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1 Proof of Proposition 3

Here we re-state and prove Proposition 3.

Proposition 3. Assume that K = 2 and we approximate the probabilities p(y = 1) and p(y = 2) from
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These bounds are used to approximate the maximum likelihood solution for (f1, f2) by maximizing
the lower bound

(2) with the corresponding Bouchard’s bounds given by 0 ) and
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obtained by replacing p(y = 1) and p(y = 2) in the exact log likelihood with Bouchard’s bounds.
Then, the global maximizer of F(f1, f2, «) is such that
fitf

o= 5 , fu=2logN +¢c, k=1,2. 2)
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Proof. The lower bound is written as
Ni(f1 — @) + No(fa — a) — (N1 + Na) [log(l +el17%) 4 log(1 + ef2_a)] .

We will first maximize this quantity wrt . For that is suffices to minimize the upper bound on the
following log-sum-exp function

a+log(1 +ef17%) 4+ log(1 + ef27),

which is a convex function of . By taking the derivative wrt o and setting to zero we obtain the

stationary condition
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Clearly, the value of « that satisfies the condition is o = % Now if we substitute this value back
into the initial bound we have
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which is concave wrt f1 and f5. Then, by taking derivatives wrt f; and f> we obtain the conditions
N1 _ NQ B (Nl + Ng) ef1;f2 6f2;f1
9 - 2 1+ef1;f2 1+ef2;f1

Oth Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



N2 _ N1 B (Nl —|—N2) ef2;f1 ef1gf2

9 - 2 1_~_€f2;f1 - 1+€f1;f2
Now we can observe that these conditions are satisfied by f; = 2log N1 + cand fo = 2log Ns + ¢
which gives the global maximizer since F( fi, f2, ) is concave. O
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