
A Proofs for our recovery framework using approximate projections

In this appendix, we provide the convergence proof of our recovery algorithm AS-IHT and related
results. Before we begin with the analysis of AS-IHT, we first establish useful consequences of the
subspace RIP. For convenience, we recall the definition of the subspace RIP:
Definition 2 (Subspace RIP). Let X 2 Rn⇥d, let U be a subspace model, and let � � 0. Then X
satisfies the (U, �)-subspace RIP if for all ✓ 2M(U) we have (1� �)k✓k2 kX✓k2 (1+ �)k✓k2.

Note that the above definition implies that kXPUk
p
1 + � for all U 2 U, where kXPUk denotes

the spectral norm of XPU . The following lemma summarizes further consequences of the subspace
RIP.
Lemma 12 (Needell, Tropp 2008). Let X 2 Rn⇥d be a matrix satisfying the (U, �)-subspace RIP.
Moreover, let U 2 U be a subspace in the model. Then the following properties hold for all ✓ 2 Rd

and y 2 Rn:
��PUX

T y
�� p1 + � kyk , (5)

��PUX
TXPU✓

�� (1 + �)k✓k , (6)
��
(I � PUX

TXPU)✓
�� �k✓k . (7)

Proof. Equations (5) and (6) follow directly from the bound on the spectral norm of XPU (which
has the same spectral norm as PUXT).

For Equation (7), consider the eigendecomposition of the symmetric matrix PUXTXPU . All
eigenvalues are in the interval [1� �, 1 + �]. Hence forming I � PUXTXPU shifts all eigenvalues
into the interval [��, �], which implies the spectral norm bound in Equation (7).

A.1 Convergence of AS-IHT

We first prove an important lemma for the convergence proof of our algorithm AS-IHT. In a nutshell,
the lemma shows that the approximate head projection captures a significant fraction of the residual
vector.
Lemma 13. Let U, UT , and UH be subspace models, and let ✓⇤ 2 U and ˆ✓i 2 UT be vectors
such that y = X✓⇤ + e as in Equation (1) and ˆ✓i is arbitrary. We also assume that the matrix
X satisfies the (U � UT � UH, �)-subspace RIP. Furthermore, let H be a (cH,U � UT ,UH)-
approximate head projection. Finally, we define the residual ri = ✓⇤ � ˆ✓i, the update vector
bi = XT

(y �X ˆ✓i) = XTXri +XT e, and the subspace U = H(bi). Then we have
��PU?ri

��
q

1� ⌘2
0

��ri
��
+

⌘
0

⇢
0p

1� ⌘2
0

kek , (8)

where
⌘
0

= cH(1� �)� � and ⇢
0

= (1 + cH)

p
1 + � .

We assume that cH and � are such that ⌘
0

< 1.

Proof. We first give a lower bound on the part of the residual kPUrk that is “captured” by the
approximate head projection. We establish this lower bound via the norm of the update vector��PUbi

��. Let V 2 U� UT be a subspace such that ri 2 V (note that this is always possible because
✓ 2M(U) and ˆ✓i 2M(UT)). Using the approximate head projection property of H, we get

��PUb
i
�� � cH

��PV b
i
��

= cH
��PV X

TXri + PV X
T e
��

� cH
��PV X

TXPV r
i
��� cH

��PV X
T e
�� (9)

� cH(1� �)��ri��� cH
p
1 + � kek . (10)

Equation (9) follows from the triangle inequality and the definition of V , which implies PV ri = ri.
Equation (10) uses Lemma 12 twice.

10

We now establish an upper bound on
��PUbi

��:
��PUb

i
��

=

��PUX
TXri + PUX

T e
��

=

��PUX
TXri � PUr

i
+ PUr

i
+ PUX

T e
��

 ��PU (X
TXri � ri)

��
+

��PUr
i
��
+

��PUX
T e
��

 ��PU+V (X
TXri � ri)

��
+

��PUr
i
��
+

p
1 + � kek (11)

=

��PU+V X
TXPU+V r

i � ri
��
+

��PUr
i
��
+

p
1 + � kek (12)

 �
��ri

��
+

��PUr
i
��
+

p
1 + � kek . (13)

Equation (11) uses Lemma 12 and U ✓ U + V , which implies that projecting onto the subspace
U + V instead of U cannot decrease the norm. Equation (12) follows from the definition of V , which
implies ri 2 V and hence PU+V ri = ri. Equation (13) uses Lemma 12 again.

Combining Equations (10) and (13) gives
��PUr

i
�� � ⌘

0

��ri
��� ⇢

0

kek ,
where ⌘

0

and ⇢
0

are as defined in the statement of the lemma. Since we also have
��PU?ri

��2
=��ri

��2 � ��PUri
��2, we can now establish the desired upper bound. To simplify notation, we complete

our proof with the following claim.

Claim 14. Let w, x, y, z 2 R be such that x � ⌘
0

z � w and y2 = z2 � x2. Then

y
q

1� ⌘2
0

z +
⌘
0

wp
1� ⌘2

0

.

Instantiating Lemma 14 with w = ⇢
0

kek, x =

��PUri
��, y =

��ri
��, and z =

��PU?ri
�� then directly

implies Equation (8). So it only remains to prove Claim 14, which we accomplish by completing the
square:

y2 = z2 � x2

 z2 � (⌘
0

z � w)2

= (1� ⌘2
0

)z2 + 2⌘
0

zw � w2

= (1� ⌘2
0

)z2 + 2⌘
0

zw +

⌘2
0

w2

1� ⌘2
0

� ⌘2
0

w2

1� ⌘2
0

� w2

=

 q
1� ⌘2

0

z +
⌘
0

wp
1� ⌘2

0

!
2

� ⌘2
0

w2

1� ⌘2
0

� w2 .

Since ⌘
0

< 1, this proves Claim 14.

Next, we prove that the iterates ˆ✓i of AS-IHT converge linearly.

Theorem 9. Let ˆ✓i be the estimate computed by AS-IHT in iteration i and let ri+1

= ✓⇤ � ˆ✓i+1 be
the corresponding residual. Moreover, let U be an arbitrary subspace model. We also assume:

• y = X✓⇤ + e as in Equation (1) with ✓⇤ 2M(U).
• T is a (cT ,U,UT)-approximate tail projection.
• H is a (cH,U� UT ,UH)-approximate head projection.
• The matrix X satisfies the (U� UT � UH, �)-subspace RIP.

Then the residual error of the next iterate, i.e., ri+1

= ✓⇤ � ˆ✓i+1 satisfies
��ri+1

�� ⌘
��ri

��
+ ⇢kek ,

where ⌘ = (1 + cT)
✓
� +

q
1� ⌘2

0

◆
, ⇢ = (1 + cT)

⌘
0

⇢
0p

1� ⌘2
0

+

p
1 + �

!
,

⌘
0

= cH(1� �)� � , and ⇢
0

= (1 + cH)

p
1 + � .

11

Proof. We start by applying the tail projection property of T on the input vector a =

ˆ✓i +H(bi):
��ri+1

��
=

���✓⇤ � ˆ✓i+1

��� = k✓⇤ � T (a)k
 k✓⇤ � ak+ ka� T (a)k
 (1 + cT)k✓⇤ � ak
= (1 + cT)

��ri �H(XTXri +XT e)
�� . (14)

Intuitively, the quantity on the right hand side of (14) is small for two reasons: first, the matrix XTX
behaves close to an isometry on the vector ri because ri is in the subspace model U�UT . Second, as
we have shown in Lemma 13, the subspace identified by the approximate head projection H captures
a good fraction of the residual ri, and hence ri �H(bi) is small.

More formally, let the subspaces U and V be defined as before in Lemma 13, i.e., U = H(bi) and
V 2 U� UT is such that ri 2 V . Then we get

��ri �H(XTXri +XT e)
��

=

��PUr
i
+ PU?ri � PUX

TXri � PUX
T e
��

 ��PU (X
TXri � ri)

��
+

��PU?ri
��
+

��PUX
T e
��

 ��PU+V (X
TXri � ri)

��
+

��PU?ri
��
+

��PUX
T e
��

=

��PU+V X
TXPU+V r

i � ri
��
+

��PU?ri
��
+

��PUX
T e
�� (15)

 �
��ri

��
+

��PU?ri
��
+

p
1 + � kek . (16)

Equation (15) uses that ri 2 V , and in Equation (16) we invoke consequences of the RIP (see Lemma
12). Combining Equations (14), (16), and Lemma 13 then gives

��ri+1

�� (1 + cT)

�
��ri

��
+

q
1� ⌘2

0

��ri
��
+

⌘
0

⇢
0p

1� ⌘2
0

kek+p1 + � kek
!

.

Rearranging this inequality yields the statement of the theorem.

While Theorem 9 only gives a guarantee from one iteration of AS-IHT to the next, it is straightforward
to extend this to a guarantee for the entire algorithm.
Corollary 15. We adopt the setting of Theorem 9, i.e.,

• y = X✓⇤ + e as in Equation (1) with ✓⇤ 2M(U).
• T is a (cT ,U,UT)-approximate tail projection.
• H is a (cH,U� UT ,UH)-approximate head projection.
• The matrix X satisfies the (U� UT � UH, �)-subspace RIP.

Furthermore, assume that cT , cH, and � are such that ⌘ < 1. Set the number of iterations to

t =

2

666

log

k✓⇤k
kek

log

1

⌘

3

777
.

Then AS-IHT(y,X, t) returns an estimate ˆ✓ such that

k✓⇤ � ˆ✓k
✓
1 +

⇢

1� ⌘
◆
kek . (17)

Proof. Note that
��r0

��
= k✓⇤k due to our initialization ˆ✓0 = 0. Invoking Theorem 9 and a straight-

forward induction then yields

k✓⇤ � ˆ✓k = k✓⇤ � ˆ✓t+1k =

��rt+1

��
= ⌘tk✓⇤k+ ⇢kek

tX

i=0

⌘i .

We can bound the first term on the RHS because we have ⌘tk✓⇤k kek for t as defined above. In the
second term on the RHS, we bound the geometric series by 1

1�⌘ . Combining these bounds yields
Equation (17).

12

Note that Corollary 15 is essentially the formal version of Theorem 5 stated in Section 2. For
completeness, we first repeat Theorem 5:
Theorem 5 (informal). Let H and T be approximate head and tail projections with constant
approximation ratios, and let the matrix X satisfy the (�c U, �)-subspace RIP for a sufficiently large
constant c and a sufficiently small constant �. Then there is an algorithm AS-IHT that returns an
estimate ˆ✓ such that kˆ✓ � ✓⇤k Ckek. The algorithm requires O(logk✓k/kek) multiplications with
X and XT , and O(logk✓k/kek) invocations of H and T .

Let c
1

and c
2

be fixed constants. When T is a (cT ,U,�c
1 U)-approximate tail projection and H is a

(cH,�c
1 U� U,�c

2 U)-approximate head projection, Theorem 5 is the special case where

• UT = �c
1 U

• UH = �c
2 U

• c = 1 + c
1

+ c
2

.

The iteration bound from Corollary 15 implies the bound on the number of multiplications with X
and XT , and the bound on the number of invocations of H and T .

A.2 Boosting approximate projections

In some cases, it is hard to design efficient approximate projection algorithms that satisfy the stringent
conditions on cT and cH in Theorem 9. To overcome this difficulty, we now show how to “boost” the
approximation ratio of an approximate head projection to be arbitrarily close to 1.

First, we start with a single iteration of boosting.
Theorem 16. Let H : Rd ! UH be a (cH,U,UH)-approximate head projection running in time
O(T). Then we can construct a (

p
2c2H � 2c3H + c4H ,U,UH � UH)-approximate head projection

running in time O(T + T 0
1

+ T 0
2

), where T 0
1

is the time needed to apply a projection onto a subspace
in UH, and T 0

2

is the time needed to find an orthogonal projector for the sum of two subspaces in UH.

Proof. Consider Algorithm 2. The running time bound follows directly from the definition of
BOOSTEDHEAD1. It is also easy to see that the returned subspace is in UH � UH. Hence it remains
to show that BOOSTEDHEAD1 satisfies the desired approximation ratio.

In the following, let OPT = maxU 02UkPU 0bk2 be the best possible head approximation, and let
U⇤ 2 U be a subspace achieving OPT . Moreover, let c̃H be the head-approximation ratio achieved
by the subspace U , i.e.,

kPUbk2 = c̃2HOPT .

Let W be the subspace returned by the algorithm. Then we have

kPW bk2 = kPUPW bk2 + kPU?PW bk2 . (18)

We can write PU = BTB for an orthogonal basis B of the subspace U , and PW = [BT |DT
]

⇥
B
D

⇤
,

where D is an orthonormal basis of the orthogonal complement of U in W (it is easy to see that such
a pair of bases always exists, e.g., by following the Gram-Schmidt procedure). Basic linear algebra
then shows that PUPW = PU = PWPU . We can use this fact to bound the first term above:

kPUPW bk2 = kPUbk2 = c̃2HOPT . (19)

Next, we consider the second term in Equation (18). We have

PU?PW = (I � PU)PW = PW � PUPW = PW � PWPU = PW (I � PU) .

Since (I � PU)b = r, this gives

kPU?PW bk2 = kPW (I � PU)bk2 = kPW rk2 � kPV rk2 , (20)

where the last equality follows from the fact that the subspace W contains the subspace V .

From the head-approximation guarantee of the oracle H, we know that

kPV rk2 � c2H max

U 02U
kPU 0rk2 � c2HkPU⇤rk2 . (21)

13

Next, we bound kPU⇤rk (note that we omitted the square).

kPU⇤rk = kPU⇤
(I � PU)bk = kPU⇤b� PU⇤PUbk

� kPU⇤bk � kPU⇤PUbk
� kPU⇤bk � kPUbk
=

p
OPT � c̃H

p
OPT

= (1� c̃H)

p
OPT .

The second line uses the triangle inequality, the third line uses the fact that PU is an orthogonal
projection, and the fourth line uses the optimality of the subspace U⇤ and the approximation guarantee
of the subspace U , respectively. Squaring both sides then yields

kPU⇤rk2 � (1� c̃H)

2

OPT . (22)

We can now combine Equations (18) to (22) and get

kPW bk2 � c̃2HOPT + c2H (1� c̃H)

2

OPT

= (c̃2H + c2H � 2c2Hc̃H + c2Hc̃2H)OPT . (23)

We know that cH c̃H 1. In order to get a uniform bound, we analyze the factor in front of OPT .
Let x = c̃2H, then we can write the approximation ratio as

f(x) = (1 + c2H)x2 � 2c2Hx+ c2H .

Computing the derivative and setting it to zero yields

f 0
(x) = 2(1 + c2H)x� 2c2H

x =

c2H
1 + c2H

.

So the unconstrained minimum is achieved for some value of x c2H. Since the quadratic function f
is increasing for x � c2H, the constrained minimum is achieved for c̃H = cH, which gives

kPW bk2 � (2c2H � 2c3H + c4H)OPT .

Algorithm 2 Boosted head projection
1: function BOOSTEDHEAD1(H, b)
2: U H(b)
3: r b� PUb
4: V H(r)
5: return an orthogonal projection onto the subspace U + V

6: function BOOSTEDHEAD(H, b, t)
7: if t = 1 then
8: return H(b)
9: else

10: return BOOSTEDHEAD1(BOOSTEDHEAD(H, ·, t� 1), b)

Next, we extend one iteration of boosting to several rounds. In our final applications of head
approximation boosting, we are mainly interested in boosting a constant head approximation ratio
cH to an improved head approximation ratio c0H that is close to one but still a constant. Hence it
suffices to state a boosting result without explicit dependence between cH and c0H, which simplifies
the argument in the following theorem.
Theorem 10. Let H be a (cH,U,UH)-approximate head projection running in time O(T), and let
" > 0. Then there is a constant c = c",cH that depends only on " and cH such that we can construct
a (1� ",U,�c UH)-approximate head projection running in time O(c(T + T 0

1

+ T 0
2

)) where T 0
1

is
the time needed to apply a projection onto a subspace in �c UH, and T 0

2

is the time needed to find an
orthogonal projector for the sum of two subspaces in �c UH.

14

Proof. Consider the algorithm BOOSTEDHEAD. If BOOSTEDHEAD(H, b, t) achieves head ap-
proximation ratio cH,t, then BOOSTEDHEAD(H, b, t + 1) achieves head approximation ratio
cH,t+1

=

q
2c2H,t � 2c3H,t + c4H,t (see Theorem 16). Hence it suffices to show that the sequence

cH,t converges to 1 for any starting value cH,0 = cH.

Consider the function f(x) =
p
2x2 � 2x3

+ x4 and note that cH,t+1

= f(cH,t). An elementary
calculation shows that f(x) > x for 0 < x < 1. Hence the sequence xi+1

= f(xi) converges to 1

for any 0 < x
0

< 1. For a proof by contradiction, let x0 < 1 be the smallest value such that xi x0
for all i. Let � = f(x0

)� x0 > 0. Since f is continuous, we can find a point xi⇤ close to x0 such that
f(xi⇤) > f(x0

)� � and hence f(xi⇤) > x0, a contradiction. So for any " > 0, there is a c = c",cH
such that cH,c � 1� ".

A.3 A boosted recovery algorithm

We now combine our convergence result for AS-IHT with the boosting technique to prove a general
result that holds for any constant head an tail approximation ratios.
Theorem 17. We make the following assumptions:

• y = X✓⇤ + e as in Equation (1) with ✓⇤ 2M(U).
• T is a (cT ,U,UT)-approximate tail projection.
• H is a (cH,U� UT ,UH)-approximate head projection.
• The matrix X satisfies the (�c

(U � UT � UH), �)-subspace RIP for c sufficiently large
and � sufficiently small, where c and � depend only on cT and cH.

Then there is an algorithm BOOSTED-AS-IHT that returns an estimate ˆ✓ such that

k✓⇤ � ˆ✓k Ckek ,
where C depends only on �, cT , and cH. Moreover, the algorithm requires O(logk✓k/kek) iterations.

Proof. The algorithm BOOSTED-AS-IHT is AS-IHT (Algorithm 1) with BOOSTEDHEAD (Algo-
rithm 2) in place of the approximate head projection.

In order to invoke Corollary 15, we need to show that

⌘ = (1 + cT)
✓
� +

q
1� ⌘2

0

◆

is less than 1, where ⌘
0

is given by (c.f. Theorem 9)

⌘
0

= cH(1� �)� � .
Note that by making � sufficiently small and cH sufficiently close to 1, we can achieve ⌘

0

arbitrarily
close to 1 and hence ⌘ arbitrarily small for any fixed tail approximation ratio cT .

While the assumption in the current theorem allows for small � as long as � only depends on cH and
cT , we need to handle arbitrarily small, fixed cH. In order to do so, we invoke Theorem 10, which
allows us to get a boosted head approximation with approximation ratio c0H arbitrarily close to 1.
The invocation of BOOSTEDHEAD leads to a larger output set �c UH. As a result, we require the
subspace-RIP over the set U� UT ��c UH. The current theorem provides this subspace-RIP by
assumption.

B Proofs for low-rank matrix recovery

We now formally show how to convert the approximate SVD guarantees of [17] to approximate head
and tail projections for low-rank matrices. For convenience, we first repeat the main result of [17].
Fact 11 ([17]). There is an algorithm APPROXSVD with the following guarantee. Let A 2 Rd

1

⇥d
2

be an arbitrary matrix, let r 2 N be the target rank, and let " > 0 be the desired accuracy. Then with
probability 1 � , APPROXSVD(A, r, ") returns an orthonormal set of vectors z

1

, . . . , zr 2 Rd
1

such that for all i 2 [r], we have
��zTi AAT zi � �2

i

�� "�2

r+1

, (3)

15

where �i is the i-th largest singular value of A. Furthermore, let Z 2 Rd
1

⇥r be the matrix with
columns zi. Then we also have

��A� ZZTA
��
F
 (1 + ")kA�ArkF , (4)

where Ar is the best rank-r Frobenius-norm approximation of A. Finally, the algorithm runs in time
O
⇣

d
1

d
2

r log(d
2

/)p
"

+

d
1

r2 log

2

(d
2

/)
" +

r3 log

3

(d
2

/)
"3/2

⌘
.

As mentioned before, Equation (4) directly gives a tail approximation. We now show how to convert
Equation (3) to a head approximation guarantee. In the following, we let Ur be the subspace model
of rank-r matrices.
Theorem 18. There is an algorithm APPROXLOWRANK with the following property. For an arbitrary
input matrix A 2 Rd

1

⇥d
2 and a target rank r, APPROXLOWRANK produces a subspace of rank-r

matrices U and a matrix Y = PUA, the projection of A onto U . With probability 99/100, the output
satisfies both an (1 � ",Ur,Ur)-approximate head projection guarantee and an (1 + ",Ur,Ur)-
approximate tail projection guarantee. Moreover, APPROXLOWRANK runs in time

O

✓
d
1

d
2

r log d
2p

"
+

d
1

r2 log2 d
2

"
+

r3 log3 d
2

"3/2

◆
.

Proof. Let z
1

, . . . , zr be the vectors returned by APPROXLOWRANK(A, r, "). Then APPROX-
LOWRANK returns the matrix Y = ZZTA and and the subspace U spanned by the vectors zi
and zTi A (it is easy to see that Y is indeed the projection of A onto U). Both operations can be
performed in time O(d

1

d
2

r). Hence the overall running time is dominated by the invocation of
APPROXSVD, which leads to the running time stated in the theorem.

It remains to prove the desired head and tail approximation ratios. The tail approximation guarantee
follows directly from Equation (4). For the head approximation, first note that Equation (3) implies

zTi AAT zi � (1� ")�2

i .

We now apply this inequality by rewriting the head quantity
��ZZTA

��2
F

as follows:

��ZZTA
��2
F

= tr(ATZZTZZTA)

= tr(ATZZTA)

= tr

AT

rX

i=1

ziz
T
i

!
A

!

= tr

rX

i=1

AT ziz
T
i A

!

=

rX

i=1

tr(AT ziz
T
i A)

=

rX

i=1

tr(zTi AAT zi)

=

rX

i=1

zTi AAT zi

� (1� ")
rX

i=1

�2

i

= (1� ")kArk2F
where the matrix Ar is the best rank-r approximation of the matrix A. This proves the desired head
approximation guarantee.

16

B.1 The final recovery algorithm

We now prove our overall result for low-rank matrix recovery.
Theorem 6. Let X 2 Rn⇥d be a matrix with subspace-RIP for low-rank matrices, and let TX denote
the time to multiply a d-dimensional vector with X or XT . Then there is an algorithm that recovers
an estimate ˆ✓ such that kˆ✓ � ✓⇤k Ckek. Moreover, the algorithm runs in time eO(TX + r · d2

1

).

Proof. We assume that X satisfies the low-rank RIP for matrices of rank 4r and RIP constant � 0.1.
We remark that it is possible to fine-tune these constants, but our focus here is on the scaling with the
problem dimensions.

Instantiating Theorem 18 gives us approximate head and tail projections with the following guaran-
tees:

• T is a (1.1,Ur,Ur)-approximate tail projection.
• H is a (0.9,U

2r,U2r)-approximate tail projection.

Note that Ur�Ur ✓ U
2r, so T and H satisfy the conditions of Theorem 9. Moreover, U�UT �UH ✓

U
4r, and therefore the matrix X also satisfies the RIP condition of Theorem 9. Substituting cT = 1.1,

cH = 0.9, and � = 0.1 into Theorem 9 then yields ⌘ < 0.9, so we can invoke Corollary 15.

Corollary 15 direct implies the desired recovery guarantee k✓⇤ � ˆ✓k Ckek. Moreover, the
corresponding bound on the number of iterations is O(logk✓⇤k/kek). This has two consequences: (i)
The total number of multiplications with X or XT is eO(1). (ii) The total number of invocations of the
approximate head and tail projections is eO(1). Recall that each matrix multiplication with X takes
TX time, and that the time complexity of the approximate projections is eO(r · d2

1

), where we again
assume the square case for simplicity. Combining these results gives the stated time complexity.

We remark that for fast design matrices (e.g., structured observations such as a subsampled Fourier
matrix), we have TX =

eO(d2
1

) and the total running time becomes eO(r · d2
1

). See Appendix D for
such a construction.

C Approximation algorithms for 2D histograms

We now describe our approximate head and tail projections for histograms. One key ingredient in our
algorithms are hierarchical histograms. Overall, our goal is to approximate arbitrary 2D histograms,
i.e., arbitrary partitions of a

p
d ⇥pd matrix with k non-overlapping rectangles (for simplicity,

we limit our attention to the case of square matrices). Such histograms are also known as tiling
histograms. However, tiling histograms are hard to work with algorithmically because they do not
allow a clean decomposition for a dynamic program. Instead, work in histogram approximation
has utilized hierarchical histograms, which are also partitions of a matrix into k non-overlapping
rectangles. The additional restriction is that the partition can be represented as a tree in which each
rectangle arises through a vertical or horizontal split of the parent rectangle. We refer the reader to
[18] for a more detailed description of different histogram types.

An important result is that every tiling histogram consisting of k rectangles can be simulated with a
hierarchical histogram consisting of at most 4k rectangles (d’Amore and Franciosa, 1992). Since
Theorems 7 and 8 provide bicriterion guarantees for the output space, i.e., projections into a space of
histograms consisting of O(k) rectangles, we focus our attention on approximation algorithms for
hierarchical histograms in the following. These results can then easily be converted into statements
for tiling histograms by increasing the number of histogram tiles by 4.

Next, we introduce some histogram-specific notation. For a histogram subspace U , we denote the
number of histogram pieces in U with �(U). We denote the set of hierarchical histograms subspaces
with Hh. When we have an upper bound on the number of histogram pieces, we write Hh,k for the
set of hierarchical histogram subspaces U with �(U) k.

An important subroutine in our approximate projections is the following notion of a hierachical
histogram oracle.

17

Definition 19. An (↵, ⇣)-hierarchical histogram oracle is an algorithm with the following guarantee:
given any b 2 R

p
d ⇥p

d and � 2 R as input, the algorithm returns a hierarchical histogram subspace
U such that

kPUbk2 � �

↵
�(U) � max

U 02Hh
kPU 0bk2 � ��(U 0

) . (24)

Moreover, the algorithm runs in time O(d1+⇣).

An algorithm with the following guarantee directly follows from the hierarchical dynamic program-
ming techniques introduced in [18]. In particular, Theorem 3 of [18] implies a dependence of
↵ = O(1/⇣2).

Equation (24) has the flavor of a head approximation (a max-quantified guarantee). As a direct
consequence of Equation (24), we also get the following “tail approximation” variant.
Lemma 20. The solution U returned by an (↵, ⇣)-hierarchical histogram oracle also satisfies

kb� PUbk2 + �

↵
�(U) min

U 02Hh
kb� PU 0bk2 + ��(U 0

) . (25)

Proof. Multiplying both sides of Equation (24) with �1 and pulling the negative sign into the max

gives

�kPUbk2 + �

↵
�(H) min

U 02Hh
�kPU 0bk2 + ��(U 0

) .

Adding kbk2 to both sides and using that PU and PU 0 are orthogonal projections then gives Equation
(25) via the Pythagorean Theorem.

However, note that neither Equation (24) nor (25) give direct control over the number of histogram
pieces k. In the following, we give algorithms that convert these guarantees into approximate
projections. In a nutshell, we show that carefully choosing the trade-off parameter �, combined with
a postprocessing step of the corresponding solution, yields head an tail approximations.

C.1 Approximate tail projection

We now show how to construct an approximate tail projection from a hierarchical histogram oracle. In
the following, we assume that HISTOGRAMORACLE(b,�) is an (↵, ⇣)-hierarchical histogram oracle.

First, we establish a lower bound on the approximation error kb� PUk2 if b is not in the histogram
subspace U .
Lemma 21. Let b 2 Rd and U be a histogram subspace. If b /2 U , then we have kb� PUk2 � "

min

where "
min

is as defined in Algorithm 3.

Proof. If b /2 U , there is a histogram piece in U on which b is not constant. Let R be the set of
indices in this piece. We now give a lower bound on the projection error based on the histogram piece
R (recall that the projection of b onto U averages b in each histogram piece):

kb� PUk2 �
X

(i,j)2R

(bi,j � ¯bR)
2 where ¯bR =

1

|R|
X

(i,j)2R

bi,j .

Let (i⇤, j⇤) be the index of the largest coefficient in the histogram piece R (ties broken arbitrarily).
Then we bound the sum on the right hand side above with the term corresponding to (i⇤, j⇤):

kb� PUk2 �
0

@bi⇤,j⇤ � 1

|R|
X

(i,j)2R

bi,j

1

A
2

.

Let �R be the smallest non-zero difference between coefficients in R. Note that �R > 0 because b
is not constant on R. Moreover, we have �R max

(i,j)2R bi⇤,j⇤ � bi,j . Hence we get
0

@bi⇤,j⇤ � 1

|R|
X

(i,j)2R

bi,j

1

A
2

�
✓
bi⇤,j⇤ � |R|� 1

|R| bi⇤,j⇤ � 1

|R| (bi⇤,j⇤ ��R)

◆
2

18

Algorithm 3 Tail projection for hierarchical histograms
1: function HISTOGRAMTAIL(b, k, ⌫, ⇠)
2: � min

�|bi,j � bi0,j0 |
�� bi,j � bi0,j0 6= 0

3: "
min

 �

2

d2

4: �
0

 "
min

2k
5: U

0

 HISTOGRAMORACLE(b,�
0

)

6: if kb� PU
0

k = 0 and �(U
0

) ↵k then
7: return U

0

8: �l 0

9: �r 2↵kbk
10: " "

min

⇠
k

11: while �r � �l � " do
12: �m �l+�r

2

13: Um HISTOGRAMORACLE(b,�m)

14: if �(Um) � ↵k and �(Um) ⌫↵k then
15: return Um

16: if �(Um) � ⌫↵k then
17: �l �m
18: else
19: �r �m
20: return HISTOGRAMORACLE(b,�r)

because bi⇤,j⇤ is one of the largest coefficients in R and at least one coefficient is smaller than bi⇤,j⇤
by at least �R. Combining the inequalities above and simplifying then yields

kb� PUk2 � �

2

R

|R|2 �
�

2

d2
= "

min

.

Next, we prove that the histogram oracle returns roughly a k-histogram if the input is a k-histogram
and we set the parameter � correctly.
Lemma 22. Let "

min

and �
0

be defined as in Algorithm 3. If b is a hierarchical k-histogram, then
HISTOGRAMORACLE(b,�

0

) returns a hierarchical histogram subspace U
0

such that b 2 U
0

and
�(U

0

) ↵k.

Proof. First, we show that b 2 U
0

, i.e., that kb� PU
0

k = 0. Since b 2 Hh,k, we know that there
is a hierarchical histogram subspace U 0 such that kb� PU 0k = 0 and �(U 0

) k. Substituting this
histogram subspace U 0 and �

0

into Equation (25) gives

kb� PU
0

k2 �
0

�(U 0
) "2

min

2

where we also used that �0

↵ �(U0

) � 0. Since "
min

> 0, the contrapositive of Lemma 21 shows that
b 2 U

0

.

Next, we prove that �(U
0

) ↵k. Substituting into Equation (25) again and using kb� PU
0

k = 0

now gives the desired bound on the number of histogram pieces:
�
0

↵
�(U

0

) �
0

k .

With these preliminaries in place, we now show the main result for our tail approximation algorithm.
Theorem 23. Let b 2 Rd, k 2 N, ⌫ > 1, and ⇠ > 0. Then HISTOGRAMTAIL(b, k, ⌫, ⇠) returns a
histogram subspace U such that �(U) ⌫↵k and

kb� PUbk2
✓
1 +

1

⌫ � 1

+ ⇠

◆
min

U 02Hh,k
kb� PU 0bk2 .

Moreover, the algorithm runs in time

O

✓
n1+⇣

log

✓
↵dkbk
⇠�

◆◆

19

where � is as defined in Algorithm 3.

Proof. We analyze the three cases in which HISTOGRAMTAIL returns separately. First, consider
Line 7. In this case, U

0

clearly satisfies the conditions of the theorem. So in the following, we
condition on the algorithm not returning in Line 7. By the contrapositive of Lemma 22, this implies
that b /2M(Hh,k).

Next, consider the case that HISTOGRAMTAIL returns in Line 15. This directly implies that �(Um)
⌫↵k. Moreover, substituting into Equation 25 and restricting the right hand side to histogram
subspaces with at most k pieces gives

kb� PUmk2 +
�m
↵
�(Um) min

U 02Hh,k
kb� PU 0bk2 + �m�(U

0
)

kb� PUmk2 min

U 02Hh,k
kb� PU 0bk2 + �m�(U

0
)� �mk

kb� PUmk2 min

U 02Hh,k
kb� PU 0bk2

where we used that �(Um) � ↵k and �(U 0
) k.

For the remaining case (Line 20), we use the following shorthands in order to simplify notation: Let
Ul and Ur be the histogram subspaces returned by HISTOGRAMORACLE with parameters �l and �r,
respectively. We denote the corresponding tail errors with tl = kb� PUlk2 and tr = kb� PUrk2.
Moreover, we denote the optimal tail error with t⇤ = minU 02Hh,kkb� PU 0bk2. Finally, let �l =
�(Ul) and �r = �(Ur) be the number of histogram pieces in the respective histogram subspaces.
Rewriting Equation 25 in terms of the new notation gives

tl +
�l
↵
�l t⇤ + �lk (26)

tr +
�r
↵
�r t⇤ + �rk (27)

We will use Equation 26 in order to bound our tail projection error tl. For this, we establish an upper
bound on �r. Note that �r �l + " when the algorithm reaches Line 20. Moreover, the binary
search over � is initialized so that we always have �l > ⌫↵k and �r < ↵k. Combining these facts
with Equation (27) leads to an upper bound on �l:

tl +
�l
↵
�l t⇤ + �lk

�l
↵
⌫↵k t⇤ + �lk

�l t⇤

(⌫ � 1)k
.

We use these facts in order to establish an upper bound on tr. Substituting into Equation (27) gives
tr t⇤ + (�l + ")k

tr t⇤ +
t⇤

⌫ � 1

+

"
min

⇠

k
k

tr
✓
1 +

1

⌫ � 1

+ ⇠

◆
t⇤

where we used that t⇤ � "
min

because b is not a hierarchical k-histogram if the algorithm reaches
Line 20 (see Lemma 21). Combined with the fact that �r ↵k, this proves the statement of the
theorem.

Finally, we consider the running time bound. It is straightforward to see that the overall running
time is dominated by the invocations of HISTOGRAMORACLE, each of which takes O(d⇣) time. The
number of iterations of the binary search is bounded by the initial gap between �l and �r and the
final gap ", which gives an iteration bound of

&
log

�(0)r � �(0)l

"

'
= O

✓
log

✓
↵d2kkbk
⇠�2

◆◆
.

20

Algorithm 4 Head projection for hierarchical histograms
1: function HISTOGRAMHEAD(b, k, ⌧)
2: b

max

 maxbi,j

��b2i,j
��

3: �l b
max

⌧
k

4: Ul HISTOGRAMORACLE(b,�l)
5: if �(Ul) 2↵

⌧ k then
6: return Ul

7: �r 2↵kbk2
8: " b

max

⌧
2k

9: while �r � �l > " do
10: �m �l+�r

2

11: Um HISTOGRAMORACLE(b,�m)

12: if �(Um) > 2↵
⌧ k then

13: �l �m
14: else
15: �r �m
16: Ul HISTOGRAMORACLE(b,�l)
17: Ur HISTOGRAMORACLE(b,�r)
18: U 0

l FINDSUBHISTOGRAM(b, Ul,
2↵
⌧ k)

19: if kPU 0
l
bk2 � kPUrbk2 then

20: return U 0
l

21: else
22: return Ur

Simplifying and multiplying this iteration bound with the running time of HISTOGRAMORACLE
leads to the running time bound stated in the theorem.

Theorem 7 now follows directly from Theorem 23. We first restate Theorem 7:
Theorem 7. Let ⇣ > 0 and " > 0 be arbitrary. Then there is an (1 + ",Uk,Uc·k)-approximate tail
projection for 2D histograms where c = O(1/⇣2"). Moreover, the algorithm runs in time eO(d1+⇣).

Setting ⇠ = O(") and ⌫ = O(1/") gives the 1 + " guarantee in Theorem 7. Moreover, we use the
↵ = O(1/⇣2) dependence from Theorem 3 of [18].

C.2 Approximate head projection

Next, we show how to construct an approximate head projection from a hierarchical histogram oracle.
Similar to the approximate tail projection above, we perform a binary search over the parameter �
in order achieve a good trade-off between sparsity and approximation. In contrast to the tail case,
we now need an additional subroutine for extracting a “high-density” sub-histogram of a given
hierarchical histogram. We reduce this task of extracting a sub-histogram to a problem on trees.
Formally, we build on the following lemma about the subroutine FINDSUBTREE.
Lemma 24. Let T = (V,E) be a tree with node weights w : V ! R. Moreover, let s |V | be the
target subtree size. Then FINDSUBTREE(T,w, s) returns a node subset V 0 ✓ V such that V 0 forms
a subtree in T , its size is at most 2s, and it contains a proportional fraction of the node weights, i.e.,P

i2V 0 w(i) � s
|V |

P
i2V w(i).

Proof. Let w0 and i be defined as in FINDSUBTREE. An averaging argument shows that there must
be a contiguous subsequence S as defined in FINDSUBTREE with

i+2s�1X

j=i

w0
(j) � 2s

2|V |� 1

2|V |�1X

j=1

w0
(j) � s

|V |
X

j2V

w(j)

where the first inequality holds because S contains 2s nodes, and the second inequality holds by the
construction of the tour W .

21

Algorithm 5 Subroutines for the head projection
1: function FINDSUBHISTOGRAM(b, U, s)
2: Let TU = (VU , EU) be a tree corresponding to the histogram subspace U .
3: Let w : VU ! R be the node weight function corresponding to U and b.
4: Let T ⇤

U be the tree TU with an additional root node r.
5: Let w⇤ be defined as w with the root node weight w⇤

(r) = kPR
0

bk2.
6: V 0 FINDSUBTREE(T ⇤

U , w
⇤, s)

7: if r 2 V 0 then
8: return the sub-histogram defined by the splits in V 0
9: else

10: Let r0 be the root node in the subtree defined by V 0.
11: Let U 00 be a 4-piece hierarchical histogram such that one of the leaf rectangles is Rr0 .
12: return the composition of U 00 and the sub-histogram defined by V 0

13: function FINDSUBTREE(T,w, s)
14: Let W = (v

1

, . . . , v
2|V |�1

) be a tour through the nodes of T . . T = (V,E)

15: Let w0
(j) =

⇢
w(vj) if position j is the first appearance of vj in W
0 otherwise

16: Let S = (vi, . . . , vi+2s�1

) be a contiguous subsequence of W with
Pi+2s�1

j=i w0
(j) �

s
|V |

P
2|V |�1

j=1

w(j)
17: return the set of nodes in S.

Let V 0 be the nodes in S. Note that we have defined w0 such that every node weight is used only
once, and hence we get

X

j2V 0
w(j) �

i+2s�1X

j=i

w0
(j) � s

|V |
X

j2V

w(j)

as desired. Finally, since S is contiguous in the tour W , the nodes V 0 form a subtree in T of size at
most 2s.

Utilizing Lemma 24, we now show how to extract a “good” sub-histogram from a given hierarchical
histogram. More precisely, our goal is to find a sub-histogram U 0 with a bounded number of histogram
pieces that still achieves a comparable “density” kPU0bk2

�(U 0
)

⇡ kPUbk2

�(U)

. In order to precisely state our
algorithm and proof, we now formalize the connection between hierarchical histograms and tree
graphs.

For a given histogram subspace U , let TU = (VU , EU) be the tree defined as folllows: First, every
split in the hierarchical histogram corresponds to a node in VU . For each split, we then add an edge
from the split to the split directly above it in the histogram hierarchy. For a histogram subspace with
�(U) pieces, this leads to a tree with �(U)� 1 nodes. We also associate each node v in the tree with
three rectangles. Specifically, let R(v) be the rectangle split at v, and let Rl(v) and Rr(v) be the left
and right child rectangles resulting from the split, respectively.

Next, we define the node weight function w : VU ! R. The idea is that the weight of a node
corresponds to the “projection refinement”, i.e., the gain in preserved energy when projected onto the
finer histogram. More formally, for a rectangle R, let PRb the projection of b onto the rectangle R,
i.e.,

(PRb)i,j =

(
0 if (i, j) /2 R
1

|R|
P

(u,v)2R bu,v otherwise .

Then we define the weight of a node v as

w(v) =

��PRl(v)b
��2

+

��PRr(v)b
��2 � ��PR(v)

��2 .

22

Let R
1

, . . . , R�(U)

be the rectangles in the hierarchical histogram U , and let R
0

be the
p
d ⇥pd

“root” rectangle. Since the rectangles are non-overlapping, we have

�(U)X

i=1

PRib = PUb .

Note that the rectangles R
1

, . . . , R�(U)

are exactly the child rectangles of the leaves in the tree TU .
Moreover, by the construction of the weight function w, we have

kPR
0

bk2 +
X

v2VU

w(v) = kPUbk2

because the contributions from intermediate nodes in the tree TU cancel out.

Lemma 25. Let b 2 R
p
d ⇥p

d , let U be a hierarchical histogram subspace, and let s �(U) be
the target number of histogram pieces. Then FINDSUBHISTOGRAM(b, U, s) returns a hierarchical
histogram subspace U 0 such that �(U 0

) 2s + 4 and kPU 0bk2 � s
�(U)

kPUbk2. Moreover, the
algorithm runs in time O(d).

Proof. Note that by construction, the tree T ⇤
U defined in FINDSUBHISTOGRAM has k nodes and the

node weights w⇤ satisfy X

v2VT⇤
U

w(v) = kPUbk2 .

Lemma 24 then shows that the subtree defined by the set of nodes V 0 satisfies |V 0| 2s and
X

v2V 0
w(v) � s

�(U)

X

v2VT⇤
U

w(v) � s

�(U)

kPUbk2 .

Let R0
1

, . . . , R0
|V 0| be the leaf rectangles of the subtree V 0. The above lower bound on the sum of the

node weights implies that
|V 0|X

i=1

��PR0
i
b
��2 � s

�(U)

kPUbk2 .

because the rectangles R0
i are non-overlapping and the weights of the inner tree nodes in V 0 cancel

as before. Hence any hierarchical histogram containing the rectangles R0
1

, . . . , R0
|V 0| satisfies the

desired head projection bound. It remains to show that we can convert the subtree defined by V 0 into
a hierarchical histogram.

If the set V 0 contains the root node of T ⇤
U , the subtree V 0 directly gives a valid sub-histogram of U .

On the other hand, if the root node of T ⇤
U is not in V 0, we can construct a simple 4-piece hierarchical

histogram U 00 that contains the root rectangle Rr0 of V 0 as one of its leaf nodes. The histogram
subspace U 00 is given by four splits corresponding to the boundaries of the root rectangle Rr0 . We
can then combine the hierarchical histogram U 00 with the subtree V 0 by adding the splits in V 0 to the
hierarchical histogram in U 00 (by construction, all these splits are valid). The resulting hierarchical
histogram then has at most 4 + |V 0| 4 + 2s pieces.

The running time bound is straightforward: all pre-processing can be accomplished in linear time
by computing partial sums for the vector b (projections onto a rectangle can then be computed in
constant time). The subroutine FINDSUBTREE also runs in linear time because it requires only a
single pass over the tree of size O(�(U)).

We can now state our approximate head projection algorithm.
Theorem 26. Let b 2 Rd, k 2 N, and 0 < ⌧ < 1. Then HISTOGRAMHEAD(b, k, ⌧) returns a
histogram subspace U such that �U 4↵

⌧ k + 4 and

kPUbk2 � (1� ⌧) max

U 02Hh,k
kPU 0bk2 .

Moreover, the algorithm runs in time O(d1+⇣ log ↵d
⌧).

23

Proof. First, we introduce a few shortands to simplify notation. Let the histogram subspace Ul

be the solution returned by HISTOGRAMORACLE(b,�l). We then write hl = kPUlbk2 for the
head approximation of Ul and �l = �(Ul) for the number of histogram pieces in the histogram
subspace Ul. We adopt a similar convention for hr and �r (corresponding to the solution for
parameter �r). Finally, let h⇤ be the optimal head approximation achievable with a k-histogram, i.e.,
h⇤

= maxU 02Hh,kkPU 0bk2.

Rearranging Equation (24), using the new notation, and substituting the optimal k-histogram solution
for the max-quantifier gives

hl � h⇤ � �l
⇣
k � �l

↵

⌘
. (28)

We now consider the case that the algorithm returns in Line 6. We clearly have �(Ul) 4↵
⌧ k + 4

when reaching Line 6. Moreover, substituting for �l in Equation 28 gives

hl � h⇤ � b
max

⌧

k

⇣
k � �l

↵

⌘

� (1� ⌧)h⇤

where the second line follows from h⇤ � b
max

. This inequality holds because any histogram with at
least 4 pieces can always create a rectangle that isolates the largest element in b (for simplicity, we
assume that k � 4 and b 6= 0). Hence Ul satisfies the conditions of the theorem.

Next, we consider the case that the algorithm reaches the binary search. Note that the binary search is
initialized and performed such that we have �l �r �l + " when it terminates. Moreover, we
have �r 2↵

⌧ k and �l > 2↵
⌧ k. We now distinguish two sub-cases based on the “density” hl

�l
of the

solution Ul corresponding to �l. Let � =

⌧(1�⌧/2)
2↵ be the density threshold compared to the optimal

solution density h⇤
k .

Sub-case 1: hl
�l
 �h⇤

k . This inequality allows us to establish an upper bound on �l. Rearranging
Equation (28) gives (note that k � �l

↵ is negative):

�l hl � h⇤

�l/↵� k

 ↵hl

�l � ↵k .

We now use �l � 2↵
⌧ k:

�l ↵hl

�l � ⌧�l/2
 hl

�l
· ↵

1� ⌧/2
 �

h⇤

k

↵

1� ⌧/2
 ⌧

2

· h
⇤

k
.

where we used the density upper bound for Ul valid in this subcase and the definition of �. Next, we
derive a lower bound on hr. Instantiating Equation (28) with Ur instead of Ul gives

hr � h⇤ � �r
⇣
k � �r

↵

⌘

� h⇤ � �rk
� h⇤ � (�l + ")k

= h⇤ � �lk � "k
� h⇤ � ⌧

2

h⇤ � ⌧

2

b
max

� (1� ⌧)h⇤

where we again used b
max

 h⇤. So in this sub-case, Ur satisfies the conditions of the theorem.

24

Sub-case 2: hl
�l
� �h⇤

k . In this subcase, the solution Ul has a good density, so FINDSUBHIS-
TOGRAM can extract a good solution with a bounded number of histogram pieces. More formally,
since �l � 2↵

⌧ k, we can invoke Lemma 25 and get
���PU 0

l
b
���
2

�
2↵
⌧ k

�l
hl

� 2↵k

⌧
�
h⇤

k

�
⇣
1� ⌧

2

⌘
h⇤ .

Moreover, the output of FINDSUBHISTOGRAM satisfies �(U 0
l) 4↵

⌧ k+4, and hence U 0
l satisfies the

conditions of the theorem.

We can now conclude the proof of the theorem: always, one of sub-case 1 and sub-case 2 holds. Since
HISTOGRAMHEAD always returns the best of the two choices Ur and U 0

l , the overall result has the
desired head approximation guarantee.

The overall running time is dominated by the invocations of HISTOGRAMORACLE in the binary
search. Each invocation takes O(n1+⇣

) time and the number of invocations is the number of iterations
of the binary search, i.e., bounded by

&
log

�(0)r � �(0)l

"

'

&
�(0)r

"

'

&
log

4↵kkbk2
b
max

⌧

'
.

Since k d and kbk2

b
max

 d, the running time bound in the theorem follows.

As before, Theorem 8 follows as a direct consequence of Theorem 26. For completeness, we repeat
the statement of Theorem 8:
Theorem 8. Let ⇣ > 0 and " > 0 be arbitrary. Then there is an (1� ",Uk,Uc·k)-approximate head
projection for 2D histograms where c = O(1/⇣2"). Moreover, the algorithm runs in time eO(d1+⇣).

Setting ⌧ = O(") gives the 1 � " guarantee in Theorem 8. Moreover, we use the ↵ = O(1/⇣2)
dependence from Theorem 3 of [18].

C.3 Recovery of 2D histograms

While we have approximate projections for 2D histograms, they do not suffice to state an overall
recovery guarantee in the current form. The issue is that Theorem 9 requires an approximate head
projection that is competitive with respect to the sum of subspaces U � UT . While this is easy to
satisfy for low-rank matrices (the sum of two rank-r subspace models is contained in the rank-2r
subspace model), adding histogram subspace models is more subtle. For instance, consider two
k-histogram subspaces corresponding to k rows and columns of a k ⇥ k matrix, respectively. The
sum of the two subspaces then contains k2 individual rectangles (a chessboard pattern). While these
k2 rectangles are not independent (the dimension of the space is only 2k), the chessboard pattern is
no directly contained in the set of 2k-histogram subspaces. As a result, a head approximation that is
competitive with respect to 2k-histograms is not immediately competitive with respect to the sum of
two k-histograms.

While head boosting is not directly helpful to overcome this issue, we believe that 2D histograms
are “well-behaved” in the sense that boosting is still helpful. In particular, we believe that the sum of
two k-histograms still allows a constant-factor head approximation with a single O(k)-histogram
subspace. More formally, we state the following conjecture.
Conjecture 1. Let c > 0 be fixed. Then there are universal constants c

1

> 0 and c
2

> 0 depending
on c such that the following holds. For any b 2 Rd, there is a c

1

k-histogram subspace U such that
we have

kPUbk � c
2

kP�c Ukbk .
If the above conjecture is true, Theorem 26 yields an approximate head projection that is competitive
to �c Uk. Combining this with the boosted version of our recovery framework (see Appendix A.3)
then yields an overall recovery algorithm.

25

D Sample complexity of subspace recovery

Here, we establish bounds on the sample complexity of subspace recovery for some particular
instances. In particular, our focus is on fast sampling operators, i.e., operators that support matrix-
vector multiplications with a running time that is nearly-linear in the size of the vector. Our results
follow from a standard concatenation of previously existing results.

D.1 Low-rank matrices

Consider the case where the subspace model U corresponds to the set of rank-r matrices of size
d
1

⇥ d
1

. Then, the subspace RIP corresponds to the (somewhat) more well-known rank-r restricted
isometry property, first introduced in Recht, Fazel, and Parillo. We obtain the following result:
Theorem 27. Let d = d2

1

. Then, there exists a randomized construction of a matrix X 2 Rn⇥d,
with parameters n = O(rd polylog d), such that X satisfies the rank-r RIP with high probability.
Moreover, X supports matrix-vector multiplications with complexity O(d log d).

Proof. We begin by considering matrices that satisfy the standard RIP for s-sparse vectors, as well
as support fast matrix-vector multiplication. To the best of our knowledge, the sharpest such bounds
have been recently obtained by Haviv and Regev (SODA 2016). They show that with high probability,
a matrix formed by randomly subsampling n = O(��2s log2(s/�)d) rows of the discrete Fourier
Transform (DFT) matrix satisfies the standard RIP (with isometry constant �) over the set of s-sparse
vectors.

Next, we invoke a well-known result by Ward and Krahmer (“New and Improved Johnson-
Lindenstrauss Embeddings via the RIP"). Consider a diagonal matrix D⇠, where the diagonal
⇠ is a Rademacher sequence uniformly distributed over {�1, 1}d. Also consider any fixed set of vec-
tors B with |B| = m where s > O(log

m
⌘). If X 0 is any n⇥ d matrix that satisfies the standard RIP

over the set of s-sparse vectors with constant � < "/4, then high probability the matrix X = X 0D⇠ is
a Johnson-Lindenstrauss embedding for E. Formally, the following is true with probability exceeding
1� ⌘:

(1� ")k�k2
2

 kX�k2
2

 (1 + ")k�k2
2

.

uniformly for all � 2 B.

Next, we invoke Lemma 3.1 of Candes and Plan (“Tight Oracle Bounds for Matrix Recovery"), who
show that the set of vectors corresponding to rank-k matrices, Sk, exhibits an ✏-net ¯Sk (with respect
to the Euclidean norm) such that

| ¯Sr| (9/✏)(d1

+d
2

+1)k.

Also from Candes and Plan, we have that if X is a Johnson-Lindenstrauss embedding with isometry
constant " for an ¯Sk, then X satisfies the rank-k RIP with constant � = O("). Plugging in s =

O(k(d
1

+ d
2

)) and m = O(s polylog d) and adjusting constants, we get the stated result.

D.2 Histograms

Now, consider the case where the subspace model U corresponds to the set of (hierarchical or tiling)
histograms. Since either type of histogram can be modeled as superpositions of sub-rectangles
of the domain

p
d ⇥ pd , we can simply model the histogram subspace model U as a subset of

dictionary-sparse vectors {x|x = D↵, k↵k
0

 k}. Here, D is a dictionary of size d⇥ �d2

2

�
where

each column of D corresponds to a single tile (normalized to unit `
2

-norm).

Therefore, any matrix that satisfies the RIP with respect to the dictionary D (abbreviated sometimes
as the D-RIP) also suffices for reliable histogram subspace recovery. The following result is folklore,
and a formal proof can be found in the appendix of Hegde, Indyk, and Schmidt (“Nearly Linear-Time
Model-Based Compressive Sensing").
Theorem 28. There exists a randomized construction of a matrix X 2 Rn⇥d, with parameters
n = O(k log d/k), such that with high probability, X satisfies the subspace RIP for the histogram

26

Time (sec)
0 0.5 1 1.5 2 2.5

Er
ro

r

10-3

10-2

10-1

100

Exact SVD
Propack
Block-Krylov(iter=1)
Block-Krylov(iter=8)

Time (sec)
0 0.5 1 1.5 2 2.5 3

Er
ro

r

10-3

10-2

10-1

100

Exact SVD
Propack
Block-Krylov(iter=1)
Block-Krylov(iter=8)

Figure 2: (left) Example low-rank matrix of size d = 133⇥ 200, r = 6. (right) Recovery error of
various algorithms as a function of time (2 independent trials).

1 1.5 2 2.5 3

0

5

10

Oversampling ratio n/r(d
1

+ d
2

)

R
un

ni
ng

tim
e

(s
ec

)

Matrix recovery

Exact SVD
PROPACK
Krylov (1 iters)
Krylov (8 iters)

Figure 3: Running times corresponding to the low-rank matrix recovery experiment in Figure 1. The
block Krylov variant of IHT with one iteration has the best running time.

subspace model. Moreover, X supports matrix-vector multiplications with complexity O(d log d+
k2 polylog d).

E Supplemental experiments

We begin with a description of the experimental setup. All experiments were conducted on an iMac
desktop computer with an Intel Core i5 CPU (3.2 GHz) and 16 GB RAM. With the exception of
the dynamic program (DP) for 2D histograms, all code was written in Matlab. We chose C++ for
the 2D histogram DP because it heavily relies on for-loops, which tend to be slow in Matlab. Since
the Krylov SVD of [17] is only available as a Matlab routine, we also chose the Matlab version of
PROPACK [16] so that the implementations are comparable. Unless reported otherwise, all reported
data points were averaged over at least 10 trials.

E.1 Low-rank matrix recovery experiments

Figure E shows an image of the MIT logo used in the low-rank matrix recovery experiments [15, 19].
For our first experiment, we record n = 3.5(d

1

+ d
2

)r = 6994 linear measurements of the image.

5 6 7 8 9 10

0

0.1

0.2

0.3

Oversampling ratio n/rd
1

Er
ro

r(
Fr

ob
en

iu
s

no
rm

)

Matrix completion

PROPACK
LinearTimeSVD
Block Krylov

Figure 4: Average approximation errors for the low-rank matrix completion experiment in Figure 1.
As for low-rank matrix recovery, the different SVDs achieve essentially the same error.

27

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Oversampling ratio n/k

Pr
ob

ab
ili

ty
of

re
co

ve
ry

2D histogram recovery

Histogram DP
Tree sparsity + Haar wavelets
Haar wavelets

Figure 5: Results for recovering a hierarchical histogram from subsampled Fourier measurements.
As predicted by our theoretical argument, the 2D histogram DP has the best sample complexity.

The measurement operator is constructed by subsampling m rows of a Fourier matrix and multiplying
its columns by a randomly chosen Bernoulli vector, similar to the RIP matrix given in Appendix D.
The goal is to recover the image from these observations.

We adapt the Singular Value Projection (SVP) algorithm of [15] by replacing the exact SVD step
with approximate SVDs (some of which are very coarse), and demonstrate that we can still achieve
efficient matrix recovery from few observations. As alternatives to Matlab’s in-built svd function,
we include the PROPACK [16] numerical linear algebra package, which implements a Lanczos-type
method. We also include an implementation of the recent Block-Krylov SVD algorithm of [17],
which offers a nice tradeoff between approximation ratio and running time. We test this method with
1 and 8 Krylov subspace iterations (8 is the default provided in the code of [17]).

Figure 3 shows the running times corresponding to the phase transition plot in Figure 1. The only
stopping criteria we used were based on a small residual and a maximum number of iterations, so the
running times of the algorithms are slowest in the regime where they do not recovery the signal.

The subspace IHT algorithm is iterative, i.e., it produces a sequence of matrix estimates

{ˆ✓0, ˆ✓1, . . . , ˆ✓t}. Figure E displays the estimation error, k✓
⇤�ˆ✓tk
k✓⇤k) , as a function of wall-clock time, on

two different trial runs. We observe from the plots that PROPACK and the Block Krylov method (with
8 iterations) perform similar to the exact SVD due to the small problem size. Interestingly, a very
coarse approximate SVD (a single Block Krylov subspace iteration) provides the fastest convergence.
Overall, using approximate SVDs within SVP / IHT does not only yield computational speed-ups,
but also offers competitive statistical performance.

We also report results of using the SVP / IHT algorithm with approximate projections on a larger
matrix completion problem. We generate a matrix of size d = 2048⇥ 2048 with rank r = 50. We
only sample n randomly chosen entries of this matrix and attempt to reconstruct the matrix from
these entries using SVP with approximate low-rank projections. We vary n and obtain error curves as
well as running times. Figure 4 shows the approximation errors for the matrix completion experiment
in Figure 1. As for the matrix recovery experiments, all SVDs achieve essentially the same error. We
note that the error floor of about 0.05 is a result of our stopping criterion.

E.2 2D histogram recovery

Finally, we show our results for recovering a 2D histogram from linear observations. As before, we
use subsampled Fourier measurements. Our test vector is a 32⇥ 32 hierarchical histogram consisting
of 4 rectangles. Hierarchical histograms are essentially 2D piecewise constant functions over a 2D
domain where the constant pieces (or tiles) are generated by starting with the entire domain as a
single tile and recursively partitioning tiles by making horizontal or vertical splits. We compare three
approaches: (i) “Standard” sparsity in the Haar wavelet domain. (ii) Tree sparsity in the Haar wavelet
domain [1, 10]. (iii) Our approximate projection algorithm. The focus in our experiments is on
sample complexity, so we have implemented only one “level” of the DP in [18]. Figure 5 shows the
corresponding phase transitions. The 2D histogram DP does indeed offer the best empirical sample
complexity.

28

