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1 Basics of the von Mises Distribution

1.1 The von Mises distribution

The von Mises probability density function for a circular variable x is defined as

M(x− µ, κ) =
1

2πI0(κ)
exp [κ cos(x− µ)] , (S1)

where µ is the mean of x, and the concentration parameter κ measures the dispersion of x around its
mean value. I0(κ) is the modified Bessel function of the first kind and zero order, which is given by

I0(κ) =
1

2π

∫ 2π

0

exp (κ cosx) dx. (S2)

Note thatM[x− µ+ π, κ] equals toM[µ,−κ]. To avoid the indeterminancy of the parameter κ, it
is usual to take κ > 0.

Apart from using κ to measure the concentration, we usually use the mean resultant length ρ to
measure the dispersion of a circular variable, because it can be more easily estimated from sampled
data. The mean resultant length is defined as

ρ = E[cos(x− µ)]. (S3)

Note that 0 ≤ ρ ≤ 1. ρ = 1 means that the distribution is fully concentrated at the point µ, while
ρ = 0 means that the distribution is so scattered that there is no concentration around any particular
point.

For a von Mises distribution with µ = 0, its mean resultant length is calculated to be

ρ ≡ A(κ),

=
1

I0(κ)

∫ 2π

0

cos(x)eκ cos xdx. (S4)

1.2 Relationship to other distributions

Relationship to the normal distribution

When κ is large, we let ξ = κ1/2(x− µ), and the von Mises distribution is approximated to be

M(ξ, κ) ∝ exp
(
−κ[1− cos(κ−1/2ξ)]

)
. (S5)
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Further approximating 1− cos(κ−1/2ξ) = 1
2κ
−1ξ2 +O(κ−2) for small ξ, we have

M(ξ, κ) ∝ exp
(
−ξ2/2

)
∝ N [0, 1]. (S6)

Thus, the von Mises distribution can be approximated to be a normal distribution for large κ and
small |x− µ|, i.e,

M(x− µ, κ) ≈ N (x− µ, κ−1). (S7)

Relationship to the wrapped normal distribution

In general, a von Mises distribution can be approximated by a wrapped normal distribution with
the same mean µ and the same mean resultant length A(κ). The wrapped normal distribution
WN (x− µ, ρ) is obtained by wrapping a normal distribution on a circle. For a random variable x,
the corresponding random variable xw of the wrapped distribution is obtained by

xw = x(mod 2π), (S8)
and the wrapped distribution satisfies

fw(x) =

∞∑
k=−∞

f(x+ 2kπ), (S9)

where f(x) is the probability density function of x.

Hence the probability density function of the wrapped normal distribution is defined as

WN (x− µ, ρ) =
1√
2πσ

∞∑
k=−∞

exp

[
− (x− µ+ 2kπ)2

2σ2

]
, (S10)

where ρ = exp(−σ2/2) is mean resultant length of the wrapped normal distribution.

By matching the mean and the mean resultant length of a von Mises distribution and a wrapped
normal distribution, we have following approximation,

M(x− µ, κ) ' WN (x− µ,A(κ)) +O(κ−1/2), κ→∞. (S11)
It has been shown that this approximation works very well, even in the worst case when κ ∼ 1.4 (ch.
3 in [1]).

1.3 Product of two von Mises distributions

The Bayesian integration of two cues is expressed as (see Eq. 4 in the main text which uses the fact
that marginal prior is flat)

p(s|x1, x2) ∝ p(s|x1)p(s|x2). (S12)
Since p(s|xm) =M[s− xm, κm], for m = 1, 2, we need to calculate the product of two von Mises
distributions, which is given by

p(s|x1)p(s|x2) =
1

(2π)2I0(κ1)I0(κ2)
exp [κ1 cos(s− x1) + κ2 cos(s− x2)] . (S13)

We have
κ1 cos(s− x1) + κ2 cos(s− x2)

= κ1(cosx1 cos s+ sinx1 sin s) + κ2(cosx2 cos s+ sinx2 sin s),

= (κ1 cosx1 + κ2 cosx2) cos s+ (κ1 sinx1 + κ2 sinx2) sin s,

= κ3 cos(s− x3), (S14)
where

κ3 =
[
(κ1 cosx1 + κ2 cosx2)2 + (κ1 sinx1 + κ2 sinx2)2

]1/2
,

=
[
κ2

1 + κ2
2 + 2κ1κ2 cos(x1 − x2)

]1/2
; (S15)

x3 = atan2(κ1 sinx1 + κ2 sinx2, κ1 cosx1 + κ2 cosx2), (S16)

atan2(y, x) =



arctan(y/x) x > 0
arctan(y/x) + π x < 0 and y ≥ 0
arctan(y/x)− π x < 0 and y < 0
π/2 x = 0, y > 0
−π/2 x = 0, y < 0
undefined x = 0, y = 0

. (S17)
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After normalization, we get

p(s|x1, x2) =
1

2πI0(κ3)
exp [κ3 cos(s− x3)] . (S18)

In the complex plane, Eqs. (S15 and S16) can be expressed as

κ3e
jx3 = κ1e

jx1 + κ2e
jx2 , (S19)

where κejx denotes a vector in polar coordinates, with κ and x representing the length and angle of
the vector, respectively.

1.4 Integral of the product of two von Mises distributions

We present how the posterior p(s1|x2) is calculated.

p(x2|s1) =

∫ 2π

0

p(x2|s2)p(s2|s1)ds2,

=
1

(2π)2I0(κ1)I0(κs)

∫ 2π

0

exp [κ2 cos(s2 − x2) + κs cos(s2 − s1)] ds2. (S20)

Similar to Eqs. (S14-S16), we get

p(x2|s1) =
I0

([
κ2

2 + κ2
s + 2κ2κs cos(s1 − x2)

]1/2)
2πI0(κ2)I0(κs)

. (S21)

The above equation is not a von Mises distribution, but it can be approximated as one. The two von
Mises distributions in Eq. (S20) can be approximated by wrapped normal distributions, respectively
(see Eq. S7), which are

p(x2|s2) =M(x2 − s2, κ2) ' WN (s2 − x2, A(κ2)), (S22)
p(s2|s1) =M(s2 − s1, κs) ' WN (s2 − s1, A(κs)). (S23)

With these approximations, Eq. (S20) becomes

p(x2|s1) '
∫ 2π

0

WN (x2 − s2, A(κ2))WN (s2 − s1, A(κs))ds2,

= WN (s2 − x2, A(κ2)) ∗WN (s2 + s1, A(κs))
∣∣
s2 = 0,

= WN (x2 − s1, A(κ2)A(κ2)). (S24)

where ∗ denotes the convolution.

Using the approximation of Eq. (S11), we finally get

p(x2|s1) 'M
(
x2 − s1, A

−1{A(κ2)A(κs)}
)
. (S25)

Using Bayes’ theorem and the fact that p(s1) is flat, we obtain Eq. (5) in the main text.

2 Multisensory integration with Gaussian distribution

In the main text, we present probabilistic multisensory integration with the von Mises distribution. To
see its difference with that using Gaussian distribution, we present the result for Gaussian distribution
below. In the Gaussian case, the likelihood function is given by

p(xm|sm) = N [xm − sm, σ2
m] =

1√
2πσm

exp

[
− (xm − sm)2

2σ2
m

]
, (S26)

where the inverse of the variance of Gaussian distribution is related to the concentration of von Mises
distribution (Eq. 1), and σ−2

m ≈ κm, for large κm (Eq. S7).

The stimulus prior in Gaussian distribution is written as (compared to Eq. 3),

p(s1, s2) =
1√

2πσsLs
exp

[
− (s1 − s2)2

2σ2
s

]
, (S27)
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where Ls = 2π for heading direction.

Substituting Eqs. (S26 and S27) into Eq. (4), the posterior p(s1|x1, x2) is calculated to be

p(s1|x1, x2) = N [s1 − ŝ1, σ̂
2
1 ], (S28)

where the mean and variance of the posterior are

σ̂−2
1 = σ−2

1 + (σ2
2 + σ2

s)−1, (S29)

ŝ1 = σ̂2
1

[
σ−2

1 x1 + (σ2
2 + σ2

s)−1x2

]
, (S30)

Note that the reliability of cue integration using von Mises distribution decreases with the cue disparity
(x1 − x2) (see Eq. 7), but in the Gaussian case, the reliability of cue integration σ̂−2

1 is independent
of the cue disparity.

3 Theoretical analysis of the model performance

Limited by space, we only present the results of the model performance in the main text. Here, we
present more detailed analysis of the model behaviors.

3.1 The intrinsic dynamics of a single module

We first look at the intrinsic dynamics of a single module without receiving feedforward inputs
(Im,n(θ, t) = 0) and reciprocal inputs from the other module (Jc = Jo = 0). Under this condition,
the dynamics of a single module is written as,

τ
∂

∂t
um,n(θ, t) = −um,n(θ, t) +

π∑
θ′=−π

Wr(θ, θ
′)rm,n(θ′, t), (S31)

rm,n(θ, t) =
[um,n(θ, t)]

2
+

1 + ω
∑
n′=c,o

π∑
θ′=−π

[um,n′(θ′, t)]
2

+

. (S32)

Because the recurrent connections Wr(θ, θ
′) are of the Gaussian form, it can be checked that

the population activities of the congruent and opposite neuronal networks in equilibrium can be
approximated by the following Gaussian ansatz [2],

um,n ≈ Um,n exp

[
− (θ − ẑm,n(t))2

4a2

]
, (S33)

rn,n ≈ Rm,n exp

[
− (θ − ẑm,n(t))2

2a2

]
, (m = 1, 2; n = c, o). (S34)

They are localized in space, called bumps, with ẑm,n(t) being the bump position and Um,n, Rm,n the
bump heights. Without receiving reciprocal inputs from another module, the activities of congruent
and opposite neurons in the same module are completely symmetric. Thus we let Um,c = Um,o = Um
and Rm,c = Rm,o = Rm in analyzing the intrinsic dynamics of a single module.

Substituting the Gaussian ansatz into the network dynamics (Eq. S31 and S32), we obtain,

Um =
ρJr√

2
Rm, (S35)

Rm =
U2
m

1 + 2
√

2πωρaU2
m

, (S36)

where ρ = N/2π is the neuronal density with N the number of congruent or opposite neurons.

Combining Eqs. (S35 and S36), it gives to

4
√
πρωaU2

m − ρJrUm +
√

2 = 0. (S37)

4



The solution of the above equation is written as,

Um =
ρJr ±

√
(ρJr)2 − 16

√
2πρωa

8
√
πρωa

. (S38)

Thus, Um has real solutions when Jr ≥ J̄ = 4(2π)1/4(ωa/ρ)1/2. J̄ is the minimal strength for the
network to hold an active state in the absence of external input. Since no persistent activity is reliably
observed in multisensory brain areas, we choose Jr to be smaller than J̄ in our model.

3.2 The dynamics of reciprocally connected modules

We then analyze the dynamics of reciprocally connected modules. In response to noisy feedforward
and reciprocal inputs, the bump positions of congruent and opposite neurons, ẑm,n, fluctuate over
time, and their means and variances can be analyzed theoretically. As an example, we consider the
bump positions of congruent neurons in both modules (ẑ1,c and ẑ2,c). The dynamics of opposite
neurons can be similarly analyzed.

The bump activity of congruent neurons in module 1, u1,c, is influenced by the activities of another
two groups of neurons: the activity of opposite neurons in the same module, u1,o, and the activity of
congruent neurons in the other module, u2,c. From Eq. (S32), we see that u1,o only influence the
height, rather than the position, of u1,c via divisive normalization. On the other hand, the reciprocal
inputs from u2,c will affect the bump position of u1,c. Therefore, in computing ẑ1,c, we only need
to consider the influence from ẑ2,c, and the effect of u1,o is included in the bump height of U1,c

implicitly.

We can project the high-dimensional network dynamics onto its dominating modes to simplify
the network dynamics significantly. For the network with translation-invariant connections, its
dominating dynamical mode is the displacement mode [2], which, in our case, is written as

φ1(θ|ẑm,c) =

(
θ − ẑm,c

a

)
exp

[
− (θ − ẑm,c)2

4a2

]
, (S39)

where ẑm,c denotes the bump position of congruent neurons in module m, and a the bump width.

When two cues are close enough (|x1 − x2| � a), we substitute the above Gaussian ansatz
into the network dynamics (Eqs. 14, 15, 16), and then project them onto the displacement mode
(Eq. S39). Projecting a function f(θ) onto a motion mode φ1(θ|ẑ) is to compute the quantity∫
f(θ)φ1(θ|ẑ)dθ/

∫
φ1(θ|ẑ)2dθ. After projection, we obtain the dynamics of the bump positions of

congruent neurons in two modules, which are

dẑ1,c

dt
= g12(ẑ2,c − ẑ1,c) + h1(x1 − ẑ1,c) + β1η1(t), (S40)

dẑ2,c

dt
= g21(ẑ1,c − ẑ2,c) + h2(x2 − ẑ2,c) + β2η2(t), (S41)

where 〈ηm(t)ηm′(t′)〉 = δmm′δ(t− t′). And the effective reciprocal connection strengths gml, the
effective feedforward input strengths hm, and the effective noise strengths βm are given by

gml =
ρJcRl,c√
2τUm,c

, hm =
αm
τUm,c

, β2
m =

4aF√
2π(τUm,c)2

[
(2/3)3/2αm + Ib

]
. (S42)

The parameters Um,c and Rm,c are the means of the bump heights of um,c and rm,c in equilibrium.

The mean and variance of ẑm,c in equilibrium can be analytically solved as,

〈ẑ1,c〉 =
(g21 + h2)h1x1 + g12h2x2

g12h2 + g21h1 + h1h2
, (S43)

V (ẑ1,c) =
[(g21 + h2)tr(M) + g12g21]β2

1 − g2
12β

2
2

2tr(M)(g12h2 + g21h1 + h1h2)
, (S44)

where tr(M) = −(g12 + g21 + h1 + h2).
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3.3 The cue integration performance of the model

For the convenience of analysis, we consider that all parameters of two congruent neuron networks
are symmetric and set g12 = g21 = g, h1 = h2 = h, β1 = β2 = β in Eqs. (S43 and S44). Under this
simplification, the mean and variance of the bump position of congruent neurons in module 1 are
written as

〈ẑ1,c〉 =
(g−1 + h−1)x1 + h−1x2

2h−1 + g−1
, (S45)

V (ẑ1,c)
−1 =

2

β2

[
h+ (g−1 + h−1)−1

]
. (S46)

Comparing the above results with the Bayesian predictions (Eqs. S29-S30), and considering σ1 =
σ2 ≡ σ, we get the below relationship,

h ∝ σ−2, (S47)
g ∝ σ−2

s , (S48)

which states that the cue reliability σ−2 is encoded in the effective feedforward input strength h to a
module, and that the variance of prior σ−2

s is encoded in the effective reciprocal connection strength
g between modules.

4 Simulation of the model performance

Here, we introduce the detail about simulation experiments we carried out to get the performance of
the model.

4.1 Model parameters

In the simulation, each type of network (congruent or opposite) in a module consisted of 180 neurons,
which were uniformly distributed in the range of (−180◦, 180◦]. The two modulesp were symmetric,
i.e., all of the structural parameters were the same, except that they received different cues and
independent noises. The synaptic time constant τ was rescaled to 1 as a dimensionless number, and
the time step size was 0.01τ . All connections had the same width, i.e., a = 40◦.

We list the typical values for adjustable parameters used in simulation if not mentioned otherwise.
The recurrent connection strength Jr = 0.4J̄ , where J̄ = 4(2π)1/4(ωa/ρ)1/2 = 1.26 is the minimal
strength for holding persistent activity without feedforward inputs. Thus, no persistent activity
occurred in each network after withdrawing the feedforward inputs. The strength of the reciprocal
connections Jr = Jo are in the range of [0.2, 0.6]Jr and are always smaller than the recurrent
connections. The input strength α1 = α2 was scaled relative to U0

m = Jc/8aω
√
π = 8.93 and

distributed in the region of [0.7, 1.5]U0
m, where U0

m is the synaptic bump height that a network
can hold without feedforward input when Jr = J̄ . The interval of the input strength was in the
sub-additive region of neural response curve, because sub-additive response was widely observed
in experiments [3]. The strength of the background input was Ib = 1, and all Fano factors F of the
cues and background inputs were set to 0.5. This resulted in a Fano factor of single neuron responses
in the order of 1. In the simulation, the activity bump position was estimated by using a population
vector (see below). Specific parameter settings are mentioned in the figure captions.

4.2 Model performances

For n-type neurons in module m, we used population vector to read out its estimate zm,n of the
stimulus value from the population activity rm,n, that is,

zm,n = Angle

(∑
θ

rm,n(θ)ejθ

)
, (S49)

where j is the imaginary unit, the operation Angle(·) outputs the angle (in radian) of a vector.

We measured the model performances under three cuing conditions: only cue 1, only cue 2, and both
of them. In each cuing condition, the corresponding feedforward input was applied, and we read out
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the estimates of the congruent and opposite neuronal networks by population vector. This process
was repeated for many trials, and we fit the distribution of estimates by the von Mises distribution.
Denote zm,n(i|xl) as the bump position in i-th trial when only cue xl (l = 1, 2) was presented. The
mean and concentration of zm,n(i|xl) averaged over trials are calculated to be,

〈zm,n|xl〉 = Angle

(
1

N

∑
i

ejzm,n(i|xl)

)
, (S50)

κ(zm,n|xl) = A−1

{∣∣∣∣∣ 1

N

∑
i

ejzm,n(i|xl)

∣∣∣∣∣
}
, (S51)

where N is number of trials, and A−1(·) is the inverse of the function A(·) given in Eq. (S4). The
results for combined cues, 〈zm,n|x1, x2〉 and κ(zm,n|xl, x2), can be similarly calculated.

4.3 Theoretical predictions

For congruent neurons

The theoretical prediction for optimal multisensory integration is given by Eqs. (7-8) in the main
text. From the relations between Eqs. (S15-S16) and Eq. (S19), the posterior of the stimulus s1 given
combined cues can be expressed in a more concise form as

κ̂1e
jŝ1 = κ1e

jx1 + κ12e
jx2 . (S52)

We measured the performances of congruent neurons given single cues, and calculated the theoretical
prediction based on the above equation, which gives

κ̃m,ce
jz̃m,c =

2∑
l=1

κ(zm,c|xl)ej〈zm,c|xl〉, (S53)

where z̃m,c and κ̃m,c denote, respectively, the predicted mean and concentration of the posterior of
sm in multisensory integration.

For opposite neurons

The optimal multisensory segregation for stimulus s1 (Eqs. 12-13) can be also written in a concise
form, which is,

∆κ̂1e
j∆ŝ1 = κ1e

jx1 − κ12e
jx2 ,

= κ1e
jx1 + κ12e

j(x2+π). (S54)

In network implementation, the position of cue 2 (indirect cue) encoded by opposite neurons in
module 1 has been rotated by π due to the opposite reciprocal connections between opposite neurons
in two modules. As a result, the Bayesian predictions for the mean and concentration of opposite
neurons’ estimates under combined cue conditions are

κ̃m,oe
jz̃m,o =

2∑
l=1

κ(zm,o|xl)ej〈zm,o|xl〉. (S55)

where z̃m,o and κ̃m,o denote, respectively, the predicted mean and concentration of the disparity
information of sm in multisensory segregation.
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