
Appendix: Fast Stochastic Optimization on Riemannian Manifolds

A Proofs for Section 3.1

Theorem 1. Assume in (1) each f
i

is L-g-smooth, and f is µ-strongly g-convex, then if we run
Algorithm 1 with Option I and parameters that satisfy

↵ =

3⇣⌘L2

µ� 2⇣⌘L2

+

(1 + 4⇣⌘2 � 2⌘µ)m(µ� 5⇣⌘L2

)

µ� 2⇣⌘L2

< 1

then with S outer loops, the Riemannian SVRG algorithm produces an iterate x
a

that satisfies

Ed2(x
a

, x⇤
)  ↵Sd2(x0, x⇤

).

Proof. We start by bounding the squared norm of the variance reduced gradient. Since vs+1

t

=

rf
it(x

s+1

t

)� �

x

s+1
t

x̃

s

�

rf
it(x̃

s

)� gs+1

�

, conditioned on xs+1

t

and taking expectation with respect
to i

t

, we obtain:

Ekvs+1

t

k2 = E
�

�

�

rf
it(x

s+1

t

)� �

x

s+1
t

x̃

s

�

rf
it(x̃

s

)� gs+1

�

�

�

�

2

= E
�

�

�

⇣

rf
it(x

s+1

t

)� �

x

s+1
t

x̃

s rf
it(x̃

s

)

⌘

+ �

x

s+1
t

x̃

s

⇣

rf(x̃s

)� �

x̃

s

x

⇤rf(x⇤
)

⌘

�

�

�

2

 2E
�

�

�

rf
it(x

s+1

t

)� �

x

s+1
t

x̃

s rf
it(x̃

s

)

�

�

�

2

+ 2E
�

�

�

�

x

s+1
t

x̃

s

⇣

rf(x̃s

)� �

x̃

s

x

⇤rf(x⇤
)

⌘

�

�

�

2

= 2E
�

�

�

rf
it(x

s+1

t

)� �

x

s+1
t

x̃

s rf
it(x̃

s

)

�

�

�

2

+ 2E
�

�

�

rf(x̃s

)� �

x̃

s

x

⇤rf(x⇤
)

�

�

�

2

 2L2

�

�

�

Exp

�1

x

s+1
t

(x̃s

)

�

�

�

2

+ 2L2

�

�

Exp

�1

x̃

s (x⇤
)

�

�

2

 2L2

⇣

�

�

�

Exp

�1

x

s+1
t

(x⇤
)

�

�

�

+

�

�

Exp

�1

x̃

s (x⇤
)

�

�

⌘

2

+ 2L2

�

�

Exp

�1

x̃

s (x⇤
)

�

�

2

 4L2

�

�

�

Exp

�1

x

s+1
t

(x⇤
)

�

�

�

2

+ 6L2

�

�

Exp

�1

x̃

s (x⇤
)

�

�

2

We use ka + bk2  2kak2 + 2kbk2 twice, in the first and fourth inequalities. The second equality
is due to rf(x⇤

) = 0. The second inequality is due to the L-g-smoothness assumption. The third
inequality is due to triangle inequality.
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The first inequality uses the trigonometric distance lemma, the second one uses previously obtained
bound for Ekv

t

k2, the third and fourth use the µ-strong g-convexity of f(x).
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Corollary 1. With assumptions as in Theorem 1 and properly chosen parameters, after
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where the second inequality is due to (1 � x)1/x  1/e for x 2 (0, 1). Applying Theorem 1 with
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B Proofs for Section 3.2

Theorem 5. Assuming the inverse exponential map is well-defined on X , f : X ! R is
a geodesically L-smooth function, stochastic first-order oracle r ˜f(x) satisfies E[r ˜f(xt

)] =

rf(xt

), kr ˜f(xt

)k2  �2, then the SGD algorithm xt+1

= Exp

x

t(�⌘r ˜f(xt

)) with ⌘ =

c/
p
T , c =

q

2(f(x

0
)�f(x

⇤
))

L�

2 satisfies

min

0tT�1

E[krf(xt

)k2] 
r

2(f(x0

)� f(x⇤
))L

T
�.

Proof.

E[f(xt+1

)]  E[f(xt

) + hrf(xt

),Exp�1

x

t (x
t+1

)i+ L

2

kExp�1

x

t (x
t+1

)k2]

 E[f(xt

)]� ⌘E[krf(xt

)k2] + L⌘2

2

E[kr ˜f(xt

)k2]

 E[f(xt

)]� ⌘E[krf(xt

)k2] + L⌘2

2

�2

After rearrangement, we obtain

E[krf(xt

)k2]  1

⌘
E[f(xt

)� f(xt+1

)] +

L⌘

2

�2

Summing up the above equation from t = 0 to T � 1 and using ⌘ = c/
p
T where

c =

r

2(f(x0

)� f(x⇤
))

L�2

we obtain

min

t

E[krf(xt

)k2]  1

T

T�1

X

t=0

E[kf(xt

)k2]  1

T⌘
E[f(x0

)� f(xT

)] +

L⌘

2

�2

 1

T⌘
(f(x0

)� f(x⇤
)) +

L⌘

2

�2


r

2(f(x0

)� f(x⇤
))L

T
�

2



Lemma 2. Assume in (1) each f
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where the first inequality is due to ka + bk2  2kak2 + 2kbk2, the second due to Ek⇠ � E⇠k2 =

Ek⇠k2 � kE⇠k2  Ek⇠k2 for any random vector ⇠ in any tangent space, the third due to L-g-smooth
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Rearranging terms completes the proof.
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Corollary 4. With Algorithm 2 and the parameters in Theorem 3, the IFO complexity to compute an
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y

1

2µ
krf(x) + µExp�1

x

(y)k2

� f(x)� 1

2µ
krf(x)k2

where we get the first inequality by strong g-convexity, the second equality by completing the squares,
and the second inequality by choosing y = Exp

x

⇣

� 1

µ

rf(x)
⌘

. Thus f(x) is (1/(2µ))-gradient
dominated, and choosing ⌧ = 1/(2µ) in Corollary 4 concludes the proof.
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C Proof for Section 4.1

Theorem 4. Suppose A has eigenvalues �
1

> �
2

� · · · � �
d

and � = �
1

� �
2

, and x0 is drawn
uniformly randomly on the hypersphere. Then with probability 1� p, x0 falls in a Riemannian ball
of a global optimum of the objective function, within which the objective function is O(

d

p

2
�

)-gradient
dominated.

Proof. We write x in the basis of A’s eigenvectors {v
i

}d
i=1

with corresponding eigenvalues
�
1

> �
2

� · · · � �
d

, i.e. x =

P

d

i=1

↵
i

v
i

. Thus Ax =

P

d

i=1

↵
i

�
i

v
i

and f(x) = �
P

d

i=1

↵2

i

�
i

.
The Riemannian gradient of f(x) is P

x

rf(x) = �2(I � xx>
)Ax = �2(Ax + f(x)x) =

�2

P

d

i=1

↵
i

(�
i

�
P

d

j=1

↵2

j

�
j

)v
i

(see [1, Example 3.6.1]). Now consider a Riemannian ball on
the hypersphere defined by B

✏

, {x : x 2 Sd�1,↵
1

� ✏}, note that the center of B
✏

is the first
eigenvector. We apply a case by case argument with respect to f(x)� f(x⇤

). If f(x)� f(x⇤
) � �

2

,
we can lower bound the gradient by

1

4

kP
x

rf(x)k2 =

X

d

i=1

↵2

i

⇣

�
i

�
X

d

j=1

↵2

j

�
j

⌘

2

� ↵2

1

⇣

�
1

�
X

d

j=1

↵2

j

�
j

⌘

2

= ↵2

1

(f(x)� f(x⇤
))

2

� 1

2

↵2

1

�(f(x)� f(x⇤
)) � 1

2

✏2�(f(x)� f(x⇤
))

The last equality follows from the fact that f(x⇤
) = ��

1

and f(x) = �
P

d

i=1

↵2

i

�
i

. On the other
hand, if f(x) � f(x⇤

) < �

2

, for i = 2, . . . , d, since ��
i

� f(x⇤
) � �, we have ��

i

� f(x) >
1

2

(��
i

� f(x⇤
)) � �/2. We can, again, lower bound the gradient by

kP
x

rf(x)k2 = 4

X

d

i=1

↵2

i

⇣

�
i

�
X

d

j=1

↵2

j

�
j

⌘

2

� 4

X

d

i=2

↵2

i

⇣

�
i

�
X

d

j=1

↵2

j

�
j

⌘

2

�
X

d

i=2

↵2

i

(�
1

� �
i

)

2 � �
X

d

i=2

↵2

i

(�
1

� �
i

) = �(f(x)� f(x⇤
))

Combining the two cases, we have that within B
✏

the objective function (5) is max{ 1

2✏

2
�

, 1

�

}-gradient
dominated. Finally, observe that if x0 is chosen uniformly at random on Sd�1, then with probability
at least 1� p, ↵2

1

= ⌦(

p

2

d

), i.e. there exists some constant c > 0 such that 1

✏

2  cd

p

2 .
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