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1 Proofs

Lemma 1 ([2])). For any x € Q1 and € > 0, we have

dist(zl, Q)
€

(F(z) = F(zl))

€

[ERE
where z1 € S, is the closest point in the e-sublevel set to .

The lemma is an immediate result from [2]. For completeness, we give the proof here.

1.1 Proof of Lemma 1
Proof. Consider ||z|| to be an Euclidean norm. We first recall the definition of z}:

- i lls — 22
z{ = arg min ||z — x| (1)

e =

where S = {z € O : F(x) < F, + €} is the sublevel set. We assume = ¢ S, otherwise the
conclusion holds trivially. Thus F'(xz) = F, + . By the first-order optimality conditions of , we
have for any z € Q, there exists ¢ > 0 (the Lagrangian multiplier of problem (1))

(xi f:L'JrCaF(:CD)T(Zf:L'D >0 2)

Let z = = we have
COF(al) (z — al) > ||z — 2f|?
We argue that ¢ > 0, otherwise = 2| contradicting to the assumption = ¢ S.. Therefore
o =2l Jlz — 2l

F(z)— F(al) > 0F (z}) " (z — al) > A [EE 3)

Next we prove that ( is upper bounded. Since
—e=F(af) — F(al) > (aF — 2})TOF(a})

€ € —

where z* is the closest point to 2! in the optimal set. Let z = z in the inequality of , we have
(el —2)"(@f —al) > ¢(al —22)TOF () > Ce
Thus

(@l —2) (@t —al) _ dist(al, Q.)]f — 2]

€ €

(<
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Therefore
lo—afl . e

¢ - dist(xi, Q)
Combining the above inequality with (3) we have
dist(x], Q)

€

le — a2l < (F(z) = F(«l))

€

which completes the proof.

1.2 Proof of Theorem 5

Proof. Let x| . denote the closest point to z, in the € sublevel set. Define €, £ £2.
ws = €5/D? We will show by induction that F(x,) — F, < €, + ¢ fors = 0,1,...

Note that
which

leads to our conclusion when s = m. The inequality holds obviously for s = 0. Assuming
F(zs—1) — Fy < €s_1 + €, we need to show that F'(zs) — Fi < €5 + €. We apply Corollary 3 to the

s-th epoch of Algorithm 2 and get

20| Al2l|zs—1 =l ]I

D*p -1
F ) — F T < s s—1,e
($ ) (xsfl,e) — 92 + lj/stZ
First, we assume F'(zs_1) — Fix < ¢, i.e. £5_1 € Se. Then we have xlfl’ﬁ = x,_1 and
D2 S S
Fle,) - Flal )< =<2

As a result,

Fle,)—F.<F(l_, ) - F+ % <ete

“4)

Next, we consider F(zs_1) — Fy > ¢, 1e. 2,1 ¢ Se. Then we have F(;vlfl)e) — F, =€ By

Lemma 1, we have

.
dist(x Q) +

s—1,er "%
||x8—1 - ‘rz—l,eH S € (F(xS—l) - F('rs—l,s))
dist(z] | ) dist(xf |, Q)es s
<————es—1te—¢d = :
€ €
_ Pl )~ F)en
€
< c(e)?es 1 _ CEsa
= E c1-0
s 2beD||A
Combining (4) and (5) and using the fact that 13 = % andt > %, we have
Plag) Pl )< @1 St 2
s Tole) =79 Toepr T

which together with the fact that F(z]_, ) = F. + ¢ implies
F(J)b)—F* S€+€3
Therefore by induction, we have

€
F(scm)—F*geere:bT?LqLeS?e

where the last inequality is due to the value of m.

(&)



Algorithm 3 An Accelerated Proximal Gradient Method (g is smooth): APG(x,t, L,,)
: Input: the number of iterations ¢, the initial solution x(, and the smoothness constant L,

—_

2: Let00 = 1, U_1 = O, 20 = Xo

3: Let oy and 63, be two sequences given in Theorem 2.

4: fork=0,...,t—1do

5:  Compute yi, = (1 — 0p)xk + O 2k

6:  Compute up = V fiu(yr) + Vg(yr), Uy = Up—1 + 3=

7. Compute 211 = H§JL)€“+M)/01 (z0) and 2541 = 5™ (yp)
8: end for

9: Qutput: z;

2 HOPS with a smooth g(z)

In the Preliminaries section, we assume that g(z) is simple enough such that the proximal mapping
defined below is easy to compute:

! )
Pag(w) = min |z — 2" + Ag(2) (6)

We claimed that if g(z) is smooth, this assumption can be relaxed. In this section, we present the
discussion and result for a smooth function g(x) without assuming that its proximal mapping is easy
to compute. In particular, we will consider g as a smooth component in f,, + g and use the gradient
of both f,, and g in the updating. The detailed updates are presented in Algorithm where

~ c
¢ (x) = i |z —z||?
¢(z) = arg leelgll (u, z) + 5 |z — ]| @)

To present the convergence guarantee, we assume that the function g is M -smooth w.r.t ||z, then the
smoothness parameter of objective function F,(z) = f,(x) + g(z) is

A2
L:LM+M:M|+M ®)

Then, we state the convergence result of Algorithm [3]in the following corollary.

2 \/0i+402 -0
f,k > 0. For any

Corollary 6. Let 0y = 125, ay, = 735,k > 0 0r agqr = Oy =
x € 4, we have

pD? | 21 AIPlle — 2ol | 2M]je — olf?

F(z) — F(z) < 5 e o 9)
Remark: In order to have F/(z;) < F(x.) + €, we can consider z = x, in Corollary|6] i.e.
, pD? 2| Al [z — zo|® | 2M||zs — 0]
Flzy) = Fla.) < ==+ e + 2 (10)
In particular, we set
2e
= — 11
1= 3p2 (In
and
D||All||z« — M|z, —
L ma { 3D|| Alllz. — woll V6M |, — o } 12
€ Ve

Algorithm [3also achieves the iteration complecity of O(1/).

Similarly, we can develop the HOPS algorithm and present it in Algorithm [4] The iteration complexity
of HOPS is established in Theorem [71



Algorithm 4 Homotopy Smoothing (HOPS) for solving (1) (g is smooth)

1: Input: the number of stages m and the number of iterations ¢ per-stage, and the initial solution
xo € 1 and a parameter b > 1.

2: Let H1 = 3%)%

3: fors=1,...,mdo

4:  Letxy = APG(zs_1,t,L,,)
5 Update 541 = /Js/b

6: end for

7: Output: z,,

Theorem 7. Suppose Assumption 1 holds and F(z) obeys the local error bound condition. Let
HOPS run with t = O(1/¢'=%) > max { 3D€Ui49“bc, v ijlv{e;bc} iterations for each stage, and m =
[log,(<2)]. Then

F(xy,) — Fy < 2e.
Hence, the iteration complexity for achieving an 2¢e-optimal solution is 6( 1/€t=9).
A

Proof. Let 21 _ denote the closest point to x, in the € sublevel set and define ¢, = 72. We will show

by induction that F'(zs) — F < €5 + e for s = 0, 1, ... which leads to our conclusion when s = m.
The inequality holds obviously for s = 0. Assuming F'(zs—1) — Fi < €51 + €, we need to show
that F(zs) — Fi < €5 + €. We apply Corollary@to the s-th epoch of Algorithm 3 and get

T 2 1 2
,Ufs-D2 2||"4||2||1‘s—le 7'%5—1" 2M||‘Ts—le 79:5—1”
F(xs) — F(z! < : : 13
(IE ) (xsfl,e) — 92 + Mst2 + t2 ( )
First, we assume F'(zs_1) — Fix <€, i.e. £5_1 € Sc. Then we have xlfl’ﬁ = x,_1 and
D2 S S
Fle,) - Flal )< =<2

As a result,

Pla) - F. < Fal )~ P+ <e+e

Next, we consider F'(zs_1) — Fy > €, i.e. 5_1 ¢ Se. Then we have F(xifl’e) — F, = €. Recall
that

Cceqs

oot — ol < S50

s—Lell = 179

(14)

Combining and 1) and using the fact that ps = 32% and t > max { 3D€ 'J'_“J,‘ bc, v Gf_ cobe }, we
get

21 A112,-2.2 2.2
Fla) ~ Flal oy ) < 5+ 2o 2000
< & € €1 — .
T3 3eb?  3e b2 7
which together with the fact that F(a:i_lje) = F, + e implies
F(zs) — Fu <e+tes
Therefore by induction, we have
F(xy,) — F. §em—|—e=6—0+e§2e

bm

where the last inequality is due to the value of m = [log; (<2)].



In fact, the number of iteration in each stage depends on s, then the iteration complexity for achieving
an 2e-optimal solution is

u 3D||Allbc /6Mebe 3D||Allbc + /6Me be
> max =6 0 -0 —Z
s=1

10

s=1
= R o ()] + 2 Vs
A [l ()] +

3 Primal-Dual Homotopy Smoothing

We note that the required number of iterations per-stage ¢ for finding an e accurate solution depends
on unknown constant ¢ and sometimes 6. Thus, an inappropriate setting of ¢ may lead to a less
accurate solution. To address this issue, we present a primal-dual homotopy smoothing. Basically,
we also apply the homotopy smoothing to the dual problem:

max ®(u) £ —p(u) + min (AT u, z) + g(z) (15)

UuEN [ASION

P(u)

Denote by @, the optimal value of the above problem. It is easy to see that ¢, = F\.. By extending
the analysis and result to the dual problem, we can obtain that F'(z,,) — ®(u,,) < 4e. Thus, we can
use the duality gap F'(zs) — ®(us) as a certificate to monitor the progress of optimization. In this
section, we present more details.

3.1 Nesterov’s smoothing on the Dual problem

We construct a smooth function from ,, () that well approximates 1 (u):

() = min (AT, ) + 9(x) + (o)

where w(z) is a 1-strongly convex function w.r.t. z in terms of a norm || - || [} Similarly, we know that
1y (u) is a smooth function of v with respect to an Euclidean norm ||u|| with smoothness parameter

L,= %]||A||2 , where || A|| 1. is defined by || A||; = max) ;<1 max|y, <1 (A" u, z). Denote by

Ty () = arg min (AT, z) + g(x) + ()
IS
The gradient of ¢, (u) is computed by V¢, (u) = Az, (u). We can see that when 7 is very small,
1y (u) gives a good approximation of (). This motivates us to solve the following composite
optimization problem

max P, (u) = —¢(u) + v (u)

u€Ny
Similar to solving the primal problem, an accelerated proximal gradient method for dual problem

can be employed to solve the above problem. We present the details in Algorithm[5] We present the
convergence results for Algorithm[5]in the following theorem:

2
k+1

/ 2
O +49 ViR -0k .k > 0. For any

Theorem 8. Let 0, =
u € g, we have

k+2,04k: k>0o0rapyr = Ok =

2L77||u—uo||2

D, (u) — Py(ug) < 2 (16)



Algorithm 5 An Accelerated Proximal Gradient Method for the dual problem: DAPG(uo, t, L,)
Input: the number of iterations ¢, the initial solution ug, and the smoothness constant L,

—_

2: Let 00 = 1, V_1 = 0, F_l = O, To = Up

3: Let oy, and 6, be two sequences given in Theorem [§]

4: fork=0,...,t—1do

5: Compute wy, = (1 — Qk)uk + O

6:  Compute vy = Vo, (wi), Vi = Vi1 — Z—’; and 'y =T'p_1 + O%k
7. Compute 141 = H€:7é22¢(u0) and ugy 1 = Hf?;k,aﬁ(wk)

8: end for

9: Output: u;

Algorithm 6 Homotopy Smoothing (HOPS) for solving dual problem

1: Input: the number of stages m and the number of iterations ¢ per-stage, and the initial solution
up € (29 and a parameter b > 1.
Let i = eo/(bD?)
fors=1,...,mdo
Let us = DAPG(us—1,t, Ly,)
Update 7541 = 15 /b
end for
Output: u,,

AR A R

3.2 HOPS for the Dual Problem

Similar to primal problem, we can also develop the HOPS for dual problem, which is presented in
Algorithm|[f] A convergence can be established similarly by exploring a local error bound condition
on ®(u). To present the convergence result, we make the following assumptions, which are similar
as the primal problem.

Assumption 9. For a concave maximization problem ({I3)), we assume (i) there exist ug € Qo and
€0 > 0 such that max,cq, ®(u) — ®(ug) < €o; (ii) let (u) = mingeq, (AT u, x) + g(z), where
g(x) is a convex function; (iii) There exists a constant D such that max,cq, w(r) < D?/2.

Let €, denote the optimal solution set of (1 . For any u € (), let u* denote the closest optimal
solution in €2, to u, i.e., u* = arg min, g [lv — ul[>. We denote by L. the e-level set of ®(u) and

by SE the e-sublevel set of ®(u), respectively, i.e.,
Lo={ueQy:du)=0, —¢}, S.={uecQ:du)>ao, —e (17)

A local error bound condition is also imposed.

Definition 10 (Local error bound). A function ®(u) is said to satisfy a local error bound condition if
there exist 0 € (0,1] and ¢ > 0 such that for any u € S.

dist(u, Q) < &(®, — d(u))’ (18)

Theorem 11. Suppose Assumption @]holds and ®(u) obeys the local error bound condition. Let

. 262D || A 2beD| A
HOPS for dual problem run witht = O ( elﬂé ”*) > elﬂé [E3
m = [log,(<2)]. Then

iterations for each stage, and

b, — P(uy,) < 2e.

Hence, the iteration complexity for achieving an 2¢-optimal solution is % [logy,(<2)] in the
worst-case.

The above theorem can be proved similarly as Theorem 5.



Algorithm 7 Primal-Dual Homotopy Smoothing (PD-HOPS) for solving (1)

1: Input: the number of stages m, initial solutions zo € 21, ug € €25 and a parameter b > 1.
2: Leter = P, 1 = F, 1 = 512
3: fors=1,...,mdo
for k=0,1,...,do

Update the sequence of 541 as in Algorithm 1 starting from z5_1

Update the sequence of uy41 as in Algorithm 5 starting from us_1

Check occasionally if F(zx4+1) — ®(ugt1) < 2(es + €); break the loop if it is true
end for
9: Update x5 = xp+1 and ug = ug4
10:  Update €541 = €5/b, pis+1 = pis/band 41 = 15/b
11: end for
12: Output: (z,,, Um,)

A A

3.3 Primal-Dual HOPS

As mentioned before, we can use the duality gap F'(zs) — ®(us) as a certificate to monitor the
progress of optimization to address the problem of detecting the number of iterations per-stage ¢. We
describe the details in Algorithm[7] Following the analysis as in the proof of Theorem 5, when the
2beD||A|| 202D Al|+

-0 > -0 }, we

number of iterations in the s-th epoch denoted by t, satisfies t; > max{
can have F'(zs) — Fi < €+ €5 and @, — (us) < € + €, so that

F(zs) — P(us) < 2(e+€5) (19)

Hence, as long as the above condition satisfies, we restart the next stage. Then with at most
m = [log,(eo/€)] epochs we have

F(zm) — P(um) < 2(e+€y) < 4e. (20)

4 Experimental Design

We conduct experiments for solving three problems: (1) an ¢;-norm regularized hinge loss for linear
classification on the wla dataset; (2) a total variation based ROF model for image denoising on the
Cameraman picture; (3) a nuclear norm regularized absolute error minimization for low-rank and
sparse matrix decomposition on a synthetic data. The three problems are discussed in details below.

e Linear Classification: In linear classification problems, the goal is to solve the following
optimization problem:

1 n
in =Y T a,y)+ A
min n;(x ai, i) + Ar(x)

where (a;,v;),i =1,2,...,n denote pairs of and label of training data, Uz T a,y;) is loss
function, r(z) is regularizer, and X is regularization parameter. In our experiment, we use
the hinge loss (a non-smooth function) £(zy) = max(0,1 — zy) = max,eo,1] @(1 — 2y)
for loss function and the ¢;-norm for regularizer:

n

1 T
min F' £ - E m (1 —y,a; + A 21
zelkd (1‘) n pa uié%},{l]u ( Yidi 33) Hle ( )

We first write (21) into the following equivalent minimax formulation

. T u'l
min max u' Ar + —— + M|z (22)
zeR ue[0,1]™ n

!This could be a general norm.



where matrix A = =1 (y1a1, 4202, ..., yna,) " and 1 is a vector of all ones. Thus, f(z) =

max,efo,1» v Az + % and g(x) = A||z||1. To apply Nesterov’s smoothing technique,
we construct the following smoothed function

u'l "
fulz) = e ul Az + T 5”““% (23)

We construct the experiment on the wla dataset, which contains 2, 477 training examples

and 300 features. We fix the regularization parameter A = n~!.

Image Denoising: For total variation (TV) based image denoising problem, we consider
the following ROF model:

A
min/ V| + 2o — A2, 24)
2, 2

where h is the observed noisy image, Q@ C R"*" is the image domain, [, V| is the TV
regularization term, and ) is the trade-off parameter between regularization and fidelity.
Following the ROF setting in [[1]], we obtain the following discrete version:

! s A 2
min F(z) £ |Vas + 5z - . (s)

where X = R™" is a finite dimensional vector space, Vz € Y and Y = X x X. The
discrete gradient operator Vz is defined as following that has two components:

1 Wi T T ifi<m
(Ve)is = {0 iti=m
o Tig41 — Xy lf_j <n
(V:E)ij_{o ifj:n,

and || Vx| is defined as

IVl = 32 1Vl = 32/ (V)L )2 + (V)22

According to [[1], we have the minimax formulation of ROF model as

. . A 9
min max —(z, div) + 5 l|z — hlz (26)

where Qo = {u:u €Y, ||lulloc <1},

Ul oo = max; j \/(u] ;)% + (u7 ;)2 and divu is the
discrete divergence operator [1]. Thus, f(z) = max,cq, —(z,divu) and g(z) = §||z—h||3.
By using Nesterov’s smoothing technique, we have the following smoothed function

: Ea2
—(z,d - = . 27
max —( div) — & ull3 27)

In our experiment, we use Cameraman picture of size 256 x 256 with additive zero mean
Gaussian noise with standard deviation o = 0.05 and we set A = 20.
Matrix Decomposition: In low-rank and sparse matrix decomposition problem, suppose
given a data matrix O € R™*", we aim to decompose it as

O=X+F

where X € R™*" is a low-rank matrix, and £/ € R™*" represents errors and it is sparse.
We use nuclear norm regularized absolute error minimization:
min F(X) = [[X][. + Al ]|,
XER‘WLX‘VI
st. 0=X+F



where || X |, = >, 0;(X) denotes the nuclear norm of matrix X, i.e., the summation of
singular values of matrix X, and [|E[[y = }_,; |Ej;| denotes the {1-norm of E. The above
formulation is equavilent to

min F(X) = [|[X|[. + A0 = X]y (28)
XGR"LX’IL

We first write (28) into the following equivalent minimax formulation

min  max —-MNX,U)+ XO,U) + || X]|« (29)
XeRmxn ||U]|o<1

where U € R™*™ and ||Ul|oc = maxy; |U;;|. Thus, f(X) = maxy).<1 —MX,U) +
MO, U) and g(X) = || X||«. To apply Nesterov’s smoothing technique, we consider the
following smoothed function

_ _ I 2
f“(X)_HUIﬂi’;l MX,U) + MM, U) 2IIUHF (30)

We set the regularization parameter A = (max{m,n})~%°. We conduct experiment on
a synthetic data with m = n = 100. To generate the corrupted matrix O € R™*", we
first obtain two orthogonal matrices S; € R™** and S, € R™** (k = 10) by Gaussian
distribution. The low rank matrix X can be calculated by X = S;.5, . Then we randomly
add Gaussian noise to 10% elements of X and obtain the corrupted matrix O.

We compare HOPS-D, HOPS-F and PD-HOPS with PD, APG-D and APG-F in our experiments. To
make fair comparison, we stop each algorithm when the optimality gap is less than a given e and count
the number of iterations and the running time that each algorithm requires. We set e = 10~%,107°
for linear classification problem, and € = 1073,10~* for other two problems. For APG, we use the
backtracking trick to tune L. For HOPS, we tune the number of iterations ¢ in each epoch among
several values in {10, 50, 100, 150, 200, 250, 300, 350, 400, 500, 1000} and the parameter b among
{1.2,2,2.5,3,3.5,4,5,10, 25}, and report the best results. We also tune the values of parameters o
and 7 and report the best results for PD.
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