5)| <
1Moo

The following result, proved in Section relates the operator norm of ¥ — M* to its infinite norm.

Lemma 1. For any matrix A € R4 that belongs to S, given in (3), we have
ALl < av/dida||Allo-
We thus obtain

IV — M*|, < 2a/dida||Y — M*||oo < 4ar/d1da||M*|| o0 = 4apuro;. (16)

In the last step, we use the fact that M * satisfies the p-incoherent condition, which leads to

1M oo < IM* lop I L7 2,00 | B |2,00 <

< N L I a7

We denote the i-th largest singular value of Y by o;. By Weyl’s theorem, we have loF —oi] <
|Y' — M*||o, forall i € [dy Ads). Since o, = 0, we have 0,41 < ||[Y — M*[|op. Recall that Uy V"
is the best rank r approximation of Y. Accordingly, we have

1UoVs" — M*llop < NU6VY" — Yllop + 1Y — M* [l
= 0r1 Y = Moy <2|Y — M7y < 8apiror.

op =

Under condition aypur < 14—, we obtain [|UgVy" — M*[|,, < 07 Applying Lemma 5.14 in [24] (we
provide it as Lemma [T3]for the sake of completeness), we obtaln

2 UV — MR _ 107UV — ME|I5
V2 -1 o - o

Plugging the upper bound of [|UyV," — M*||,, into the above inequality completes the proof.

d*(Uo, Vo; U*, V*) <
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A.2  Proof of Theorem 2|

We essentially follow the general framework developed in [12] for analyzing the behaviors of gradient
descent in factorized low-rank optimization. But it is worth to note that [12] only studies the
symmetric and positive semidefinite setting, while we avoid such constraint on M *. The techniques
for analyzing general asymmetric matrix in factorized space is inspired by the recent work [24] on
solving low-rank matrix equations. In our setting, the technical challenge is to verify the local descent
condition of the loss function (8)), which not only has a bilinear dependence on U and V/, but also
involves our sparse estimator (4).

We begin with some notations. Define the equivalent set of optimal solution as

E(M*) i= {(4, B) € RI x REXT | A= L'571/2Q, B = R'S71/%Q, where Q € Q|
(18)

Given (Up, V) € By (CQ\/U:/KJ), by (TI), we have [|[Ug V" — M*|l,, < 207 when ¢ is sufficiently
small. By Weyl’s theorem We thus have

Voi/2 <Uolley < \/307/2, and /a7 /2 < [Vollop < /307 /2.

As aresult, for U, V constructed according to , we have

EM*YCUXV,andU CU,V CV, (19)
where
A= d AR | [Alpoe < /PN 2 LA e REXT | Al < /771N
’ dy : ds
We let )
GU, V)= IUTU = VIV (20)

For L(U,V; S), we denote the gradient with respect to M by V, L(U,V; S),ie. Vi, L(U,V;S) =
Uvi+85-Y.

The local descent property is implied by combining the following two results, which are proved in
Section[A.7] and [A 8| respectively.

Lemma 2 (Local descent property of £). Suppose U,V satisfy (19). For any (U,V) € (U X
V) N Ba(y/07), welet S = Tyo [Y — UVT}, where we choose v = 2. Then we have that for
(U, Vi) € argminga pyeg(a-) U — Al + |V — BJJ7 and 8 > 0,

2 _vots —3\/ord3. (21)

2, and v :=9(B + 6)aur + 557 L

(VLU V;8), UV —Up VoL + ApAY) > UV = U VL

Here Ay :=U — Up+, Ay :=V = Voo, § := | Ay |2 + | Av

Lemma 3 (Local descent property of G). For any (U,V) € Ba(y/07) and
U — Al + IV - Bl

Urp, Vi) € i
( )€ B

we have

(VoG(U, V), U=Uz)) + (VvG(U, V), V = V)

o363
2

2
F

1 1 1
> SIUTU - VIVIE+ ovd - — UV UV
where § is defined according to Lemmal2)
As another key ingredient, we establish the following smoothness condition, proved in Section[A.9]

which indicates that the Frobenius norm of gradient decreases as (U, V') approaches the optimal
manifold.
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Lemma 4 (Smoothness). For any (U,V) € Ba(/07), we let S = Ty [Y —UV ], where we

choose v = 2. We have that
IVa £, Vi S)E < 6JlUVT — M, (22)

and
IVuGUWIF+IVvGU)IF <201 IUTU - VTVZ. (23)

With the above results in hand, we are ready to prove Theorem [2]

Proof of Theorem[2] We use shorthands
8 = d*(Uy, Vi; U, V*), Ly := L(Uy, Vi Sy), and G, := G(U, V).

For (Uy, Vy), let (UL., VL) := argmin 4, gyee (=) [[Us— Al +[|V:— B||Z. Define A}, := U, —ULL.,

AL =V, —VE.
We prove Theorem 2] by induction. It is sufficient to consider one step of the iteration. For any ¢ > 0,
under the induction hypothesis (U;, V;) € By (02\/0: / H). We find that

41 < U1 — UL |7 + Vi1 — Vi
<NU = Vo Ly =nVuGe — UL + Vi =0V v Ly = Vv G — VL7
<& —2n{VuLli+VuG, U — U;*» =20 {VvL+VvG, Vi — V;*»
W1 Wa
+ 07 Vol + VoGl +0* Vv Le + Vv Gz, (24)

W3 W4

2
F

where the second step follows from the non-expansion property of projection onto I/, V, which is

implied by £(M*) C U x V shown in (19). Since Vi Ly = [Vp L]V and Vy L, = [VMEt]T U,
we have

(VuLy, Up=UL) + (VvLy, Vi = VE) = (VuLy, UV, — UL VE + AGAY)).
Combining Lemma|2| and@ under condition §; < o}, we have that
1 . 1 1, . e
Wit W 2 SN0V, = M+ SIUT U = VTV + 5078, — vois, — 4yfo16}.
On the other hand, we have
Wi + Wy < 2| VoLl + 2IVuGill? + 2 Vv Ll + 20 Vv G2

< 21Ulz, + IV IV as Lell + 20V 0 Gelli + 20V Gell
< 360710V, — M*|Z + 407 |IU," U: = VT VAIZ,

where the last step is implied by Lemmaand the assumption (U, V;) € Bo (62 Vor/ /{) that leads

© [[Utllop < v/307/2, IVillop < /307 /2.

By the assumption 7 = ¢/o7 for any constant ¢ < 1/36, we thus have
1
—2n(Wy + Wa) + n?(Ws + Wy) < —Zna;fét + 2nvoid + 8ny/ i d;.

In Lernma choosing 3 = 320k and assuming o < 1/(k?pur), we can have v < 1/(32k). Assuming

8 S o) /kleads to 141/0767 < -076,. We thus obtain

Sr1 < (1 - ”g) . (25)

Under initial condition dy < o /k, we obtain that such condition holds for all ¢ since estimation error
decays geometrically after each iteration. Then applying (23) for all iterations, we conclude that for

allt =0,1,...,
N
[}
5, < (1— ”8’“> 5o.
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A.3 Proof of Corollary/[l]

We need o < HQIW due to the condition of Theorem [2| In order to ensure the linear convergence
happens, it suffices to let the initial error shown in Theorem|T]be less than the corresponding condition

in Theorem 2] Accordingly, we need

28V kaury/ry/o; S0k [k,
1
RS

Using the conclusion that gradient descent has linear convergence, choosing T = O(x log(1/¢)), we
have

which leads to o <

d*(Up, Vp; U, V*) < 2d%(Uy, Vo, U*, V*) < €2

3.‘~3*

Finally, applying the relationship between d(Uz, Vz; U*, V*) and ||[UrV, — M*||r shown in (TT)),
we complete the proof.

A.4 Proof of Theorem

LetY := %(Y — Sinit)- Similar to the proof of Theorem |1} we first establish an upper bound on
Y — M*||.,. We have that

I = M ep < Y = ZHa Ml + |7 Tle (M7) = M7l (26)

For the first term, we have Y — %H@M* = %(H¢(S*) — Sinit) because Y = Ilg(M* + S*). Lemma

shows that under condition p 2> %

row and column of I (S*) with high probability. Since Siyit € Sapa. We have
e (S™) — Sinic € Sapa- 27

, there are at most %pa—fraction nonzero entries in each

In addition, we prove below that

T (S7) = Sinitl[ oo < 2[| M| co- (28)
Denote the support of I (S*) and Siy;e by Q7 and Q. For (i,5) € QXN Qand (4,5) € 2\ QF, we
have (I1g(S*) — Smh)(i’j) = 0 and (I3 (S*) — Sinit)(i,j) = _M(*i,j)’ respectively. To prove the
claim, it remains to show that for (¢, ) € Q7 \ €, [S(; ;)| < 2[|M*||o. If this is not true, then we
must have |Y(; ;)| > [|M*||. Accordingly, |Y(; ;)| is larger than the magnitude of any uncorrupted
entries in its row and column. Note that on the support ®, there are at most %pa corruptions per row
and column, we have (4, j) € €2, which violates our prior condition (7, j) € Q% \ Q.

Using these two properties (27), (28) and applying Lemmal(I] we have
Ve 1 * * * *
mY — ];H@M H|0P S 40(\/ d1d2||Hq>(S ) — Sinit”oo S 806\/ d1d2HM ||oo S 80[/”“0'1, (29)

where the last step follow from (T7).

For the second term in (26), we use the following lemma proved in [10].

Lemma 5 (Lemma 2 in [10]). Suppose A € R4 s q fixed matrix. We let d := max{dy,ds}.
There exists a constant c such that with probability at least 1 — O(d~1),

log d
p

log d

1
172 (4) = Al < < [A]loo + max {[| 4|20, ||AT||2,OO}) :

Given the SVD M* = L*XR*T, for any i € [d;], we have
1M ll2 = 1LG SR 2 < oF LG 52 < TN ar
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We can bound || M* T ||2,o0 similarly. Lemmalleads to

1 Jdogd pur log d
e (M*) — M*|, o} < 30
I Mo o < 8ot ¢\ |28, [ ot < deoi /R G0)

4ur?logd
€2 (dl /\dz) :

Putting (29) and (30) together, we obtain
I — M*1,y < Sapro} + ea /VF.

Then using the fact that UV, is the best rank r approximation of Y and applying Wely’s theorem
(see the proof of Theorem [I]for a detailed argument) we have

1U6Ve" = M*[lop < NUoVo" = Yllop + Y — M*[lop
<2|Yy — M* |\|Op < 16auro] + 2c'eoy /\/r

under condition p >

Under our assumptions, we have 16auro; + 2c’eos /y/r < %a;‘ . Accordingly, Lemma gives
2 UV - MU 10r U0 - MRS

V2-1 o - o
We complete the proof by combining the above two inequalities.

d*(Uo, Vo; U™, V*) <

A.5 Proof of Theorem [

In this section, we turn to prove Theoremd] Similar to the proof of Theorem 2} we rely on establishing
the local descent and smoothness conditions. Compared to the full observation setting, we replace

L by L given in (@), while the regularization term G(U, V) := & |[UTU — VT V|| merely differs
from G(U, V) given in (20) by a constant factor. It is thus sufficient to analyze the properties of L.
Define £(M*) according to @) Under the initial condition, we still have

EM*)CUXV,andU CU,V C V. 31
We prove the next two lemmas in Section [A-T0| and [A-TT] respectively. In both lemmas, for any
(U, V) €U x V, we use shorthands

UT('*)Vﬂ'* =
( J=arg, uin, .

Ay :=U Uz, Ay :=V —Vpe,and § := |||AUH|F + |Av || Recall that d := max{ds, do}.
Lemma 6 (Local descent property of £). Suppose U,V satisfy (GI). Suppose we let
S = Topa [ (v UV,

where we choose y = 3. For any 8 > 0 and € € (0, 1), we define v := (143 + 81)aur + 26,/¢ +
18371, There exist constants {c;}?_, such that if

2,.2
wer 1 logd
p > + - +1 32

_Cl<62 o )dl/\dg’ (32)

I + 11V — BIIE,

then with probability at least 1 — cod ™!,

—v0o5—104/0F63 — 26>

- 3
(VLU V;S), UV — U VL + ApAL) > —6|||UVT—U,F*VW

(33)
forall (U, V) € (U xV)NBs (/0F).
Lemma 7 (Smoothness of /j) Suppose U,V satisfy . Suppose we let S =
Tyap [Hq; (Y - UVT)] for v = 3. There exist constants {c;};_, such that for any € € (0, i

when p satisfies condition (32), with probability at least 1 — cad™1, we have that for all (U,V) €
(U x V)N Ba(y/0F),

IVu LU, Vi E + Vv LU, Vi S)IF < e [prai[UVT = Uns VoL 17 + prots (s + 601‘)}(3-4)
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In the remainder of this section, we condition on the events in Lemmal6and[7} Now we are ready to
prove Theorem 4]

Proof of TheoremH] We essentially follow the process for proving Theorem 2] Let the following
shorthands be defined in the same fashion: &;, (UL., VL), (AL, AY), Ly, Gi.

Here we show error decays in one step of iteration. The induction process is the same as the proof of
Theorem 2] and is thus omitted. For any ¢ > 0, similar to (24) we have that

Sev1 < 6 — 20 (Vuly + VuGr, Uy — UL.) —2n (VvLi+ VG, V, — VL)
W1 W2
+ 0?2 IVuLe + VoGl +n* Vv Le + Vv G2 .

W3 W4

We also have
(VuLy, Uy —ULY) 4+ (VyLy, Vi = VEY = (VmLy, UV, — UL VET + ALALTY,

which can be lower bounded by Lemma@ Note that 5 differs from G by a constant, we can still
leverage Lemma Hence, we obtain that

1
050 — vaioy — 114/ 0163 — 267,

1 § 1
Wi+ We 2 SIUV,T = MO+ 10 U= VIV + o

On the other hand, we have
Wi + Wi < 2| Vo Lellf + 20 VuGillf + 20V Lell? + 2 Vv Gill?
< e [urofJUV," — MY|IZ + proy8u(0; + eoi) + o1 lU; Us = V" VRIR]
where c is a constant, and the last step is implied by Lemma]and Lemmal(7]

By the assumption 7 = ¢/ /[uro}] for sufficiently small constant ¢/, we thus have

1
—2n(Wy + Wa) +n?(Ws + Wy) < —ﬁna;fat + 2nvat by + 22/ 063 4 4nd?.

Recall that v := (143 + 81)aur + 26+/€ + 1837 L. By letting 8 = 1k, € = ¢2/k? and assuming
a < c3/(pr?) and 0; < cq0) /K for some sufficiently small constants {c;}}_;, we can have
—2n(Wy + Wa) + n* (W3 + Wy) < —&;nod,, which implies that

noy
<(1-
6t+1_ ( 64)6t7

and thus completes the proof. O

A.6  Proof of Corollary 2]

We need v < —L— due to the condition of Theorem 4| Letting the initial error provided in Theorem

[3]be less than the corresponding condition in Theorem ] we have

51Vkaury/r/ot + Teien/wot <\ or/k,

1
aS ——,
uVr3Kd

Plugging the above two upper bounds into the second term in (I3)), it suffices to have

which leads to

€S

2~
w

k3pr?logd
PR
di N\ ds
Comparing the above bound with the second term in (14)) completes the proof.

15



A.7 Proof of Lemmal[2|

Let M := UV T. We observe that
VuLl(UV;8)=M+S—M"— 5"

Plugging it back into the left hand side of (ZI)), we obtain

(VuLUV;S), UVT —Up: Vil + ApALY) = (M + S — M* — S*, M — M* + ApAl)
> | M = M2 = [(S = 5", M = M*)|—[(M + 8 — M*— 5%, AyAy ). (35)

T1 T2

Next we derive upper bounds of 7} and 75 respectively.

Upper bound of 77. We denote the support of .S, S* by (2 and Q* respectively. Since S — S* is
supported on Q* U §2, we have

T < [{(la(S = 57%), M — M)+ |(TIgna(S = 57), M = M")|.

Wl W2

Recall that for any (i, j) € Q, we have S; jy = (M* + S* — M), ;). Accordingly, we have

Wy = |[a(M — M*)|z. (36)

Now we turn to bound W5. Since S; ;) = 0 for any (7, j) € Q* \ Q, we have
Wy = [(gm\oS™, M — M~)|.

Let u; be the i-th row of M — M™*, and v; be the j-th column of M — M*. For any k € [ds], we let

ugk) denote the element of u; that has the k-th largest magnitude. Similarly, for any k € [d;], we let
v;k) denote the element of v; that has the k-th largest magnitude.

From the design of sparse estimator (@), we have that for any (i, j) € Q" \ Q, |(M* 4 5* — M), ;)|
is either smaller than the yads-th largest entry of the i-th row of M* + S* — M or smaller than
the yad; -th largest entry of the j-th column of M* 4+ S* — M. Note that S* only contains at most
a-fraction nonzero entries per row and column. As a result, [(M* 4 S* — M); ;)| has to be less than

the magnitude of uz(-mdrad” or vj(-mdlfadl). Formally, we have for (i,5) € Q* \ €,

[(M* 4 8" = M) s3] < max {ju{1°%7)|, pp{redmed)) L, (37)

bij
Furthermore, we obtain

12 12
B2, < |g(ved2—adz))2 (vadi—adi) 2 - [[will3 [0 113 ' 38
b=l e S el T G- Dods 9

Meanwhile, for any (7, j) € Q* \ €, we have

1SG,j) (M = M%) j| = [(M*+ 5" =M = M*+ M) ) - (M — M) ;|
(

<M = M) 2+ [(M* + 5 = M) jy| - (M = M*) ;5]
< (M — M*) 6 j)? +bij - [(M — M*) 5]
3 2, Y
< 1+§ (M = M")pnl"+ ﬁ (39)
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where S in the last step can be any positive number. Combining (38) and (39) leads to
Was D ISGg) - (M = M)l

(i,j)EQ*\Q
b2.
(1 + ) Moo =209+ 3 o2
(Z J)EQ\Q
/3) , ol o112
< (1 Y pgeer —ap LY T
2 B A (v—=1Dads  (y—1ad;
ﬂ * 1 * (|2
145 ) Wlanaldf = M) + 55 11 = 3R 40)

In the last step, we use

1 1 1 1
> (Cbuin%ulnm%) < X (gl + glot)

(1,7) EQ*\Q ij)eQ*
<> Z qullg +> > 5 vaJIIQ
i€ld] jEQy; Jeld] i€Q.
<ad ||u1:||2 +a Y lvls =20 M — M| (41)
1€[d] J€[d]

We introduce shorthand § := [|Ay||2 + [|Av[|2. We prove the following inequality in the end of this
section.
M — M*|le < +/5070. (42)

Combining (36), (@0) and (@2) leads to

Jé; 9 5074
< o *\ 1112 ~ . o *
Ty < |Ho(M — M7 + (1 +5 ) Mano(M — M)l + B -1)
5076
92y 4+ B+ 2)auro;d + ——, (43)
( Jourio+ 5o

where the last step follows from Lemmaby noticing that IT, (M — M*) has at most ya-fraction
nonzero entries per row and column.

Upper bound of 7. To ease notation, we let C' := M 4+ S — M™* — S*. We observe that C' is
supported on )¢, we have

Ty < [{Haeengs (M = M), ApAy )|+ [([lano-C, ApAy)|.
W3 W4
By Cauchy-Swartz inequality, we have
Wi < [Hgecnge (M — M) [ellAvAy e < [|M — M* [l AvllelAvlle < /5076° /2,
where the last step follows from @2) and || Ay ||r]|Av s < 6/2.
It remains to bound Wy. By Cauchy-Swartz inequality, we have
Wi < [ naCllel Av Ay lr < [Ma-nge (M* + S* = M)l ArAy e

1/2

@ b2 ® [Jui |3 v 13
< X kA< | Y SR e 1AuldAvi
(i,)€Q*\Q (i,5)€Q*\Q 2 1
* 501
——IM = MYl AvlellAv e < 30 —1)

where step (a ) is from (37), step (b) follows from (38), and step (c) follows from (#I)). Combining
the upper bounds of W3 and Wy, we obtain

* £3
Ty < \/50703/2 + 2(5;7151). (44)
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Combining pieces. Now we choose v = 2. Then inequality (3] implies that
Ty < [9(B + 6)aur + 537 o76.
Inequality (@4) then implies that
Ty < 3y/0763.

Plugging the above two inequalities into (33) completes the proof.
Proof of inequality (@2). We find that

2
a1 — M|l < [\/UT(IHAvHIF +lAuvfle) + HIAulIIFIHAv\IIF}

2
1 1
< |VaTIAv + 180 + 3 VaTlAwle + 5 VaTlavE]

< 5ot (IAvliE + 1AviE),

where the first step follows from the upper bound of ||[A — M* ||z shown in Lemma[I2] and the
second step follows from the assumption ||Ay||s, [[Av |lr < +/0F.

A.8 Proof of Lemmal[3
‘We first observe that
1 1
VuG(U,V) = EU(UTU -V'V), VvG(U,V) = 5V(VTV —-U'U),
Therefore, we obtain
(VuGU, V), U—Uz- )+ (VyGU, V), V — Vi)
1
= §<<UTU VIV, UTU-VV -U"Up +VV,.)
_Yywrv—vv 2+ Lo - VIV, UTU-VTV -2U Up +2V Ve
4 4
1 1
= i\||UTU ~VIV|2+ 1<<UTU VTV, UU-VTV =20 Upe + 200 Vi),  (45)
where the last step follows from AU« — Al Ve = UTUyp« — VTV since UL Upe = VL Vi
Note that
UTU-VTV = Up 4+ Ap) (Ugs + Ap) = (Ve + Ay) T (Vie + Ay)
=ULAy + ALU~ + ALAy = VLAY — Al Ve — Al Ay,

where we use UL U« = V..V, again in the last step. Furthermore, since U'U — V'V is
symmetric, we have

(UTU VTV, ULAy + ALU — VLAY — A Vi)
= (UTU - VTV, 20/ Upe —2A0 V).
Using these arguments, for the second term in (@3), denoted by T, we have
1
Ty = Z<<UTU VTV, ALAy — AVAY).
Furthermore, we have
AT, < |(UTU = VTV, AfAy = AJAV)] < IUTU = VTV e (IAUlE + 1AVIE)
< (WU = UL U e + IVTV = VL Vie|I5) 6
<2([1Uxlopll Avlle + V- lopll Avlle) 6 < 24/2076°. (46)
It remains to find a lower bound of [[UTU — V " V||¢. The following inequality, which we turn to

prove later, is true:
IUTU - VTVIE > [UUT - Ur UL

2LV =V VL= 20UV — U VL2 (47)
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Proceeding with the first term in {@3)) by using @7), we get
1 1 1
MU =VIVIE = SUTU = VIV + UTU = VIV

1 1 1 1
> SUTU = VIVIE+ SUUT = U Ul + gIVVT = Ve VLI = 2IUVT = U VL

1 1
= SI0TU=VTVIE + CIFFT - FroF.

U Uy~
F.: |:V:| 3 FT(* = |:V7-r*:| .

Introduce Ag := F — Fy«. Recall that § := ||Ay||2 + [|Av||2. Equivalently § = [|Ax||2. We have
IFFT — FrFlLle = |ARFL + Fr- Ap + ApAp |
> |ARFy, + Fe-Aplle = [AFIE = 1ARF,, + Fr-Apfle — 6.

1
1 CAGE AR AN (48)

where we let

For the first term, we have
IARF,, + Fr- ARl = 2l ArFLIZ + (AFF,., FrAR)

> 20, (Fe 2| AP + (AFFy., Fe-Afp) =407 |AR[E + (AFF,

T

FreAL).

For the cross term, by the following result, proved in [12] (we also provide a proof in Section B3] for
the sake of completeness), we have (ApF,,, Fr ALY > 0.

s

Lemma 8. When ||F — Fr-||,, < /207, we have that A Fy« is symmetric.

Accordingly, we have |[FFT — F o« E L ||r > 24/00 —§ > /o6 under condition § < o. Plugging
this lower bound into #8)), we obtain

2
F-

1 1 1 1
ZHIUTU ~VV|E > §|||UTU -VIV|Z+ gord— §|||UVT —Up- V.
Putting (@3], {@6) and the above inequality together completes the proof.

Proof of inequality @7). For the term on the left hand side of @7), it is easy to check that
IUTU - VTV =TI+ IVVTIZ =200V Tz (49)

The property U,L. Uy« = V..V implies that || Uy« UL le = [|[Vas Vil I = |Ux+ V.. ||¢. Therefore,
expanding those quadratic terms on the right hand side of (@7), one can show that it is equal to

IDUTIE +IVVTIE = 20U UlZ = 20V VIE +4QUR U, Vi V) =20V T (50)
Comparing inequalities (@9) and (30), it thus remains to show that
—2UUllg = 20V,-VIZ +4(Us-U, VAV) < 0.
Equivalently, we always have ||U,..U — V.. V|2 > 0, and thus prove @7).

A.9 Proof of Lemmald]
First, we turn to prove (23)). As
1 1
VuG(U, V) = 5U(UTU —-VTV), VyG(U,V) = §V(VTV -U'U),

we have

1
4
AS (U, V) € By(y/a7), we thus have [Ully < [Us-lop + [Us- = Ully < 2/, and similarly
|||V”|0p < 2\/%. We obtain

IVuGU VI + IVvG(U V)IIF < 205U - VTV,

IVuGU VI +IVv GO WV)IE < 5 (1015 + IVIE) IUTU = VIV,
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Now we turn to prove (22). We observe that
VML(U,V:S) =M+ S5 — M*— §*,

where we let M := UV 7. We denote the support of S, S* by  and 2* respectively. Based on the
sparse estimator (@) for computing S, V, L(U, V; S) is only supported on Q°. We thus have

IVa £(U, V5 9)le < [Maevo- (M = M7) [l + [Maeng- (M — M* = S7)||s
<M = M le + [Hgeno- (M — M™ = S7) .

It remains to upper bound the second term on the right hand side. Following (37) and (38), we have

.o [Juil3 ;113 2 2
IMaenas (M — M* — )| < + < (I U
’ ) (i j)ezngm* (y=Dady (v -Dad; =~ v-1 )

where the last step is proved in @T). By choosing v = 2, we thus conclude that

IV s LU, V5 S)le < (14 V2)IM = M* .

A.10 Proof of Lemmal6l

We denote the support of IIg(S*), S by 2% and 2. We always have Q% C ® and 2 C .

In the sequel, we establish several results that characterize the properties of ®. The first result, proved
in Section[B.2] shows that the Frobenius norm of any incoherent matrix whose row (or column) space
are equal to L* (or R*) is well preserved under partial observations supported on .

Lemma 9. Suppose M* € R“*% s q rank r and p-incoherent matrix that has SVD M* =
L*S*R*T. Then there exists an absolute constant ¢ such that for any € € (0,1), if p > c-4riosd

€2 (dl /\d2) ’
then with probability at least 1 — 2d~3, we have that for all A € R%=*" B € R4,
(1= L AT + BRT| < p~ 'l (L"AT + BRT) [ < (1 + ) LA + BRT|]7.
We need the next result, proved in Section to control the number of nonzero entries per row and
column in 2} and ®.

Lemma 10. Ifp > 52 a(}ngCfiZ)’ then with probability at least 1 — 6d~", we have

1 1 . 3 . 3
@i, | — pda| < §pd2, [|@(.5)| — pda| < §pd1, 1250, < iapdm 1% < 5047611,
foralli € [dy]) and j € [da).

The next lemma, proved in Section[B:4] can be used to control the projection of small matrices to ®.
. . 2,200 d .
Lemma 11. There exists constant ¢ such that for any ¢ € (0,1), if p > c%, then with

probability at least 1 — O(d™Y), for all matrices Z € R4*%2 U ¢ R"X" and V. € R%*" that

satisfy |Ul|2.00 < /i /dy, ||V ||2,00 < \/1ir/da, we have
P~ @V OIZ < NUIFAVIE + elU VI (51)
P e (Z)VIZ < 2pr|TTe (Z) 117 (52)
pHIU e (Z)]I7 < 20| (Z)]17- (53)

In the remainder of this section, we condition on the events in Lemmas[9} [[0]and[TT} Now we are
ready to prove Lemmal 6}

Proof of Lemmal6] Using shorthand M := U VT, we have

VmL(U,V;S) =p e (M + S — M* — S%).
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Plugging it back into the left hand side of (Z1]), we obtain

(VaL(U,V;8), UVT = Upe VoL + Ay ALY
1
= 5«11@ (M +S—M*—8%), M- M+ ApAy)

> %mmp (M — M) |2 - %\«n@ (S - 5%, M- M*)| - %|<<n¢ (M +5— M~ 5%), ApAT)|.

T1 T2 T3
(54)

Next we derive lower bounds of 71, upper bounds of 75 and 775 respectively.

Lower bound of T;. We observe that M — M* = U A, + AyV,L + AyA].. By triangle
inequality, we have

T (M — M*)lle > [TTe (Un- AV + Au Vi) le = [Ta (ArAy) .

Note that when ¢ > a — b for a, b > 0, we always have ¢ > 1a* — b%. We thus have

1 1
T > %HlH«p(Uﬂ*AE +ApVO)IE - §|||H<I>(AUAxT/)H|§

> (1= UL AT + AuVEE - [a(AuAT)I?

> %(1 — )M — M* = A AV IR = A IRIAVIE = 9eatl AvllellAv s

> i(l — M - M2 - %(1 = IAvAV[E ~ Av[FIAVIE — 9eot | Av el Av e
> (1= QM — M~ 28 — 5o

where the second step is implied by Lemma 9] the third step follows from (31 in Lemma [TT] by
noticing that [|Ay |2 0o < 3y/pros/dy and || Ay 2,00 < 3/ pro}/di, which is further implied by

Upper bound of 7. Since S — S* is supported on 25 U €2, we have
pTy < [(Moz\a(S7), Hopno(M — M7))| + [(To(S — 57), Ho(M — M¥))[. (55)

For any (i, j) € Q, we have (S — 5%)(; jy = (M* — M); ;). Therefore, for the second term on the
right hand side, we have

[(La(S — 5%), Ho(M — M*))| < [Ho(M — M*)[f < 18ypaurais, (56)

where the last inequality follows from Lemma and the fact that [Q(; | < ypada, [Q(. ;)| < ypady
foralli € [d1], j € [da].

We denote the i-th row of Il (M — M™) by u;, and we denote the j-th column of I1g (M — M™) by
v;. We let ugk) denote the element of u,; that has the k-th largest magnitude. We let v§k) denote the
element of v; that has the k-th largest magnitude.

For the first term on the right hand side of (33), we first observe that for (i, j) € Q& \ Q, [(M* +
S* — M) ;)| is either less than the ypauda-th largest element in the i-th row of Il (M* + S* — M),
or less than ypad; -th largest element in the j-th row of Il (M™* + S* — M). Based on Lemma
I (S*) has at most 3pads /2 nonzero entries per row and at most 3pady /2 nonzero entries per
column. Therefore, we have

(M 4 8% = M) s3] < max {ul 7P|y (O towad L (57)
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In addition, we observe that
|(Taa\(S™), Haxna(M — M*))|
< D M+ 8T = M) pll(M* = M)l + 1(M* = M) )

(4,7)€Q5\Q
B * 1 * *
< (14 5) Mo 0 <D0+ o S0 (0 8" = M,
(1,5)€Q:\Q
1
< (27 + 14B)papraid + o S M+ 8= M)l (58)
(i,5)€Q5\Q

where the second step holds for any 3 > 0 and the last step follows from Lemma[T4]under the size
constraints of 2 shown in Lemma [T0] For the second term in (38), using (57), we have

Z |(M* + §* — M)(i,j)|2 < Z |u£(7*1~5)l704d2)|2 + |vj('(“/*1-5)pad1)‘2

(2,5)€Q:\Q (4,5)€Q%
—1.5)pad —1.5)pady

_ Z Z |u§(w )P 2)|2+ Z Z |v;(w )P )‘2

iG[dl]jEQZ(i,_) jE[dQJiEQ;(»,j)

1.5 1.5 3 N

<Y ——luwli+ Y ——=llvlls < —=— e (M — M| (59)

) v—1.5 ) v—1.5 v—1.5

i€[ds] J€ldz]

Moreover, we have
IMe (M — M*)|IF < 201 (Us- Ay, + Au VD + 2 Te (Av Ay [
< 2(1+ O)pllUx- Ay + Ay VLR + 20l Av [l AV[IZ + 18peat | Aullell Av Ik
<41+ )p (U= IZNAVIE + IVa- I3 1 AU IE) + 20l Av IEIAVIE + 18peat|Av Il Av [l
< (4 +13€)pots + 2pd?, (60)

where the second step follows from Lemma[9] and inequality (51)) in Lemma [T} Putting (53))-(60)
together, we obtain

3[(2+ 7e)oid + 7]

To < (18 + 148 + 2T)auroid +

Upper bound of 75. By Cauchy-Schwarz inequality, we have
pTs < o (M — M* + S — S*) el e (Av AY)|le
< e (M =M™ +.5 — 5*)\||F\/pHIAUHI%IIIAle? + 9peat|Avflell Av e
<|HUe(M — M* + S — S*)|lg\/pd? + Specio.
where we use (31)) in Lemma|[TT]in the second step.
We observe that Il (M — M* + .S — S*) is supported on @ \ 2. Therefore, we have
T (M — M* + .5 = 5")[lr < Manqense-e(M — M)l + [Mengene- (M — M* = 5]k
< e (M — M7)[lp + [Hoene- (M — M™ = 57)]|s

3
~v—1.5

3
< (14,4 4+ 13¢)poyd + 2pd>
_< + 7_1.5> \/( +13¢)potd + 2po?,

where the third step follows from (39), and the last step is from (60). Under assumptions y = 3,
e <1/4and ¢ < of, we have

T3 < 31/90%0 + 202./62 4 5eaid < 104/07 03 + 23v/e0}4.

< T (M — M™)[Jr + T (M — M)
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Combining pieces. Under the aforementioned assumptions, putting all pieces together leads to

(VLU V;S), UV —Ug-V,. + ApAL)

1
> %MM — M*||2 — (148 + 81)aurc}d — <26\/E+ ;) o6 —10y/0763 — 262

A.11 Proof of Lemmalf7|

Let M := UV . We find that
VuL(U,V;8) =p g (M + S — M* — 5V,
VvL(U,V;8) =p 'He (M +S— M — 89" U.
Conditioning on the event in Lemma since (U, V) € U x V, inequalities (52) and (53] imply that

~ ~ 12 * * *
IVo LU, V; Sl + IVv LU, Vi S)lIE < 5 e IMe (M + 8 — M* — 5% |2

It remains to bound the term ||Tlg (M + S — M* — S*) ||2. Let % and € be the support of I1g (S*)
and S respectively. We observe that
I (M + 8 = M* = §%) [ = IHapa (M = M* = S) |F + IHe-cnoene (M — M) |I?
< Moo (M = M* = 8%) I + e (M — M*) 7.
In the proof of Lemmalf] it is shown in (39) that

3

oo (M — M*— 59 |? <
a0 S < 15

e (M — M)

Moreover, following (60), we have that

M (M — M)[Z < 201 + plUn- Ay + Av VLR + 200 AvFIAVIE + 18peat | Aullel Av [lr
<A@+ plIM = MJE + (6 + 40)pl AvlFIAVIE + 18pea | AullelAv [l
<414 e)p|M — M* || + (6 + 4€)pd> + 9pea’o.

We thus finish proving our conclusion by combining all pieces and noticing that y = 3 and € < 1/4.

B Proofs for Technical Lemmas

In this section, we prove several technical lemmas that are used in the proofs of our main theorems.

B.1 Proof of Lemmalll

We observe that
[y = swp  sup o7 4y,
z€Sd1—1 ye§da—1

We denote the support of A by Q. For any 2 € R%, iy € R% and 5 > 0, we have

1 _
x! Ay = Z TiAgig)Yj < Z §|\A||oo(ﬂ ot + By3)

(1,5)€Q (i,5)€Q

=%HAHoo SN s Y sy
i JE€QU,, J i€ )

1Alloo (ad2B™ |13 + adiBlyll3) -

It is thus implied that || A, < $ca(87 d2 + Bd1)||Aloo. Choosing 8 = \/da/d; completes the
proof.

<

DN =
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B.2 Proof of Lemma[9]
We define a subspace KC C R%1%42 a5
K={X|X= L*A" + BR*T for some A € R®2*" B e R"*" }.

Let I be Euclidean projection onto . Then according to Theorem 4.1 in [[7]], under our assumptions,
for all matrices X € R4 %% inequality

p | (M Ik — pllx) X|le < €| X || (61)

holds with probability at least 1 — 2d 3.
In our setting, by restricting X = L*AT + BR*T, we have IIxc X = X. Therefore, (61)) implies that

IMicIle X — pX|lr < pel X[r.

For ||T1s X ||2, we have

ITs X |17 = (e X, e X)) = (Tla X, X))
= (ke X, X)) < MxIls X [l X [lx < p(1 + )| X

On the other hand, we have

ITe X I = (MxIle X, X)) = (IcleX — pX +pX, X))
= pl X[ — (X, ~IclleX +pX))
> pIXIE — IX el e X — pX[le > p(1 = ) X[z

Combining the above two inequalities, we complete the proof.

B.3 Proof of Lemma (10l

We observe that |®(; .| is a summation of d5 i.i.d. binary random variables with mean p and variance
p(1 — p). By Bernstein’s inequality, for any ¢ € [d;],

1 —3(pdz/2)? 3
Pr |||®,y| — pdo| > pdg] < 2exp (— 2 <2exp|—=—pds | .
[EREES dap(1— p) + 3(pda/?)

By probabilistic union bound, we have

1 3
Pr | sup [|®; | — pda| > ~pda | < 2dy exp <—pd2) <2d7',
i€[d1) ' 2 28

> 56 logd

where the last inequality holds by assuming p > s

The term |Qz(l .)| is a summation of at most ads i.i.d. binary random variables with mean p and
variance p(1 — p). Again, applying Bernstein’s inequality leads to

1 3
Pr {|QO<Z | — {|Qo(l |} 2pad2} < exp (—%pa(b) .

Accordingly, by the assumption p > 5—36 %, we obtain

Pr| sup [,
i€[d1]

1 3 1
> - < - <d .
—pk > ka] < dj exp ( 28pad2> <d
The proofs for [®. ;)| and [} | follow the same idea.
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B.4 Proof of Lemma[11]

According to Lemma 3.2 in [3]], under condition p > ¢; lef\%j, for any fixed matrix A € R %% we
have
dlogd
A= p g Al < o Ao,

holds with probability at least 1 — O(d~?). Letting A be all-ones matrix, then we have that for all
u e Rdl,v € Rz,

> wiwy < pllullilvlls + c2v/pdlog dfull2v]l.

(i,j)€P
We find that
Ma@VHIE< S [0 131V I
(i,5)€e®
< pIUIRIVIE + e2/pdlogd | 3 ||U<i,.>||3¢ S Vil
i€[d1] JE[da]

< pIUIFIVIE + c2v/pdlogd

F F ,
pu2ridlogd
< pIUIRIVIE + 2y f —ady IV

2.2
By the assumption p > 52(2171&%5, we finish proving (GI).

According to the proof of Lemma Lifp>c dlo/%g , with probability at least 1 — O(d~!), we have

|®; )| < Spdy and [®(. ;)| < 3pdy foralli € [di] and j € [da]. Conditioning on this event, we

have
IMe(2)VIE = > > A(Me(2))i), Her)®
i€[d1] kE[r]
<Y Y @)z D Vi
i€[d1] k€(r] JE€QG,
=M ZIF > [Viaolls
JEQG,

3
< e Z[ESpds - V5,00 < 2prp| e Z]E.

We thus finish proving (52). Inequality (53) can be proved in the same way.

B.5 Proof of LemmafS|

Recall that we let F' := [U; V] and F~ := [U*; V*]|Q for some matrix € Q,, which minimizes
the following function
I# = (U VIQIE. (62)

Let F* := [U*; V*]. Expanding the above term, we find that @ is the maximizer of {(F, F*Q)) =
Tr(F T F*Q). Suppose F'T F* has SVD with form Q;AQ] for Q1, Q2 € Q,. When the minimum
diagonal term of A is positive, we conclude that the minimizer of (62)) is unique and Q = Q2Q7 . To
prove this argument, we note that

FTF Q Z A(z %) pza qz
i€lr]

where p; is the i-th column of @ and ¢; is the i-th column of QT Q. Hence, Tr(FT F*Q) <
Zie[r] A(i,i) and the equality holds if and only if p; = ¢; for all i € [r] since every A(; ;) > 0. We
have Q; = Q" Q- and thus finish proving the argument.
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Under our assumption || F' — Fr« ||, < /207, for any nonzero vector v € R", we have
1ET Freully > | EL Freulls = [(Fae = F)T Freully 2 (v/207 = [ Fee = Fllop) | Feullr > 0.

In the second step, we use the fact that the singular values of F;« are equal to the diagonal terms of
ﬂE*l/ 2 Hence, F'T F,.« has full rank. Furthermore, it implies that FT F* has full rank and only
contains positive singular values.

Proceeding with the proved argument, we have

F'Fre = Q1AQ; Q2Q] = Q1AQ/,

which implies that F'T Fi;- is symmetric. Accordingly, we have (F — Fy-)T Fy- is also symmetric.

C Supporting Lemmas

In this section, we provide several technical lemmas used for proving our main results.
Lemma 12. Forany (U*,V*) € £(M*), U € Rh*" and V€ R%*", we have

lovT — o vl < Vor(lavie+ I1avlly) + 1Av Ay I,
where Ay :=U —U*, Ay .=V = V*,

Proof. We observe that UV " — U*V*T = U*AJ, + AyV*T + Ay A/, Hence,
[UVT =T VT ls < JUAV e + 1AV e + | Av AT e
< NU ol Av e + IV ol Aulle + AUl Av [l
O

Furthermore, assuming (U, V') € U x V, where U and V satisfy the conditions in (T9), we have the
next result.

Lemma 13. For any (i,j) € [d1] x [d2], we have

*
HToq

(uvT — U*V*T)(i,j)| <3 d
2

uroy
11 ||AV(j,-)||2 +3 ||AU(i,-)||2 (63)

d

Proof. We observe that

(UVT = M) | UG Avgl + (VG Auia] + (v, Avi,))]

proy
<t/ —||Avy;.
<Gl +

uroy 1 1
d21 1Ayl + §||AU 2,00 |Av (i ll2 + §||Av||2,oo\|AU(i,-)||2-

By noticing that

proy
dy

* T‘O-* *
[Au 2,00 S NU[|2,00 + [1U]|2,00 < 34/ udlla [AV[l2,00 < [V |l2,00 + [[V][2,00 < 3

we complete the proof. O

Lemma [[3]can be used to prove the following result.

Lemma 14. For any a € [0, 1], suppose Q2 C [d1] x [do] satisfies |Q(; )| < ady for all i € [di] and
1. y| < ady forall j € [da]. Then we have

M@V = UV HIE < 18apror (JAvIE + | AvE).
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Proof. Using Lemmal13|for bounding each entry of UV T — U*V*T, we have that
[Me@VT —U V< > OV =0V T

(1,7)€Q
18uroy 18uroy
< > Z HlAvg) 3+ Z L Ava, 3
(1,7)€Q 2
18,u7"01 18,u7”01
<> INZEED S 1A 13
J i€ ) i JEQu,

< 18aprai (JAv | + Au|?)-

Denote the i-th largest singular value of matrix M by o;(M).

Lemma 15 (Lemma 5.14 in [24]). Let M, My € R4 %% pe two rank v matrices. Suppose they have
SVDs My = L1311 R{ and My = LaYs R, . Suppose |[My — Ma||,, < %O‘T(Ml). Then we have

2 My~ M2

dz(LQZé/Q’RQEi/Q;L12}/2,R12}/2) S \/i* 1 o (Ml)

D Parameter Settings and More Results for FB Separation Experiments

We approximate the FB separation problem by the RPCA framework with r = 10, o = 0.2, p = 10.
Our algorithmic parameters are set as v = 1, n = 1/(257 ), where 67 is an estimate of o} obtained
from the initial SVD. The parameters of AltProj are kept as provided in the default setting. For JALM,
we use the tradeoff paramter A = 1/+/dy, where d; is the number of pixels in each frame (the number
of rowsinY).

Note that both IALM and AltProj use the stopping criterion
1Y — M, = Sille/ 1Y [l < 1072,

Our algorithm for the partial observation setting never explicitly forms the d;-by-ds matrix M; =
U;V,", which is favored in large scale problems, but also renders the above criterion inapplicable.
Instead, we use the following stopping criterion

_ 2 Vi _ 2
|Us+1 Utl\l; + | 1 Villi < 4x 10~
NUNE + IV lI7

This rule checks whether the iterates corresponding to low-rank factors become stable. In fact, our
stopping criterion seems more natural and practical because in most real applications, matrix Y
cannot be strictly decomposed into low-rank M and sparse S that satisfy Y = M + S. Instead of
forcing M + S to be close to Y, our rule relies on seeking a robust subspace that captures the most
variance of Y.

Figure |3| shows the recovery results for several more frames. Our algorithms enjoy better running
time and outperform AltProj and IALM in separating persons from the background images.
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GD (

Original

49.8s) GD, 20% sample (18.1s)  AltProj ( ) TALM (434.6s)

Original GD (87.3s) GD, 20% sample (43.4s) TALM (801.4s)

AltProj (283.0s)

Original

Figure 3: More results of FB separation in Restaurant and ShoppingMall videos. The leftmost images are
original frames. The right four columns show the results from our algorithms with p = 1, p = 0.2, AltProj [21],
and IALM [20]. The runtime of each algorithm is written in the title.
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