A Using submodularity to perform projections

While solving (6) is NP-hard in general, the authors in [3] showed that it can be approximately solved using methods from submodular function optimization, which we quickly recap here. First, (6) can be cast in the following equivalent way:

$$\hat{\mathcal{G}} = \arg \max_{|\tilde{\mathcal{G}}| \le k} \left\{ \sum_{i \in I} \boldsymbol{g}_i^2 : I = \bigcup_{G \in \tilde{\mathcal{G}}} G \right\}$$
(8)

Once we have $\hat{\mathcal{G}}$, $\hat{\boldsymbol{u}}$ can be recovered by simply setting $\hat{\boldsymbol{u}}_I = \boldsymbol{g}_I$ and 0 everywhere else, where $I = \bigcup_{G \in \hat{\mathcal{G}}} G$. Next, we have the following result

Lemma A.1. Given a set $S \in [p]$, the function $z(S) = \sum_{i \in S} x_i^2$. is submodular.

Proof. First, recall the definition of a submodular function:

Definition A.2. Let Q be a finite set, and let $z(\cdot)$ be a real valued function defined on Ω^Q , the power set of Q. The function $z(\cdot)$ is said to be submodular if

$$z(S) + z(T) \ge z(S \cup T) + z(S \cap T) \ \forall S, T \subset \Omega^{\zeta}$$

Let S and T be two sets of groups, s.t., $S \subseteq T$. Let, $SS = \operatorname{supp}(\cup_{j \in S} G_j)$ and $TT = \operatorname{supp}(\cup_{j \in T} G_j)$. Then, $SS \subseteq TT$. Hence,

$$\begin{aligned} z(S \cup i) - z(S) &= \sum_{\ell \in SS \cup \mathrm{supp}(G_i)} \boldsymbol{x}_{\ell}^2 - \sum_{\ell \in SS} \boldsymbol{x}_{\ell}^2 \\ &= \sum_{\ell \in \mathrm{supp}(G_i) \setminus SS} \boldsymbol{x}_{\ell}^2 \stackrel{\zeta_1}{\geq} \sum_{\ell \in \mathrm{supp}(G_i) \setminus TT} \boldsymbol{x}_{\ell} = z(T \cup i) - z(T), \end{aligned}$$

where ζ_1 follows from $SS \subseteq TT$. This completes the proof.

This result shows that (8) can be cast as a problem of the form

$$\max_{S \subset Q} z(S), \text{ s.t. } |S| \le k.$$
(9)

Algorithm 2, which details the pseudocode for performing approximate projections, exactly corresponds to the greedy algorithm for submodular optimization [1], and this gives us a means to assess the quality of our projections.

A.1 Proof of Lemma 2.2

Proof. First, from the approximation property of the greedy algorithm [13],

$$\|\hat{\boldsymbol{u}}\|^2 \ge \left(1 - e^{-\frac{k'}{k}}\right) \|\boldsymbol{u}_*\|^2$$
 (10)

Also, $\|\boldsymbol{g} - \hat{\boldsymbol{u}}\|^2 = \|\boldsymbol{g}\|^2 - \|\hat{\boldsymbol{u}}\|^2$ because $(\hat{\boldsymbol{u}})_{\operatorname{supp}(\hat{\boldsymbol{u}})} = (\boldsymbol{g})_{\operatorname{supp}(\hat{\boldsymbol{u}})}$ and 0 otherwise. Using the above two equations, we have:

$$\begin{aligned} \|\boldsymbol{g} - \hat{\boldsymbol{u}}\|^{2} &\leq \|\boldsymbol{g}\|^{2} - \|\boldsymbol{u}_{*}\|^{2} + e^{-\frac{k'}{k}} \|\boldsymbol{u}_{*}\|^{2}, \\ &= \|\boldsymbol{g} - \boldsymbol{u}_{*}\|^{2} + e^{-\frac{k'}{k}} \|\boldsymbol{u}_{*}\|^{2}, \\ &= \|\boldsymbol{g} - \boldsymbol{u}_{*}\|^{2} + e^{-\frac{k'}{k}} \|(\boldsymbol{g})_{\mathrm{supp}(\boldsymbol{u}_{*})}\|^{2}, \end{aligned}$$
(11)

where both equalities above follow from the fact that due to optimality, $(u_*)_{\mathrm{supp}(u_*)} = (g)_{\mathrm{supp}(u_*)}$.

B Proof of Theorem 3.1

Proof. Recall that $\boldsymbol{g}_t = \boldsymbol{w}_t - \eta \nabla f(\boldsymbol{w}_t), \, \boldsymbol{w}_{t+1} = \widehat{P}_k^{\mathcal{G}}(\boldsymbol{g}_t).$

Let $\operatorname{supp}(\boldsymbol{w}_{t+1}) = S_{t+1}$, $\operatorname{supp}(\boldsymbol{w}^*) = S_*$, $I = S_{t+1} \cup S_*$, and $M = S_* \setminus S_{t+1}$. Also, note that $|\operatorname{G-supp}(I)| \leq k + k^*$.

Moreover, $(w_{t+1})_{S_{t+1}} = (g_t)_{S_{t+1}}$ (See Algorithm 2). Hence, $||(w_{t+1} - g_t)_{S_{t+1} \cup S_*}||_2^2 = ||(g_t)_M||_2^2$. Now, using Lemma B.2 with $z = (g_t)_I$, we have:

$$\|(\boldsymbol{w}_{t+1} - \boldsymbol{g}_t)_I\|_2^2 = \|(\boldsymbol{g}_t)_M\|_2^2 \stackrel{\zeta_1}{\leq} \frac{k^*}{k - \widetilde{k}} \cdot \|(\boldsymbol{g}_t)_{S_{t+1} \setminus S_*}\|_2^2 + \frac{k^* \epsilon}{k - \widetilde{k}},$$
$$\stackrel{\zeta_2}{\leq} \frac{k^*}{k - \widetilde{k}} \cdot \|(\boldsymbol{w}^* - \boldsymbol{g}_t)_I\|_2^2 + \frac{k^* \epsilon}{k - \widetilde{k}},$$
(12)

where ζ_1 follows from $M \subset S_*$ and hence $|\operatorname{G-supp}(M)| \le |\operatorname{G-supp}(S_*)| = k^*$. ζ_2 follows since $\boldsymbol{w}^*_{S_{t+1} \setminus S_*} = 0$.

Now, using the fact that $\|(\boldsymbol{w}_{t+1} - \boldsymbol{w}^*)_I\|_2 = \|\boldsymbol{w}_{t+1} - \boldsymbol{w}^*\|_2$ along with triangle inequality, we have: $\|\boldsymbol{w}_{t+1} - \boldsymbol{w}^*\|_2$

$$\leq \left(1 + \sqrt{\frac{k^*}{k - \tilde{k}}}\right) \cdot \|(\boldsymbol{w}^* - \boldsymbol{g}_t)_I\|_2 + \sqrt{\frac{k^* \epsilon}{k - \tilde{k}}},\tag{13}$$

$$\overset{\zeta_{1}}{\leq} \left(1 + \sqrt{\frac{k^{*}}{k - \widetilde{k}}}\right) \cdot \|(\boldsymbol{w}^{*} - \boldsymbol{w}_{t} - \eta(\nabla f(\boldsymbol{w}^{*}) - \nabla f(\boldsymbol{w}_{t})))_{I}\|_{2} + 2\eta\|(\nabla f(\boldsymbol{w}^{*}))_{S_{t+1}}\|_{2} + \sqrt{\frac{k^{*}\epsilon}{k - \widetilde{k}}},$$

$$\overset{\zeta_{2}}{\leq} \left(1 + \sqrt{\frac{k^{*}}{k - \widetilde{k}}}\right) \cdot \|(I - \eta H_{(I \cup S_{t})(I \cup S_{t})}(\alpha))(\boldsymbol{w}_{t} - \boldsymbol{w}^{*})_{I \cup S_{t}}\|_{2} + 2\eta\|(\nabla f(\boldsymbol{w}^{*}))_{S_{t+1}}\|_{2} + \sqrt{\frac{k^{*}\epsilon}{k - \widetilde{k}}},$$

$$\overset{\zeta_{3}}{\leq} \left(1 + \sqrt{\frac{k^{*}}{k - \widetilde{k}}}\right) \cdot \left(1 - \frac{\alpha_{2k + k^{*}}}{L_{2k + k^{*}}}\right)\|\boldsymbol{w}_{t} - \boldsymbol{w}^{*}\|_{2} + \frac{2}{L_{2k + k^{*}}}\|(\nabla f(\boldsymbol{w}^{*}))_{S_{t+1}}\|_{2} + \sqrt{\frac{k^{*}\epsilon}{k - \widetilde{k}}},$$

$$(14)$$

where $\alpha = cw_t + (1 - c)w^*$ for c > 0 and $H(\alpha)$ is the Hessian of f evaluated at α . ζ_1 follows from triangle inequality, ζ_2 follows from the Mean-Value theorem and ζ_3 follows from the RSC/RSS condition and by setting $\eta = 1/L_{2k+k^*}$.

The theorem now follows by setting $k = 2\left(\left(\frac{L_{2k+k^*}}{\alpha_{2k+k^*}}\right)^2 + 1\right) \cdot \log(\|\boldsymbol{w}^*\|_2/\epsilon)$ and ϵ appropriately.

Lemma B.1. Let $w = \widehat{P}_k^{\mathcal{G}}(g)$ and let $S = \operatorname{supp}(w)$. Then, for every I s.t. $S \subseteq I$, the following holds:

$$\boldsymbol{w}_I = \widehat{P}_k^{\mathcal{G}}(g_I).$$

Proof. Let $Q = \{i_1, i_2, ..., i_k\}$ be the k-groups selected when the greedy procedure (Algorithm 2) is applied to g. Then,

$$\|\boldsymbol{w}_{G_{i_j}\setminus(\cup_{1\leq\ell\leq j-1}G_{i_\ell})}\|_2^2 \geq \|\boldsymbol{w}_{G_i\setminus(\cup_{1\leq\ell\leq j-1}G_{i_\ell})}\|_2^2, \forall 1\leq j\leq k, \forall i\notin Q.$$

Moreover, the greedy selection procedure is **deterministic**. Hence, even if groups G_i are restricted to lie in a subset of \mathcal{G} , the output of the procedure remains exactly the same.

Lemma B.2. Let $z \in \mathbb{R}^p$ be any vector. Let $\hat{w} = \hat{P}_k^{\mathcal{G}}(z)$ and let $w^* \in \mathbb{R}^p$ be s.t. $|\operatorname{G-supp}(w^*)| \le k^*$. Let $S = \operatorname{supp}(\hat{w})$, $S_* = \operatorname{supp}(w^*)$, $I = S \cup S_*$, and $M = S_* \setminus S$. Then, the following holds:

$$\frac{\|\boldsymbol{z}_M\|_2^2}{k^*} - \frac{\epsilon}{k - \widetilde{k}} \leq \frac{\|\boldsymbol{z}_{S \setminus S^*}\|_2^2}{k - \widetilde{k}},$$

where $\widetilde{k} = O(k^* \log(\|\boldsymbol{w}^*\|_2/\epsilon)).$

Proof. Recall that the k groups are added greedily to form $S = \text{supp}(\widehat{w})$. Let $Q = \{i_1, i_2, \dots, i_k\}$ be the k-groups selected when the greedy procedure (Algorithm 2) is applied to z. Then,

$$\|\boldsymbol{z}_{G_{i_j}\setminus(\cup_{1\leq\ell\leq j-1}G_{i_\ell})}\|_2^2 \geq \|\boldsymbol{z}_{G_i\setminus(\cup_{1\leq\ell\leq j-1}G_{i_\ell})}\|_2^2, \quad \forall 1\leq j\leq k, \ \forall i\notin Q.$$

Now, as $\bigcup_{1 \le \ell \le j-1} G_{i_{\ell}} \subseteq S, \forall 1 \le j \le k$, we have:

$$\|\boldsymbol{z}_{G_{i_j}\setminus(\cup_{1\leq\ell\leq j-1}G_{i_\ell})}\|_2^2 \geq \|\boldsymbol{z}_{G_i\setminus S}\|_2^2, \quad \forall 1\leq j\leq k, \ \forall i\notin Q.$$

Let G-supp $(w^*) = \{\ell_1, \ldots, \ell_{k^*}\}$. Then, adding the above inequalities for each ℓ_j s.t. $\ell_j \notin Q$, we get:

$$\|\boldsymbol{z}_{G_{i_j} \setminus (\bigcup_{1 \le \ell \le j-1} G_{i_\ell})}\|_2^2 \ge \frac{\|\boldsymbol{z}_{S^* \setminus S}\|_2^2}{k^*},\tag{15}$$

where the above inequality also uses the fact that $\sum_{\ell_j \in G\text{-supp}(\boldsymbol{w}^*), \ell_j \notin Q} \|\boldsymbol{z}_{G_{\ell_j} \setminus S}\|_2^2 \ge \|\boldsymbol{z}_{S^* \setminus S}\|_2^2$.

Adding (15) \forall ($\tilde{k} + 1$) $\leq j \leq k$, we get:

$$\|\boldsymbol{z}_{S}\|_{2}^{2} - \|\boldsymbol{z}_{B}\|_{2}^{2} \ge \frac{k - \tilde{k}}{k^{*}} \cdot \|\boldsymbol{z}_{S^{*} \setminus S}\|_{2}^{2},$$
(16)

where $B = \bigcup_{1 \le j \le \widetilde{k}} G_{i_j}$.

Moreover using Lemma 2.2 and the fact that $|\operatorname{G-supp}(\boldsymbol{z}_{S^*})| \leq k^*$, we get: $\|\boldsymbol{z}_B\|_2^2 \geq \|\boldsymbol{z}_{S^*}\|_2^2 - \epsilon$. Hence,

$$\frac{\|\boldsymbol{z}_M\|_2^2}{k^*} \le \frac{\|\boldsymbol{z}_S\|_2^2 - \|\boldsymbol{z}_B\|_2^2}{k - \widetilde{k}} \le \frac{\|\boldsymbol{z}_S\|_2^2 - \|\boldsymbol{z}_{S^*}\|_2^2 + \epsilon}{k - \widetilde{k}} \le \frac{\|\boldsymbol{z}_{S \setminus S^*}\|_2^2 + \epsilon}{k - \widetilde{k}}.$$
(17)

Lemma now follows by a simple manipulation of the above given inequality.

C Proof of Lemma 3.3

Proof. Note that,

$$\|X\boldsymbol{w}\|_{2}^{2} = \sum_{i} (\boldsymbol{x}_{i}^{T}\boldsymbol{w})^{2} = \sum_{i} (\boldsymbol{z}_{i}^{T}\Sigma^{1/2}\boldsymbol{w})^{2} = \|Z\Sigma^{1/2}\boldsymbol{w}\|_{2}^{2},$$

where $Z \in \mathbb{R}^{n \times p}$ s.t. each row $z_i \sim N(0, I)$ is a standard multivariate Gaussian. Now, using Theorem 1 of [4], and using the fact that $\Sigma^{1/2} w$ lies in a union of $\binom{M}{k}$ subspaces each of at most s dimensions, we have $(w.p. \ge 1 - 1/(M^k \cdot 2^s))$:

$$\left(1 - \frac{4}{\sqrt{C}}\right) \|\Sigma^{1/2} \boldsymbol{w}\|_{2}^{2} \leq \frac{1}{n} \|Z\Sigma^{1/2} \boldsymbol{w}\|_{2}^{2} \leq \left(1 + \frac{4}{\sqrt{C}}\right) \|\Sigma^{1/2} \boldsymbol{w}\|_{2}^{2}.$$

The result follows by using the definition of σ_{\min} and σ_{\max} .

D Proof of Theorem 3.4

Proof. Recall that $g_t = w_t - \eta \nabla f(w_t)$, $w_{t+1} = P_k^{\mathcal{G}}(g_t)$. Similar to the proof of Theorem 3.1 (Appendix B), we define $S_{t+1} = \operatorname{supp}(w_{t+1})$, $S_t = \operatorname{supp}(w_t)$, $S_* = \operatorname{supp}(w^*)$, $I = S_{t+1} \cup S_*$, $J = I \cup S_t$, and $M = S_* \setminus S_{t+1}$. Also, note that $|\operatorname{G-supp}(I)| \le k + k^*$, $|\operatorname{G-supp}(J)| \le 2k + k^*$.

Now, using Lemma D.1 with $\boldsymbol{z} = (\boldsymbol{g}_t)_I$, we have: $\|(\boldsymbol{w}_{t+1} - \boldsymbol{g}_t)_I\|_2^2 \leq \frac{k^*}{k} \cdot \|(\boldsymbol{w}^* - \boldsymbol{g}_t)_I\|_2^2$. This follows from noting that $M = k + k^*$ here. Now, the remaining proof follows proof of Theorem 3.1

closely. That is, using the above inequality with triangle inequality, we have:

$$\|\boldsymbol{w}_{t+1} - \boldsymbol{w}^*\|_{2} \leq \left(1 + \sqrt{\frac{k^*}{k}}\right) \cdot \|(\boldsymbol{w}^* - \boldsymbol{g}_{t})_I\|_{2}$$

$$\stackrel{\zeta_1}{\leq} \left(1 + \sqrt{\frac{k^*}{k}}\right) \cdot \|(\boldsymbol{w}^* - \boldsymbol{w}_t - \eta(\nabla f(\boldsymbol{w}^*) - \nabla f(\boldsymbol{w}_t)))_I\|_{2} + 2\eta\|(\nabla f(\boldsymbol{w}^*))_{S_{t+1}}\|_{2},$$

$$\stackrel{\zeta_2}{\leq} \left(1 + \sqrt{\frac{k^*}{k}}\right) \cdot \|(I - \eta H_{J,J}(\alpha))(\boldsymbol{w}_t - \boldsymbol{w}^*)_J\|_{2} + 2\eta\|(\nabla f(\boldsymbol{w}^*))_{S_{t+1}}\|_{2},$$

$$\stackrel{\zeta_3}{\leq} \left(1 + \sqrt{\frac{k^*}{k}}\right) \cdot \left(1 - \frac{\alpha_{2k+k^*}}{L_{2k+k^*}}\right) \|\boldsymbol{w}_t - \boldsymbol{w}^*\|_{2} + \frac{2}{L_{2k+k^*}} \|(\nabla f(\boldsymbol{w}^*))_{S_{t+1}}\|_{2},$$
(18)

where $\alpha = c \boldsymbol{w}_t + (1 - c) \boldsymbol{w}^*$ for a c > 0 and $H(\alpha)$ is the Hessian of f evaluated at α . ζ_1 follows from triangle inequality, ζ_2 follows from the Mean-Value theorem and ζ_3 follows from the RSC/RSS condition and by setting $\eta = 1/L_{2k+k^*}$.

The theorem now follows by setting $k = 2 \cdot \left(\frac{L_{2k+k^*}}{\alpha_{2k+k^*}}\right)^2$.

Lemma D.1. Let $z \in \mathbb{R}^p$ be such that it is spanned by M groups and let $\hat{w} = P_k^{\mathcal{G}}(z)$, $w^* = P_{k^*}^{\mathcal{G}}(z)$ where $k \ge k^*$ and $\mathcal{G} = \{G_1, \ldots, G_M\}$. Then, the following holds:

$$\|\widehat{\boldsymbol{w}} - \boldsymbol{z}\|_2^2 \le \left(\frac{M-k}{M-k^*}\right) \|\boldsymbol{w}^* - \boldsymbol{z}\|_2^2$$

Proof. Let $S = \operatorname{supp}(\widehat{w})$ and $S_* = \operatorname{supp}(w^*)$. Since \widehat{w} is a projection of z, $\widehat{w}_S = z_S$ and 0 otherwise. Similarly, $w_{S_*}^* = z_{S_*}$. So, to prove the lemma we need to show that:

$$\|\boldsymbol{z}_{\overline{S}}\|_{2}^{2} \leq \left(\frac{M-k}{M-k^{*}}\right) \|\boldsymbol{z}_{\overline{S_{*}}}\|_{2}^{2}.$$
(19)

We first construct a group-support set A: we first initialize $A = \{B\}$, where $B = \sup(\boldsymbol{w}^*)$. Next, we iteratively add $k - k^*$ groups greedily to form A. That is, $A = A \cup A_i$ where $A_i = \sup(P_1^{\mathcal{G}}(\boldsymbol{z}_{\bar{A}}))$.

Let $\widetilde{\boldsymbol{w}} \in \mathbb{R}^p$ be such that $\widetilde{\boldsymbol{w}}_A = \boldsymbol{z}_A$ and $\widetilde{\boldsymbol{w}}_{\overline{A}} = 0$, where \overline{A} denotes the complement of A. Also, recall that $\|\boldsymbol{z}_S\|_0^{\mathcal{G}} = \|\boldsymbol{z}_{supp}(\widetilde{\boldsymbol{w}})\|_0^{\mathcal{G}} \le |A| = k$. Then, using the optimality of $\widehat{\boldsymbol{w}}$, we have:

$$\|\boldsymbol{z}_{\overline{S}}\|_2^2 \le \|\boldsymbol{z}_{\overline{A}}\|_2^2. \tag{20}$$

Now,

$$\frac{\|\boldsymbol{z}_{\overline{B}}\|_{2}^{2}}{M-k^{*}} - \frac{\|\boldsymbol{z}_{\overline{A}}\|_{2}^{2}}{M-k} = \frac{1}{M-k^{*}} \|\boldsymbol{z}_{\overline{B}\setminus\overline{A}}\|_{2}^{2} - \frac{k-k^{*}}{(M-k^{*})(M-k)} \|\boldsymbol{z}_{\overline{A}}\|_{2}^{2}.$$
(21)

By construction, $\overline{B}\setminus \overline{A} = \bigcup_{i=1}^{k-k^*} A_i$. Moreover, \overline{A} is spanned by at most M-k groups. Since, A_i 's are constructed greedily, we have: $\|\boldsymbol{z}_{A_i}\|_2^2 \ge \frac{\|\boldsymbol{z}_{\overline{A}}\|_2^2}{M-k}$. Adding the above equation for all $1 \le i \le k-k^*$, we get:

$$\|\boldsymbol{z}_{\overline{B}\setminus\overline{A}}\|_{2}^{2} = \sum_{i=1}^{k-k^{*}} \|\boldsymbol{z}_{A_{i}}\|_{2}^{2} \ge \frac{k-k^{*}}{M-k} \|\boldsymbol{z}_{\overline{A}}\|_{2}^{2}.$$
(22)

Using (20), (21), and (22), we get: $\frac{\|\boldsymbol{z}_{\overline{B}}\|_{2}^{2}}{M-k^{*}} - \frac{\|\boldsymbol{z}_{\overline{S}}\|_{2}^{2}}{M-k} \ge 0$. That is, (19) holds. Hence proved.

E Proof of Theorem 4.1

First, we provide a general result that extracts out the key property of the approximate projection operator that is required by our proof. We then show that Algorithm 3 satisfies that property.

In particular, we assume that there is a set of supports S_{k^*} such that $\operatorname{supp}(\boldsymbol{w}^*) \in S_{k^*}$. Also, let $S_k \subseteq \{0,1\}^p$ be s.t. $S_{k^*} \subseteq S_k$. Moreover, for any given $\boldsymbol{z} \in \mathbb{R}^p$, there exists an efficient procedure to find $S \in S_k$ s.t. the following holds for all $S_* \in S_{k^*}$:

$$\|\boldsymbol{z}_{S\setminus S_*}\|_2^2 \le \frac{k^*}{k} \cdot \beta_{\epsilon} \|\boldsymbol{z}_{S_*\setminus S}\|_2^2 + \epsilon,$$
(23)

where $\epsilon > 0$ and β_{ϵ} is a function of ϵ .

We now show that (23) holds for the SoG case, specifically Algorithm 3. For simplicity, we provide the result for non-overlapping case; for overlapping groups a similar result can be obtained by combining the following lemma, with Lemma B.2.

Lemma E.1. Let $\mathcal{G} = \{G_1, \ldots, G_M\}$ be M non-overlapping groups. Let G-supp $(w^*) = \{i_1^*, \ldots, i_{k^*}^*\}$. Let G be the groups selected using Algorithm 3 applied to $z \in \mathbb{R}^p$ and let S_i be the selected set of co-ordinates from group G_i where $i \in G$. Let $S = \bigcup_i S_i$, and let $S_* = \bigcup_i (S_*)_i = \operatorname{supp}(w^*)$. Also, let G^* be the set of groups that contains S_* . Then, the following holds:

$$\|m{z}_{S\setminus S^*}\|_2^2 \le \max\left(rac{k_1^*}{k_1},rac{k_2^*}{k_2}
ight)\cdot \|m{z}_{S^*\setminus S}\|_2^2.$$

Proof. Consider group G_i s.t. $i \in G \cap G^*$. Now, in a group we just select elements S_i by the standard hard thresholding. Hence, using Lemma 1 from [10], we have:

$$\|\boldsymbol{z}_{(S_{*})_{i}\setminus S}\|_{2}^{2} \geq \frac{k_{2}}{k_{2}^{*}} \|\boldsymbol{z}_{S\setminus(S_{*})_{i}}\|_{2}^{2}, \forall i \in G \cap G^{*}.$$
(24)

Due to greedy selection, for each G_i, G_j s.t. $i \in G \setminus G^*$ and $j \in G^* \setminus G$, we have:

$$\sum_{i \in G \setminus G^*} \|\boldsymbol{z}_{S_i}\|_2^2 \geq \frac{|G \setminus G^*|}{|G^* \setminus G|} \sum_{j \in G^* \setminus G} \|\boldsymbol{z}_{S_j}\|_2^2.$$

That is,

$$\sum_{i \in G \setminus G^*} \|\boldsymbol{z}_{S_i}\|_2^2 \ge \frac{k_1}{k_1^*} \sum_{j \in G^* \setminus G} \|\boldsymbol{z}_{S_j}\|_2^2.$$
(25)

The lemma now follows by adding (24) and (25), and rearranging the terms.

Now, we prove Theorem 4.1

Proof. Theorem follows directly from proof of Theorem 3.1, but with (12) replaced by the following equation:

$$\|(\boldsymbol{w}_{t+1} - \boldsymbol{g}_t)_I\|_2^2 = \|(\boldsymbol{g}_t)_M\|_2^2 \stackrel{\zeta_1}{\leq} \frac{k^*}{k} \cdot \beta_{\epsilon} \|(\boldsymbol{g}_t)_{S_{t+1} \setminus S_*}\|_2^2 + \epsilon \stackrel{\zeta_2}{\leq} \frac{k^*}{k} \cdot \beta_{\epsilon} \cdot \|(\boldsymbol{w}^* - \boldsymbol{g}_t)_I\|_2^2 + \epsilon,$$
(26)

where ζ_1 follows from the assumption given in the theorem statement. ζ_2 follows from $w^*_{S_{t+1}\setminus S_*} = 0$.

F Results for the Least Squares Sparse Overlapping Group Lasso

Lemma E.1 along with Theorem 4.1 shows that for SoG case, we need to project onto more than (than k_1^*) groups *and* more than (than k_2^*) number of elements in each group. In particular, we select $k_i \approx (\frac{L_{2k+k^*}}{\alpha_{2k+k^*}})^2 k_i^*$ for both i = 1, 2.

Combining the above lemma with Theorem 4.1 and a similar lemma to Lemma 3.3 also provides us with sample complexity bound for estimating w^* from (y, X) s.t. $y = Xw^* + \beta$. Specifically, the sample complexity evaluates to $n \ge \kappa^2 (k_1^* \log(M) + \kappa^2 k_1^* k_2^* \log(\max_i |G_i|))$.

Signal	IHT	GOMP	CoGEnT
Blocks	.00029	.0011	.00066
HeaviSine	.0026	.0029	.0021
Piece-Polynomial	.0016	.0017	.0022
Piece-Regular	.0025	.0039	.0015

Table 1: MSE on standard test signals using IHT with full corrections

G Additional Experimental Evaluations

Noisy Compressed Sensing: Here, we apply our proposed methods in a compressed sensing framework to recover sparse wavelet coefficients of signals. We used the standard "test" signals (Table 1) of length 2048, and obtained 512 Gaussian measurements. We set k = 100 for IHT and GOMP. IHT is competitive (in terms of accuracy) with the state of the art in convex methods, while being significantly faster. Figure 3 shows the recovered blocks signal using IHT. All parameters were picked clairvoyantly via a grid search.

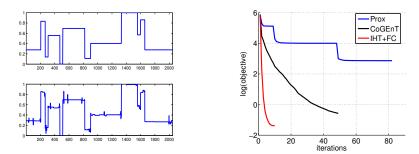


Figure 3: Wavelet Transform recovery of 1-D test signals. (Left) The 'blocks' signal and recovery using IHT + Greedy projections. (Right) Objective function vs iterations on the 'blocks' signal.