Statistical Inference for Cluster Trees
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Abstract

A cluster tree provides a highly-interpretable summary of a density function by
representing the hierarchy of its high-density clusters. It is estimated using the
empirical tree, which is the cluster tree constructed from a density estimator. This
paper addresses the basic question of quantifying our uncertainty by assessing the
statistical significance of topological features of an empirical cluster tree. We first
study a variety of metrics that can be used to compare different trees, analyze their
properties and assess their suitability for inference. We then propose methods to
construct and summarize confidence sets for the unknown true cluster tree. We
introduce a partial ordering on cluster trees which we use to prune some of the
statistically insignificant features of the empirical tree, yielding interpretable and
parsimonious cluster trees. Finally, we illustrate the proposed methods on a variety
of synthetic examples and furthermore demonstrate their utility in the analysis of a
Graft-versus-Host Disease (GvHD) data set.

1 Introduction

Clustering is a central problem in the analysis and exploration of data. It is a broad topic, with several
existing distinct formulations, objectives, and methods. Despite the extensive literature on the topic,
a common aspect of the clustering methodologies that has hindered its widespread scientific adoption
is the dearth of methods for statistical inference in the context of clustering. Methods for inference
broadly allow us to quantify our uncertainty, to discern “true” clusters from finite-sample artifacts, as
well as to rigorously test hypotheses related to the estimated cluster structure.

In this paper, we study statistical inference for the cluster tree of an unknown density. We assume that
we observe an i.i.d. sample {X1, ..., X,,} from a distribution Py with unknown density po. Here,
X; € X C R% The connected components C(\), of the upper level set {z : po(x) > A}, are called
high-density clusters. The set of high-density clusters forms a nested hierarchy which is referred to
as the cluster tree' of py, which we denote as T, .

Methods for density clustering fall broadly in the space of hierarchical clustering algorithms, and
inherit several of their advantages: they allow for extremely general cluster shapes and sizes, and
in general do not require the pre-specification of the number of clusters. Furthermore, unlike flat

't is also referred to as the density tree or the level-set tree.
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clustering methods, hierarchical methods are able to provide a multi-resolution summary of the
underlying density. The cluster tree, irrespective of the dimensionality of the input random variable, is
displayed as a two-dimensional object and this makes it an ideal tool to visualize data. In the context
of statistical inference, density clustering has another important advantage over other clustering
methods: the object of inference, the cluster tree of the unknown density py, is clearly specified.

In practice, the cluster tree is estimated from a finite sample, {X,..., X,,} ~ po. In a scientific
application, we are often most interested in reliably distinguishing topological features genuinely
present in the cluster tree of the unknown pg, from topological features that arise due to random
fluctuations in the finite sample { X7, ..., X,,}. In this paper, we focus our inference on the cluster

tree of the kernel density estimator, 75, , where Dr is the kernel density estimator,
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where K is a kernel and h is an appropriately chosen bandwidth 2.

To develop methods for statistical inference on cluster trees, we construct a confidence set for T,
i.e. a collection of trees that will include 7},, with some (pre-specified) probability. A confidence
set can be converted to a hypothesis test, and a confidence set shows both statistical and scientific
significances while a hypothesis test can only show statistical significances [23, p.155].

To construct and understand the confidence set, we need to solve a few technical and conceptual
issues. The first issue is that we need a metric on trees, in order to quantify the collection of trees
that are in some sense “close enough” to T3, to be statistically indistinguishable from it. We use the
bootstrap to construct tight data-driven confidence sets. However, only some metrics are sufficiently
“regular” to be amenable to bootstrap inference, which guides our choice of a suitable metric on trees.

On the basis of a finite sample, the true density is indistinguishable from a density with additional
infinitesimal perturbations. This leads to the second technical issue which is that our confidence
set invariably contains infinitely complex trees. Inspired by the idea of one-sided inference [9],
we propose a partial ordering on the set of all density trees to define simple trees. To find simple
representative trees in the confidence set, we prune the empirical cluster tree by removing statistically
insignificant features. These pruned trees are valid with statistical guarantees that are simpler than
the empirical cluster tree in the proposed partial ordering.

Our contributions: We begin by considering a variety of metrics on trees, studying their properties
and discussing their suitability for inference. We then propose a method of constructing confidence
sets and for visualizing trees in this set. This distinguishes aspects of the estimated tree correspond
to real features (those present in the cluster tree 7},,) from noise features. Finally, we apply our
methods to several simulations, and a Graft-versus-Host Disease (GVHD) data set to demonstrate the
usefulness of our techniques and the role of statistical inference in clustering problems.

Related work: There is a vast literature on density trees (see for instance the book by Klemela [16]),
and we focus our review on works most closely aligned with our paper. The formal definition of
the cluster tree, and notions of consistency in estimation of the cluster tree date back to the work of
Hartigan [15]. Hartigan studied the efficacy of single-linkage in estimating the cluster tree and showed
that single-linkage is inconsistent when the input dimension d > 1. Several fixes to single-linkage
have since been proposed (see for instance [21]). The paper of Chaudhuri and Dasgupta [4] provided
the first rigorous minimax analysis of the density clustering and provided a computationally tractable,
consistent estimator of the cluster tree. The papers [1, 5, 12, 17] propose various modifications and
analyses of estimators for the cluster tree. While the question of estimation has been extensively
addressed, to our knowledge our paper is the first concerning inference for the cluster tree.

There is a literature on inference for phylogenetic trees (see the papers [13, 10]), but the object of
inference and the hypothesized generative models are typically quite different. Finally, in our paper,
we also consider various metrics on trees. There are several recent works, in the computational
topology literature, that have considered different metrics on trees. The most relevant to our own
work, are the papers [2, 18] that propose the functional distortion metric and the interleaving distance
on trees. These metrics, however, are NP-hard to compute in general. In Section 3, we consider a
variety of computationally tractable metrics and assess their suitability for inference.

2We address computing the tree T%,, > and the choice of bandwidth in more detail in what follows.



Figure 1: Examples of density trees. Black curves are the original density functions and the red trees
are the associated density trees.

2 Background and Definitions

We work with densities defined on a subset X C R%, and denote by ||.|| the Euclidean norm on X'
Throughout this paper we restrict our attention to cluster tree estimators that are specified in terms of
a function f : X — [0, 00), i.e. we have the following definition:

Definition 1. Forany f : X + [0, 00) the cluster tree of f is a function Ty : R — 2%, where 2% is

the set of all subsets of X, and Tt () is the set of the connected components of the upper-level set

{z € X : f(x) > A}. We define the collection of connected components {Ty}, as {Tr} = |J T¢(N).
by

As will be clearer in what follows, working only with cluster trees defined via a function f simplifies
our search for metrics on trees, allowing us to use metrics specified in terms of the function f. With a
slight abuse of notation, we will use T’ to denote also {7}, and write C' € T to signify C' € {T}}.
The cluster tree 7'y indeed has a tree structure, since for every pair Cy,Cy € Ty, either C; C Ch,
Cy C C1, or C;NCy = () holds. See Figure 1 for a graphical illustration of a cluster tree. The formal
definition of the tree requires some topological theory; these details are in Appendix B.

In the context of hierarchical clustering, we are often interested in the “height” at which two points or
two clusters merge in the clustering. We introduce the merge height from [12, Definition 6]:

Definition 2. For any two points x,y € X, any f : X — [0, 00), and its tree T}, their merge height
my(x,y) is defined as the largest A such that x and y are in the same density cluster at level ), i.e.

my(z,y) =sup{\ € R : there exists C € T(\) such that x,y € C'}.

We refer to the function my : X x X +— R as the merge height function. For any two clusters
C1,Cs € {TI}, their merge height my(Ch, Cs) is defined analogously,

my(C1,C2) = sup {\ € R : there exists C € T(\) such that C,,Cy C C}.

One of the contributions of this paper is to construct valid confidence sets for the unknown true
tree and to develop methods for visualizing the trees contained in this confidence set. Formally, we
assume that we have samples { X7, ..., X, } from a distribution Py with density po.

Definition 3. An asymptotic (1 — «) confidence set, C.,, is a collection of trees with the property that
Po(Tp, € Co) =1 —a+o(1).

We also provide non-asymptotic upper bounds on the o(1) term in the above definition. Additionally,
we provide methods to summarize the confidence set above. In order to summarize the confidence
set, we define a partial ordering on trees.

Definition 4. Forany f,g : X +— [0, 00) and their trees Ty, T, we say Ty < T, if there exists a map
O {Tr} — {T,} such that for any C1,Cy € Ty, we have Cy C Cs if and only if ®(C1) C ®(Cs).

With Definition 3 and 4, we describe the confidence set succinctly via some of the simplest trees in
the confidence set in Section 4. Intuitively, these are trees without statistically insignificant splits.

It is easy to check that the partial order < in Definition 4 is reflexive (i.e. Ty = T') and transitive (i.e.
that Ty, <X T, and Ty, = T}, implies Ty, = T',). However, to argue that < is a partial order, we
need to show the antisymmetry, i.e. Ty < Ty and T;; = T’ implies that T and T}, are equivalent in
some sense. In Appendices A and B, we show an important result: for an appropriate topology on
trees, Ty = T, and T;; =< T’y implies that T’y and T’ are topologically equivalent.



(2) (b) (©

(d) (e) ®

Figure 2: Three illustrations of the partial order < in Definition 4. In each case, in agreement with
our intuitive notion of simplicity, the tree on the top ((a), (b), and (c)) is lower than the corresponding
tree on the bottom((d), (), and (f)) in the partial order, i.e. for each example T}, <X T,.

The partial order < in Definition 4 matches intuitive notions of the complexity of the tree for several
reasons (see Figure 2). Firstly, Ty < T}, implies (number of edges of Ty) < (number of edges of Tg)
(compare Figure 2(a) and (d), and see Lemma 6 in Appendix B). Secondly, if T} is obtained from
Ty by adding edges, then T’y < Ty, (compare Figure 2(b) and (e), and see Lemma 7 in Appendix B).
Finally, the existence of a topology preserving embedding from {7’ } to {7} } implies the relationship
Ty X Ty (compare Figure 2(c) and (f), and see Lemma 8 in Appendix B).

3 Tree Metrics

In this section, we introduce some natural metrics on cluster trees and study some of their properties
that determine their suitability for statistical inference. We let p,q : X — [0, 00) be nonnegative
functions and let T}, and T, be the corresponding trees.

3.1 Metrics

We consider three metrics on cluster trees, the first is the standard /., metric, while the second and
third are metrics that appear in the work of Eldridge et al. [12].

¢ metric: The simplest metric is doo (T, Tg) = ||p — ¢l|lco = SUp,ex [p(z) —g()|. We will show
in what follows that, in the context of statistical inference, this metric has several advantages over
other metrics.

Merge distortion metric: The merge distortion metric intuitively measures the discrepancy in the
merge height functions of two trees in Definition 2. We consider the merge distortion metric [12,
Definition 11] defined by

dm(Ty, Tq) = sup |my(z,y) — mg(z,y)|.
z,yeX
The merge distortion metric we consider is a special case of the metric introduced by Eldridge et al.
[12]3. The merge distortion metric was introduced by Eldridge et al. [12] to study the convergence of
cluster tree estimators. They establish several interesting properties of the merge distortion metric:
in particular, the metric is stable to perturbations in /., and further, that convergence in the merge
distortion metric strengthens previous notions of convergence of the cluster trees.

Modified merge distortion metric: We also consider the modified merge distortion metric given by

dMM(Tp7Tq) = Ssup |dTp(xa y) - qu (Jf, y)|a
T,yeX

where dr, (,y) = p(z) + p(y) — 2my(x,y), which corresponds to the (pseudo)-distance between
and y along the tree. The metric dypy is used in various proofs in the work of Eldridge et al. [12].

3They further allow flexibility in taking a sup over a subset of X'.



It is sensitive to both distortions of the merge heights in Definition 2, as well as of the underlying
densities. Since the metric captures the distortion of distances between points along the tree, it is
in some sense most closely aligned with the cluster tree. Finally, it is worth noting that unlike the
interleaving distance and the functional distortion metric [2, 18], the three metrics we consider in this
paper are quite simple to approximate to a high-precision.

3.2 Properties of the Metrics

The following Lemma gives some basic relationships between the three metrics d, dy and dyv. We
define pin¢ = inf, e x p(z), and gins analogously, and a = inf,c x {p(z) + ¢(z)} — 2 min{pint, gint }-
Note that when the Lebesgue measure p(X) is infinite, then pins = ginr = @ = 0.

Lemma 1. For any densities p and q, the following relationships hold: (i) When p and q are
continuous, then doo (T, Tq) = dm(Tp, Ty). (ii) dvm (Tp, Ty) < 4doo (T, Tg). (i) dvm (Tp, Ty) >
doo (T, Ty) — a, where a is defined as above. Additionally when p(X) = oo, then dym (T, Ty) >
oo (Tp, Ty).

The proof is in Appendix F. From Lemma 1, we can see that under a mild assumption (continuity of
the densities), d, and dy; are equivalent. We note again that the work of Eldridge et al. [12] actually
defines a family of merge distortion metrics, while we restrict our attention to a canonical one. We
can also see from Lemma 1 that while the modified merge metric is not equivalent to d, it is usually
multiplicatively sandwiched by d.

Our next line of investigation is aimed at assessing the suitability of the three metrics for the task
of statistical inference. Given the strong equivalence of d., and dy; we focus our attention on d,
and dyv. Based on prior work (see [7, 8]), the large sample behavior of d, is well understood. In
particular, doo (T5, , Tp, ) converges to the supremum of an appropriate Gaussian process, on the basis
of which we can construct confidence intervals for the d., metric.

The situation for the metric dypy is substantially more subtle. One of our eventual goals is to use
the non-parametric bootstrap to construct valid estimates of the confidence set. In general, a way to
assess the amenability of a functional to the bootstrap is via Hadamard differentiability [24]. Roughly
speaking, Hadamard-differentiability is a type of statistical stability, that ensures that the functional
under consideration is stable to perturbations in the input distribution. In Appendix C, we formally
define Hadamard differentiability and prove that dyyy is not point-wise Hadamard differentiable.
This does not completely rule out the possibility of finding a way to construct confidence sets based
on dyy, but doing so would be difficult and so far we know of no way to do it.

In summary, based on computational considerations we eliminate the interleaving distance and
the functional distortion metric [2, 18], we eliminate the dy;y metric based on its unsuitability for
statistical inference and focus the rest of our paper on the d, (or equivalently dy;) metric which is
both computationally tractable and has well understood statistical behavior.

4 Confidence Sets

In this section, we consider the construction of valid confidence intervals centered around the kernel
density estimator, defined in Equation (1). We first observe that a fixed bandwidth for the KDE
gives a dimension-free rate of convergence for estimating a cluster tree. For estimating a density
in high dimensions, the KDE has a poor rate of convergence, due to a decreasing bandwidth for
simultaneously optimizing the bias and the variance of the KDE.

When estimating a cluster tree, the bias of the KDE does not affect its cluster tree. Intuitively, the
cluster tree is a shape characteristic of a function, which is not affected by the bias. Defining the
biased density, py,(xz) = E[pr(x)], two cluster trees from pj, and the true density po are equivalent
with respect to the topology in Appendix A, if & is small enough and py is regular enough:

Lemma 2. Suppose that the true unknown density po, has no non-degenerate critical points *, then
there exists a constant hg > 0 such that for all 0 < h < hg, the two cluster trees, T),, and T}, have
the same topology in Appendix A.

*The Hessian of py at every critical point is non-degenerate. Such functions are known as Morse functions.



From Lemma 2, proved in Appendix G, a fixed bandwidth for the KDE can be applied to give a
dimension-free rate of convergence for estimating the cluster tree. Instead of decreasing bandwidth i
and inferring the cluster tree of the true density 7}, at rate O p(n*2/ (4+d) ), Lemma 2 implies that we
can fix h > 0 and infer the cluster tree of the biased density 7, atrate Op (n’l/ 2) independently of
the dimension. Hence a fixed bandwidth crucially enhances the convergence rate of the proposed
methods in high-dimensional settings.

4.1 A data-driven confidence set

We recall that we base our inference on the d., metric, and we recall the definition of a valid
confidence set (see Definition 3). As a conceptual first step, suppose that for a specified value o we
could compute the 1 — o quantile of the distribution of do (15, , Tp, ), and denote this value ¢,,. Then
a valid confidence set for the unknown T, is C, = {1 : doo (T, T ) < to}. To estimate ¢,, we use

the bootstrap. Specifically, we generate B bootstrap samples, {)? 11, cee )Z}L}, e {)? Bl )?f},
by sampling with replacement from the original sample. On each bootstrap sample, we compute

the KDE, and the associated cluster tree. We denote the cluster trees {7} iﬁ }. Finally, we
estimate ¢, by

PRy

fo = F~'(1 — a), where F(s ZH T, 15,) < s).

Then the data-driven confidence set is éa ={T : doo(T, fh) < fa} Using techniques from [8, 7],
the following can be shown (proof omitted):

Theorem 3. Under mild regularity conditions on the kernel®, we have that the constructed confidence
set is asymptotically valid and satisfies,

P(1heC) —1-a+o((EM).

Hence our data-driven confidence set is consistent at dimension independent rate. When h is a fixed
small constant, Lemma 2 implies that 7},, and T}, have the same topology, and Theorem 3 guarantees
that the non-parametric bootstrap is consistent at a dimension independent O(((logn)7/n)'/) rate.
For reasons explained in [8], this rate is believed to be optimal.

4.2 Probing the Confidence Set

The confidence set éa is an infinite set with a complex structure. Infinitesimal perturbations of the
density estimate are in our confidence set and so this set contains very complex trees. One way to
understand the structure of the confidence set is to focus attention on simple trees in the confidence
set. Intuitively, these trees only contain topological features (splits and branches) that are sufficiently
strongly supported by the data.

We propose two pruning schemes to find trees, that are simpler than the empirical tree 75, that are in
the confidence set. Pruning the empirical tree aids visualization as well as de-noises the empirical
tree by eliminating some features that arise solely due to the stochastic variability of the finite-sample.
The algorithms are (see Figure 3):

1. Pruning only leaves: Remove all leaves of length less than 2tAa (Figure 3(b)).

2. Pruning leaves and internal branches: In this case, we first prune the leaves as above. This
yields a new tree. Now we again prune (using cumulative length) any leaf of length less than 2t,,. We
continue iteratively until all remaining leaves are of cumulative length larger than QtA (Figure 3(c)).

In Appendix D.2 we formally define the pruning operation and show the following. The remaining
tree I" after either of the above prumng operations satisfies: (i) T = T, , (ii) there exists a function f
whose tree is T, and (iii) = Ca (see Lemma 10 in Appendix D.2). In other words, we identified a

valid tree with a statistical guarantee that is simpler than the original estimate T}, . Intuitively, some
of the statistically insignificant features have been removed from 75, . We should point out, however,

>See Appendix D.1 for details.



(a) The empirical tree. (b) Pruning only leaves. (c) Pruning leaves and branches.

Figure 3: Illustrations of our two pruning strategies. (a) shows the empirical tree. In (b), leaves that
are insignificant are pruned, while in (c), insignificant internal branches are further pruned top-down.

Ring data, n = 1200 Mickey mouse data, n = 1200 Yingyang data, n = 3200

05

05

() (b) (©

Ring data, alpha = 0.05 Mickey mouse data, alpha = 0.05 Yingyang data, alpha = 0.05

0529
—
0255 0281
—
007
—

lambda.
lambda.

0208 0272
W

(d (e ®

Figure 4: Simulation examples. (a) and (d) are the ring data; (b) and (e) are the mickey mouse data;
(c) and (f) are the yingyang data. The solid lines are the pruned trees; the dashed lines are leaves (and
edges) removed by the pruning procedure. A bar of length 21, is at the top right corner. The pruned
trees recover the actual structure of connected components.

that there may exist other trees that are simpler than 75, that are in éa. Ideally, we would like to
have an algorithm that identifies all trees in the confidence set that are minimal with respect to the
partial order < in Definition 4. This is an open question that we will address in future work.

5 Experiments

In this section, we demonstrate the techniques we have developed for inference on synthetic data, as
well as on a real dataset.

5.1 Simulated data

We consider three simulations: the ring data (Figure 4(a) and (d)), the Mickey Mouse data (Figure 4(b)
and (e)), and the yingyang data (Figure 4(c) and (f)). The smoothing bandwidth is chosen by the
Silverman reference rule [20] and we pick the significance level o = 0.05.
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(a) The positive treatment data. (b) The control data.

Figure 5: The GvHD data. The solid brown lines are the remaining branches after pruning; the blue
dashed lines are the pruned leaves (or edges). A bar of length 2¢,, is at the top right corner.

Example 1: The ring data. (Figure 4(a) and (d)) The ring data consists of two structures: an outer
ring and a center node. The outer circle consists of 1000 points and the central node contains 200
points. To construct the tree, we used h = 0.202.

Example 2: The Mickey Mouse data. (Figure 4(b) and (e)) The Mickey Mouse data has three
components: the top left and right uniform circle (400 points each) and the center circle (1200 points).
In this case, we select h = 0.200.

Example 3: The yingyang data. (Figure 4(c) and (f)) This data has 5 connected components: outer
ring (2000 points), the two moon-shape regions (400 points each), and the two nodes (200 points
each). We choose h = 0.385.

Figure 4 shows those data ((a), (b), and (c)) along with the pruned density trees (solid parts in (d), (e),
and (f)). Before pruning the tree (both solid and dashed parts), there are more leaves than the actual
number of connected components. But after pruning (only the solid parts), every leaf corresponds to
an actual connected component. This demonstrates the power of a good pruning procedure.

5.2 GvHD dataset

Now we apply our method to the GvHD (Graft-versus-Host Disease) dataset [3]. GvHD is a
complication that may occur when transplanting bone marrow or stem cells from one subject to
another [3]. We obtained the GVHD dataset from R package ‘mclust’. There are two subsamples: the
control sample and the positive (treatment) sample. The control sample consists of 9083 observations
and the positive sample contains 6809 observations on 4 biomarker measurements (d = 4). By the
normal reference rule [20], we pick h = 39.1 for the positive sample and h = 42.2 for the control
sample. We set the significance level o = 0.05.

Figure 5 shows the density trees in both samples. The solid brown parts are the remaining components
of density trees after pruning and the dashed blue parts are the branches removed by pruning. As can
be seen, the pruned density tree of the positive sample (Figure 5(a)) is quite different from the pruned
tree of the control sample (Figure 5(b)). The density function of the positive sample has fewer bumps
(2 significant leaves) than the control sample (3 significant leaves). By comparing the pruned trees,
we can see how the two distributions differ from each other.

6 Discussion

There are several open questions that we will address in future work. First, it would be useful to have
an algorithm that can find all trees in the confidence set that are minimal with respect to the partial
order <. These are the simplest trees consistent with the data. Second, we would like to find a way
to derive valid confidence sets using the metric dypy which we view as an appealing metric for tree
inference. Finally, we have used the Silverman reference rule [20] for choosing the bandwidth but we
would like to find a bandwidth selection method that is more targeted to tree inference.



References

(1]

(2]

3

—

[4

—

[5

—

[6

—_

(71

(8]

[9

—

(10]

(11]

[12]

(13]
(14]

[15]

(16]

[17]

(18]

[19]

(20]
(21]

[22]
(23]

(24]

S. Balakrishnan, S. Narayanan, A. Rinaldo, A. Singh, and L. Wasserman. Cluster trees on manifolds. In
Advances in Neural Information Processing Systems, 2012.

U. Bauer, E. Munch, and Y. Wang. Strong equivalence of the interleaving and functional distortion metrics
for reeb graphs. In 31st International Symposium on Computational Geometry (SoCG 2015), volume 34,
pages 461-475. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

R. R. Brinkman, M. Gasparetto, S.-J. J. Lee, A. J. Ribickas, J. Perkins, W. Janssen, R. Smiley, and
C. Smith. High-content flow cytometry and temporal data analysis for defining a cellular signature of
graft-versus-host disease. Biology of Blood and Marrow Transplantation, 13(6):691-700, 2007.

K. Chaudhuri and S. Dasgupta. Rates of convergence for the cluster tree. In Advances in Neural Information
Processing Systems, pages 343-351, 2010.

K. Chaudhuri, S. Dasgupta, S. Kpotufe, and U. von Luxburg. Consistent procedures for cluster tree
estimation and pruning. IEEE Transactions on Information Theory, 2014.

F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, and L. Wasserman. Robust topological inference:
Distance to a measure and kernel distance. arXiv preprint arXiv:1412.7197, 2014.

Y.-C. Chen, C. R. Genovese, and L. Wasserman. Density level sets: Asymptotics, inference, and visualiza-
tion. arXiv:1504.05438, 2015.

V. Chernozhukov, D. Chetverikov, and K. Kato. Central limit theorems and bootstrap in high dimensions.
Annals of Probability, 2016.

D. Donoho. One-sided inference about functionals of a density. The Annals of Statistics, 16(4):1390-1420,
1988.

B. Efron, E. Halloran, and S. Holmes. Bootstrap confidence levels for phylogenetic trees. Proceedings of
the National Academy of Sciences, 93(23), 1996.

U. Einmahl and D. M. Mason. Uniform in bandwidth consistency of kernel-type function estimators. The
Annals of Statistics, 33(3):1380-1403, 2005.

J. Eldridge, M. Belkin, and Y. Wang. Beyond hartigan consistency: Merge distortion metric for hierarchical
clustering. In Proceedings of The 28th Conference on Learning Theory, pages 588-606, 2015.

J. Felsenstein. Confidence limits on phylogenies, a justification. Evolution, 39, 1985.

C. R. Genovese, M. Perone-Pacifico, I. Verdinelli, and L. Wasserman. Nonparametric ridge estimation.
The Annals of Statistics, 42(4):1511-1545, 2014.

J. A. Hartigan. Consistency of single linkage for high-density clusters. Journal of the American Statistical
Association, 1981.

J. Klemeld. Smoothing of multivariate data: density estimation and visualization, volume 737. John Wiley
& Sons, 2009.

S. Kpotufe and U. V. Luxburg. Pruning nearest neighbor cluster trees. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 225-232,2011.

D. Morozov, K. Beketayev, and G. Weber. Interleaving distance between merge trees. Discrete and
Computational Geometry, 49:22-45, 2013.

D. W. Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons,
2015.

B. W. Silverman. Density estimation for statistics and data analysis, volume 26. CRC press, 1986.

W. Stuetzle and R. Nugent. A generalized single linkage method for estimating the cluster tree of a density.
Journal of Computational and Graphical Statistics, 19(2), 2010.

L. Wasserman. All of nonparametric statistics. Springer Science & Business Media, 2006.

L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Science & Business
Media, 2010. ISBN 1441923225, 9781441923226.

J. Wellner. Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Science
& Business Media, 2013.



