
A Using submodularity to perform projections

While solving (6) is NP-hard in general, the authors in [3] showed that it can be approximately solved
using methods from submodular function optimization, which we quickly recap here. First, (6) can
be cast in the following equivalent way:

ˆG = arg max

| ˜G|k

(
X

i2I

g

2

i

: I = [
G2 ˜GG

)
(8)

Once we have ˆG, ˆ

u can be recovered by simply setting ˆ

u

I

= g

I

and 0 everywhere else, where
I = [

G2 ˆGG. Next, we have the following result

Lemma A.1. Given a set S 2 [p], the function z(S) =
P

i2S

x

2

i

. is submodular.

Proof. First, recall the definition of a submodular function:

Definition A.2. Let Q be a finite set, and let z(·) be a real valued function defined on ⌦

Q, the power
set of Q. The function z(·) is said to be submodular if

z(S) + z(T ) � z(S [ T ) + z(S \ T ) 8S, T ⇢ ⌦

Q

Let S and T be two sets of groups, s.t., S ✓ T . Let, SS = supp([
j2S

G
j

) and TT =

supp([
j2T

G
j

). Then, SS ✓ TT . Hence,

z(S [ i)� z(S) =
X

`2SS[supp(Gi)

x

2

`

�
X

`2SS

x

2

`

=

X

`2supp(Gi)\SS

x

2

`

⇣1

�
X

`2supp(Gi)\TT

x

`

= z(T [ i)� z(T ),

where ⇣
1

follows from SS ✓ TT . This completes the proof.

This result shows that (8) can be cast as a problem of the form

max

S⇢Q

z(S), s.t. |S|  k. (9)

Algorithm 2, which details the pseudocode for performing approximate projections, exactly corre-
sponds to the greedy algorithm for submodular optimization [1], and this gives us a means to assess
the quality of our projections.

A.1 Proof of Lemma 2.2

Proof. First, from the approximation property of the greedy algorithm [13],

kˆuk2 �
⇣
1� e�

k0
k

⌘
ku⇤k2 (10)

Also, kg � ˆ

uk2 = kgk2 � kˆuk2 because (

ˆ

u)

supp(ˆu)

= (g)

supp(ˆu)

and 0 otherwise.

Using the above two equations, we have:

kg � ˆ

uk2  kgk2 � ku⇤k2 + e�
k0
k ku⇤k2,

= kg � u⇤k2 + e�
k0
k ku⇤k2,

= kg � u⇤k2 + e�
k0
k k(g)

supp(u⇤)k
2, (11)

where both equalities above follow from the fact that due to optimality, (u⇤)
supp(u⇤) = (g)

supp(u⇤).
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B Proof of Theorem 3.1

Proof. Recall that g
t

= w

t

� ⌘rf(w
t

), w
t+1

=

bPG
k

(g

t

).

Let supp(w
t+1

) = S
t+1

, supp(w⇤
) = S⇤, I = S

t+1

[ S⇤, and M = S⇤\St+1

. Also, note that
|G-supp(I)|  k + k⇤.

Moreover, (w
t+1

)

St+1 = (g

t

)

St+1 (See Algorithm 2). Hence, k(w
t+1

� g

t

)

St+1[S⇤k22 = k(g
t

)

M

k2
2

.

Now, using Lemma B.2 with z = (g

t

)

I

,we have:

k(w
t+1

� g

t

)

I

k2
2

= k(g
t

)

M

k2
2

⇣1

 k⇤

k � ek
· k(g

t

)

St+1\S⇤k
2

2

+

k⇤✏

k � ek
,

⇣2

 k⇤

k � ek
· k(w⇤ � g

t

)

I

k2
2

+

k⇤✏

k � ek
, (12)

where ⇣
1

follows from M ⇢ S⇤ and hence |G-supp(M)|  |G-supp(S⇤)| = k⇤. ⇣
2

follows since
w

⇤
St+1\S⇤

= 0.

Now, using the fact that k(w
t+1

�w

⇤
)

I

k
2

= kw
t+1

�w

⇤k
2

along with triangle inequality, we have:
kw

t+1

�w

⇤k
2


 
1 +

s
k⇤

k � ek

!
· k(w⇤ � g

t

)

I

k
2

+

s
k⇤✏

k � ek
, (13)

⇣1


 
1 +

s
k⇤

k � ek

!
· k(w⇤ �w

t

� ⌘(rf(w⇤
)�rf(w

t

)))

I

k
2

+ 2⌘k(rf(w⇤
))

St+1k2 +

s
k⇤✏

k � ek
,

⇣2


 
1 +

s
k⇤

k � ek

!
· k(I � ⌘H

(I[St)(I[St)
(↵))(w

t

�w

⇤
)

I[Stk2 + 2⌘k(rf(w⇤
))

St+1k2 +

s
k⇤✏

k � ek
,

⇣3


 
1 +

s
k⇤

k � ek

!
·
✓
1� ↵

2k+k

⇤

L
2k+k

⇤

◆
kw

t

�w

⇤k
2

+

2

L
2k+k

⇤
k(rf(w⇤

))

St+1k2 +

s
k⇤✏

k � ek
,

(14)
where ↵ = cw

t

+ (1 � c)w⇤ for c > 0 and H(↵) is the Hessian of f evaluated at ↵. ⇣
1

follows
from triangle inequality, ⇣

2

follows from the Mean-Value theorem and ⇣
3

follows from the RSC/RSS
condition and by setting ⌘ = 1/L

2k+k

⇤ .

The theorem now follows by setting k = 2

✓⇣
L2k+k⇤

↵2k+k⇤

⌘
2

+ 1

◆
· log(kw⇤k

2

/✏) and ✏ appropriately.

Lemma B.1. Let w =

bPG
k

(g) and let S = supp(w). Then, for every I s.t. S ✓ I , the following
holds:

w

I

=

bPG
k

(g
I

).

Proof. Let Q = {i
1

, i
2

, . . . , i
k

} be the k-groups selected when the greedy procedure (Algorithm 2)
is applied to g. Then,

kw
Gij \([1`j�1Gi`

)

k2
2

� kw
Gi\([1`j�1Gi`

)

k2
2

, 81  j  k, 8i /2 Q.

Moreover, the greedy selection procedure is deterministic. Hence, even if groups G
i

are restricted
to lie in a subset of G, the output of the procedure remains exactly the same.

Lemma B.2. Let z 2 Rp be any vector. Let bw =

bPG
k

(z) and let w⇤ 2 Rp be s.t. |G-supp(w

⇤
)| 

k⇤. Let S = supp(

b
w), S⇤ = supp(w

⇤
), I = S [ S⇤, and M = S⇤\S. Then, the following holds:

kz
M

k2
2

k⇤
� ✏

k � ek


kz
S\S⇤k2

2

k � ek
,

where ek = O(k⇤ log(kw⇤k
2

/✏)).
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Proof. Recall that the k groups are added greedily to form S = supp(

b
w). Let Q = {i

1

, i
2

, . . . , i
k

}
be the k-groups selected when the greedy procedure (Algorithm 2) is applied to z. Then,

kz
Gij \([1`j�1Gi`

)

k2
2

� kz
Gi\([1`j�1Gi`

)

k2
2

, 81  j  k, 8i /2 Q.

Now, as [
1`j�1

G
i` ✓ S, 81  j  k, we have:

kz
Gij \([1`j�1Gi`

)

k2
2

� kz
Gi\Sk

2

2

, 81  j  k, 8i /2 Q.

Let G-supp(w

⇤
) = {`

1

, . . . , `
k

⇤}. Then, adding the above inequalities for each `
j

s.t. `
j

/2 Q, we
get:

kz
Gij \([1`j�1Gi`

)

k2
2

�
kz

S

⇤\Sk2
2

k⇤
, (15)

where the above inequality also uses the fact that
P

`j2G-supp(w⇤
),`j /2Q

kz
G`j

\Sk2
2

� kz
S

⇤\Sk2
2

.

Adding (15) 8 (

ek + 1)  j  k, we get:

kz
S

k2
2

� kz
B

k2
2

� k � ek
k⇤

· kz
S

⇤\Sk2
2

, (16)

where B = [
1je

k

G
ij .

Moreover using Lemma 2.2 and the fact that |G-supp(z

S

⇤
)|  k⇤, we get: kz

B

k2
2

� kz
S

⇤k2
2

� ✏.
Hence,

kz
M

k2
2

k⇤
 kz

S

k2
2

� kz
B

k2
2

k � ek
 kz

S

k2
2

� kz
S

⇤k2
2

+ ✏

k � ek


kz
S\S⇤k2

2

+ ✏

k � ek
. (17)

Lemma now follows by a simple manipulation of the above given inequality.

C Proof of Lemma 3.3

Proof. Note that,

kXwk2
2

=

X

i

(x

T

i

w)

2

=

X

i

(z

T

i

⌃

1/2

w)

2

= kZ⌃

1/2

wk2
2

,

where Z 2 Rn⇥p s.t. each row z

i

⇠ N(0, I) is a standard multivariate Gaussian. Now, using
Theorem 1 of [4], and using the fact that ⌃1/2

w lies in a union of
�
M

k

�
subspaces each of at most s

dimensions, we have
�
w.p. � 1� 1/(Mk · 2s)

�
:

✓
1� 4p

C

◆
k⌃1/2

wk2
2

 1

n
kZ⌃

1/2

wk2
2


✓
1 +

4p
C

◆
k⌃1/2

wk2
2

.

The result follows by using the definition of �
min

and �
max

.

D Proof of Theorem 3.4

Proof. Recall that g
t

= w

t

� ⌘rf(w
t

), w
t+1

= PG
k

(g

t

). Similar to the proof of Theorem 3.1
(Appendix B), we define S

t+1

= supp(w

t+1

), S
t

= supp(w

t

), S⇤ = supp(w

⇤
), I = S

t+1

[ S⇤,
J = I [ S

t

, and M = S⇤\St+1

. Also, note that |G-supp(I)|  k + k⇤, |G-supp(J)|  2k + k⇤.

Now, using Lemma D.1 with z = (g

t

)

I

, we have: k(w
t+1

� g

t

)

I

k2
2

 k

⇤

k

· k(w⇤ � g

t

)

I

k2
2

. This
follows from noting that M = k + k⇤ here. Now, the remaining proof follows proof of Theorem 3.1
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closely. That is, using the above inequality with triangle inequality, we have:

kw
t+1

�w

⇤k
2


 
1 +

r
k⇤

k

!
· k(w⇤ � g

t

)

I

k
2

⇣1


 
1 +

r
k⇤

k

!
· k(w⇤ �w

t

� ⌘(rf(w⇤
)�rf(w

t

)))

I

k
2

+ 2⌘k(rf(w⇤
))

St+1k2,

⇣2


 
1 +

r
k⇤

k

!
· k(I � ⌘H

J,J

(↵))(w
t

�w

⇤
)

J

k
2

+ 2⌘k(rf(w⇤
))

St+1k2,

⇣3


 
1 +

r
k⇤

k

!
·
✓
1� ↵

2k+k

⇤

L
2k+k

⇤

◆
kw

t

�w

⇤k
2

+

2

L
2k+k

⇤
k(rf(w⇤

))

St+1k2, (18)

where ↵ = cw
t

+ (1 � c)w⇤ for a c > 0 and H(↵) is the Hessian of f evaluated at ↵. ⇣
1

follows
from triangle inequality, ⇣

2

follows from the Mean-Value theorem and ⇣
3

follows from the RSC/RSS
condition and by setting ⌘ = 1/L

2k+k

⇤ .

The theorem now follows by setting k = 2 ·
⇣

L2k+k⇤

↵2k+k⇤

⌘
2

.

Lemma D.1. Let z 2 Rp be such that it is spanned by M groups and let bw = PG
k

(z), w⇤
= PG

k

⇤(z)

where k � k⇤ and G = {G
1

, . . . , G
M

}. Then, the following holds:

k bw � zk2
2


✓

M � k

M � k⇤

◆
kw⇤ � zk2

2

.

Proof. Let S = supp(

b
w) and S⇤ = supp(w

⇤
). Since bw is a projection of z, bw

S

= z

S

and 0

otherwise. Similarly, w⇤
S⇤

= z

S⇤ . So, to prove the lemma we need to show that:

kz
S

k2
2


✓

M � k

M � k⇤

◆
kz

S⇤
k2
2

. (19)

We first construct a group-support set A: we first initialize A = {B}, where B = supp(w

⇤
). Next,

we iteratively add k�k⇤ groups greedily to form A. That is, A = A[A
i

where A
i

= supp(PG
1

(z

¯

A

)).

Let ew 2 Rp be such that ew
A

= z

A

and e
w

A

= 0, where A denotes the complement of A. Also,
recall that kz

S

kG
0

= kz
supp( ew)

kG
0

 |A| = k. Then, using the optimality of bw, we have:

kz
S

k2
2

 kz
A

k2
2

. (20)

Now,

kz
B

k2
2

M � k⇤
�

kz
A

k2
2

M � k
=

1

M � k⇤
kz

B\Ak
2

2

� k � k⇤

(M � k⇤)(M � k)
kz

A

k2
2

. (21)

By construction, B\A = [k�k

⇤

i=1

A
i

. Moreover, A is spanned by at most M�k groups. Since, A
i

’s are
constructed greedily, we have: kz

Aik22 � kzAk2
2

M�k

. Adding the above equation for all 1  i  k � k⇤,
we get:

kz
B\Ak

2

2

=

k�k

⇤X

i=1

kz
Aik22 � k � k⇤

M � k
kz

A

k2
2

. (22)

Using (20), (21), and (22), we get: kzBk2
2

M�k

⇤ � kzSk2
2

M�k

� 0. That is, (19) holds. Hence proved.
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E Proof of Theorem 4.1

First, we provide a general result that extracts out the key property of the approximate projection
operator that is required by our proof. We then show that Algorithm 3 satisfies that property.

In particular, we assume that there is a set of supports S
k

⇤ such that supp(w⇤
) 2 S

k

⇤ . Also, let
S
k

✓ {0, 1}p be s.t. S
k

⇤ ✓ S
k

. Moreover, for any given z 2 Rp, there exists an efficient procedure
to find S 2 S

k

s.t. the following holds for all S⇤ 2 S
k

⇤ :

kz
S\S⇤k

2

2

 k⇤

k
· �

✏

kz
S⇤\Sk

2

2

+ ✏, (23)

where ✏ > 0 and �
✏

is a function of ✏.

We now show that (23) holds for the SoG case, specifically Algorithm 3. For simplicity, we provide
the result for non-overlapping case; for overlapping groups a similar result can be obtained by
combining the following lemma, with Lemma B.2.
Lemma E.1. Let G = {G

1

, . . . , G
M

} be M non-overlapping groups. Let G-supp(w

⇤
) =

{i⇤
1

, . . . , i⇤
k

⇤}. Let G be the groups selected using Algorithm 3 applied to z 2 Rp and let
S
i

be the selected set of co-ordinates from group G
i

where i 2 G. Let S = [
i

S
i

, and let
S⇤ = [

i

(S⇤)i = supp(w

⇤
). Also, let G⇤ be the set of groups that contains S⇤. Then, the fol-

lowing holds:

kz
S\S⇤k2

2

 max

✓
k⇤
1

k
1

,
k⇤
2

k
2

◆
· kz

S

⇤\Sk2
2

.

Proof. Consider group G
i

s.t. i 2 G\G⇤. Now, in a group we just select elements S
i

by the standard
hard thresholding. Hence, using Lemma 1 from [10], we have:

kz
(S⇤)i\Sk

2

2

� k
2

k⇤
2

kz
S\(S⇤)ik

2

2

, 8i 2 G \G⇤. (24)

Due to greedy selection, for each G
i

, G
j

s.t. i 2 G\G⇤ and j 2 G⇤\G, we have:
X

i2G\G⇤

kz
Sik22 � |G\G⇤|

|G⇤\G|
X

j2G

⇤\G

kz
Sjk22.

That is, X

i2G\G⇤

kz
Sik22 � k

1

k⇤
1

X

j2G

⇤\G

kz
Sjk22. (25)

The lemma now follows by adding (24) and (25), and rearranging the terms.

Now, we prove Theorem 4.1

Proof. Theorem follows directly from proof of Theorem 3.1, but with (12) replaced by the following
equation:

k(w
t+1

� g

t

)

I

k2
2

= k(g
t

)

M

k2
2

⇣1

 k⇤

k
· �

✏

k(g
t

)

St+1\S⇤k
2

2

+ ✏
⇣2

 k⇤

k
· �

✏

· k(w⇤ � g

t

)

I

k2
2

+ ✏,

(26)
where ⇣

1

follows from the assumption given in the theorem statement. ⇣
2

follows from w

⇤
St+1\S⇤

= 0.

F Results for the Least Squares Sparse Overlapping Group Lasso

Lemma E.1 along with Theorem 4.1 shows that for SoG case, we need to project onto more than
(than k⇤

1

) groups and more than (than k⇤
2

) number of elements in each group. In particular, we select
k
i

⇡ (

L2k+k⇤

↵2k+k⇤ )
2k⇤

i

for both i = 1, 2.

Combining the above lemma with Theorem 4.1 and a similar lemma to Lemma 3.3 also provides us
with sample complexity bound for estimating w

⇤ from (y,X) s.t. y = Xw

⇤
+ �. Specifically, the

sample complexity evaluates to n � 2

�
k⇤
1

log(M) + 2k⇤
1

k⇤
2

log(max

i

|G
i

|)
�
.
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Signal IHT GOMP CoGEnT
Blocks .00029 .0011 .00066

HeaviSine .0026 .0029 .0021
Piece-Polynomial .0016 .0017 .0022

Piece-Regular .0025 .0039 .0015
Table 1: MSE on standard test signals using IHT with full corrections

G Additional Experimental Evaluations

Noisy Compressed Sensing: Here, we apply our proposed methods in a compressed sensing
framework to recover sparse wavelet coefficients of signals. We used the standard “test” signals
(Table 1) of length 2048, and obtained 512 Gaussian measurements. We set k = 100 for IHT and
GOMP. IHT is competitive (in terms of accuracy) with the state of the art in convex methods, while
being significantly faster. Figure 3 shows the recovered blocks signal using IHT. All parameters were
picked clairvoyantly via a grid search.
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Figure 3: Wavelet Transform recovery of 1-D test signals. (Left) The ‘blocks’ signal and recovery
using IHT + Greedy projections. (Right) Objective function vs iterations on the ‘blocks’ signal.
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