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1 Proof of Theorem 1

Statement of Theorem: Define the set Er(0*) = cone{A | R(A 4+ ©*) < R(©*)}. Assume the
following conditions hold for \,, and X,

An > R (Z wixz) , S.1)
i=1

n

D UX A/ AF > a >0, VA € ER(O7). (S.2)

i=1
The estimation ||© — ©*|| p error satisfies

16 — 0| < 22RO An 53)

(0%

where WU g(-) is the restricted compatibility constant defined as

. R(A
vpo) = sp (D) (S4)
A€ER(O¥) | HF

Proof:  Since \,, satisfies the condition (S.1) and w; = y; — ((X;, ©*)), we have

i=1
which indicates that the constraint set in (3) is feasible, thus
& (Z (¢xi, 60— w:) Xi> < An -
i=1

Using triangular inequality, one has

R* (i“X’i,é - 0%)) 'Xi> <2X, .

i=1
Denote © — O* by A, and by the definition of dual norm, we get

n n

D (X, A)? = <<A,Z<<X17A>> - Xi)) < R(A) - RT (Z«Xi,@ —-0%) -Xi) < 2\R(A).

=1 i=1
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On the other hand, the objective function in (3) implies that R(©) < R(©*). Therefore the error
vector A must belong to the set Eg(O©*). Using condition (S.2), we obtain

Al Al <D ((X:,A))% < 20,R(A)

i=1
22X, R(A 2UR(0%) - A\,
Ay < e D) o 20r(O0) An
a [|Alle a
which complete the proof. [ ]

2 Proof of Lemma 2

Statement of Lemma: Assume that rank(©*) = r and its compact SVD is given by ©* = ULV T,
where U € R¥X", Y € R™" and V. € RPX". Let 0* be any subgradient of f(c*), w =
105,05,...,05,0,...,0T € RS, 2z = [07,1,0%,0,...,05,0,...,07 € RL U = colsp(U) and

rYr

V = rowsp(V71), and define M1, My as
M; ={0| colsp(0) C U, rowsp(0) C V},
Msy = {0 colsp(©) C U+, rowsp(©) C V*},

where U+, V* are orthogonal complements of U and V respectively. Then the specified subspace
spectral OWL seminorm || - ||, satisfies

Er(O7) C &e cone{A | [|A + G)*”w,z < H@*”w,z}

Proof: Both Ex(©*) and £’ are induced by scaled (semi)norm balls (i.e., Qr and §2,, ) centered
at —©*, and note that

O, = 0", Oy, =0.

Thus we obtain
107 |l = 1O, [l = D 070; = (o*,0%) = R(©"),
i=1

which indicates that the two balls have the same radius. Hence we only need to show that || - ||, <
R(-). For any A € R*P_ assume that the SVD of A, and Ay, are given by Apg, = U1 X1 V¥

and Ang, = UsXoVi'. The corresponding vectors of singular values are in the form of o/ =
[o],0%,...,00,0,...,01T 6" = [0),0Y,...,07_,0,...,0/T € R% as rank(Apq,) < r and

rank(A g, ) < d — 7. Then we have
R
180 = 80+ Pl = ')+ (0”2 = (o7, | b |} = e.
where © = U, Diag(67.,)V1 + Uz Diag(0;, ,.,,) V2. From this construction, we can see that 0* are

the singular values of ©, thus R*(©) < 1. It follows that

(0.8)) < max ((Z.A)) = R(A).

which completes the proof. [ ]

3 Proof of Theorem 3

Statement of Theorem: Assume there exist 11 and ns such that the symmetric gauge f associated
with R(-) satisfies
f(8) < max{m|[6][1, n2[0l2} (8.5)



forany § € R%. Then given a rank-r ©*, the restricted compatibility constant U r(©*) can be upper
bounded by

UR(0%) < 2®4(r) + max {n2, m (1 + p)V/r} , (S.6)
where ®¢(r) = SUp | 5/<r % is called sparse compatibility constant.
Proof:  Under the setting of Lemma 2, as ©* € M1, we have

A+ 0wz < 10w = [Arm +O7lw + [[Ar,llz < 07w =
Al +11O%lw + [Ar s <17 = [[Arallz < 1AM, [l -

Asthe set {A | |Ar, |z < |Aam, ||lw ]} itself is a cone, we obtain
& C {A[AMl: < 1A, 1w}

Define M as the orthogonal complement of M; @ M. By the definition and Lemma 2, we have
RA) _  R(A) _ R(A)

Ur(0*)= sup

acen@) |AllF 7 ace 1AIF ™ jaryll-<lang Il AP
< sup R(AMJ—) + R(A/\/h + AMz)
1A 1= <IAM; Tl 1Al F
R(A R(A A
< sup ( ) sup ( My T M2)
INSTVES) FAN[F RPNV I1AllF
A oty Ter =
It is not difficult to see that any A € M- has rank at most 2, thus
R(A A 1) 1)
wp B IO®) )y 0y
aemt 1Al aenme lo(D)ll2 7 sgo<ar [19]l2 Isllo<r 101l2

Using (S.5) and [|An, + A, ]lr < ||A||p, we have

sup RAm: +Bums) sup max {2 ||Allr, mil|Am, + A, e}
(LS 1Al T 1Ayl _ INE

& py Ter —F A py Tor =P
1 A
- {m’ wp MOE D ||tr}
AeM; 1A F

< max {n2, m(1+p)Vr} |

where the last inequality uses the fact that any A € M is at most rank-r, and ||d]|; < /7||d]|2 for
any r-sparse vector §. Combining all the inequalities, we complete the proof. [ ]

4 Properties of Gaussian Random Matrix

To facilitate the computation of Gaussian width, especially the proof of Theorem 6, we will use some
properties specific to the Gaussian random matrix G € R?*?, which are summarized as follows. The
symbol “~” means “has the same distribution as”.

Property 1: Given an m-dimensional subspace M C R%*P spanned by orthonormal basis
Uy, ..., Un,

m
Grm~ Y g,
i=1

where g;’s are i.i.d. standard Gaussian random variables. Moreover, E [[|Gr[|%] = m.

Proof:  Given the orthonormal basis Uy, . . ., U, of subspace M, G o can be written as

Gm =Y ((G,U)- U

i=1



Since ||Ur]|lFr = ... = ||UnllF = 1, each ((G, U;)) is standard Gaussian. Moreover, as Uy, ..., Up,
are orthogonal, ((G, U;)) are independent of each other. |

Property 2: G o, and Gy, are independent if M, My C R?*P are orthogonal subspaces.

Proof:  Suppose that the orthonormal bases of M, My are givenby Uy, ..., Uy, and Vi,..., Vi,
respectively. Using Property 1 above, G o, and G »q, can be written as

=1 =1
Gm, =D (G VA) - Vi ~ D RV,
=1

i=1

where g1, ..., gm, and h1, ..., hy,, are all standard Gaussian. As M;, My C R4*P are orthogonal,
Ui,...,Unyn, and Vy, ..., V,,, are orthogonal to each other as well, which implies that g1, ..., g,
and Ay, ..., hp, are all independent. Therefore G rq, and G 4, are independent. [ |

Property 3: Given a subspace
M = {0 € R¥™*P | colsp(©) C U, rowsp(0) C V},

where U C R%, V C RP are two subspaces of dimension m; and my respectively, then ||G |op
satisfies

1Gallop ~ 1G lop »

where G’ is an m1 X mo matrix with i.i.d. standard Gaussian entries.

Proof:  Suppose that the orthonormal bases for U and V are U = [uj,...,um,] and V =
[v1,...,Um,] respectively, and U, and V, denote the orthonormal bases for their orthogonal com-
plement. It is easy to see that the orthonormal basis for M can be given by {uiva |1 <i <
mq, 1 < j < mgy}. Using Property 1, we have

O G’ Orms ¢ (p—ma) VT
G ~ g»uwT:UG'V: UU,]- [ m1 X (p—maz } . { }
M ;;g'] ’ G OL 0y 0 mytoms Vi
where G is a m; x my standard Gaussian random matrix. Note that both [U, U] € R*? and
[V,V.] € RP*P are unitary matrices, because they form the orthonormal bases for R? and R?
!
respectively. If we denote [ % 8 } by W, then |G amllop = ||W|op as spectral norm is unitarily
invariant. Further, if the SVD of G’ is G’ = U;X1V{T, where U; € R™*™1 %} € R™1*™m2 and
Vi € R™2%™2 then the SVD of W is given by

W = Ul 0m1 x(d—m1) :| |: E1 Omlx(p—mg) :| |: VlT OTY,IL—?X([)—TILQ)
O(dfml)xml U2 O(dfml)xmg O(dfml)x(pfmz) 0(p7m2)><m2 ‘/2

where Uy € R(@=m1)x(d=m1) and V, € R(P=m2)x(P=m2) are arbitrary unitary matrices. From
the equation above, we can see that W and G’ share the same singular values, thus |G a|lop =
[Wllop = 1G"[|op- "

Property 4: The operator norm |G|, satisfies

€

2
P (IGlop > Vi + Vi +e) < exp( 2) | $.7)
E[|Gllop) < Vd+ /P, (S.8)
2
E[|GI2,] < (\/&+ \/;5) 12, (S.9)



(S.7) and (S.8) are the classical results on the extreme singular value of Gaussian random matrix
[4, 5] (see Theorem 5.32 and Corollary 5.35 in [5]). (S.9) is used in [2] (see (82) - (87) in [2]).

Property 5: For a subset of unit sphere A C S™~1, A useful inequality [2, 1] is given by the
Gaussian width satisfies

?(A) < Eglinf |G- Z||} S.10

w(A) < Egljnf |G~ 2], (S.10)

inwhich N = {Z | ({(Z,A)) < 0forall A € A} is the polar cone of cone(.A).

This property is essentially Proposition 10.2 in [1], and the right-hand side is often called statistical
dimension.

5 Proof of Theorem 6

Statement of Theorem: Under the setting of Lemma 2, let p = 0} /6% . and rank(©*) = r. The
Gaussian width w(Ag(©*)) satisfies

w(Ar(©%)) Smin{\/aT, VE2+1) (d+p—r)r} . (S.11)

Proof:  For simplicity, we use A as shorthand for Ar(©*). Let 6* be any subgradient of f(-) at
o* ie., 0" € 0f(c*),and I' = U Diag(67.,)V. We define

D={W|WeM,, oW)=<z}, K={T+W|WeD},

where the symbol “=<” means “elementwise less than or equal”. It is not difficult to see that K is
a subset of OR(©*), as any Z € K satisfies R*(Z) = f*(0(Z)) < f*(6*) = 1 and ((Z,0*)) =
(0(Z),0%) = (07..,07..) = f(c*) = R(©*). Hence we have

cone(K) C cone{dR(©")} =N,

where N is the polar cone of Eg(O*), and the equality follows from the Theorem 23.7 of [3]. We de-
fine the subspace M~ as the orthogonal complement of M @& M. For the sake of convenience, we
denote by G; (G2, G ) the orthogonal projection of G onto M; (M, M), and denote cone(K)
by C. Using (S.10), we obtain

w2 <B | jof G - 23] < B |jnt 161 - 211} + 16 - s + 16 - 203
(S.12)

=E inf — T2 _ 2 E 21
|:tZO,HI}V6tD ”Gl ¢ HF+||G2 W|F} + [HGJ-”F]

*
min’

To further bound the expectations, we let tg = ||G2||op/0;,, Which is a random quantity depending

on (5. Therefore, we have

B | Jitf_p 61— T+ 1G2 = WIR| < B [1Gy — tor ] + B[, i 16— W3]
— E [|Grl13] + 2B (G, toD)] + 1163, 13- E[13] +0

140+ E [IGal,] - 103, 13/632

< (V=T V=T +2) - 107, 13/0,

<r? 420 (d+p—2r),

(S.13)

where the second equality uses Property 1 and 2 in Section 4, and the second inequality fol-
lows from Property 3 and 4. Since M is a r(d + p — 2r)-dimensional subspace, by Prop-
erty 1 we have E [||GL[|%] = r(d + p — 2r). Combining it with (S.12) and (S.13), we have
w(A) < \/(2,02 +1)(d+p—r)7r. On the other hand, as A C S%~1, we always have w(A) <
E[|Glr]) < VEI|G|%] = /dp. We finish the proof by combining the two bounds for w(A). m




6 Proof of Theorem 8

Statement of Theorem: Suppose that the symmetric gauge f associated with R(-) satisfies f(-) >
V|| - ||1. Then the Gaussian width w(Q2R) is upper bounded by

_Vdi b

w(QR) (S.14)

Proof:  As f(-) > v| - |1, we have
RO)zv|-lle = QrCQ, -
Hence it follows that
w(Q..) E|G Vd+ \/p
w (QR) Sw(ﬂun-\ltr) _ ( Il ) _ 1Glop < \f’
v v v

where the last inequality follows from the Property 4 of Gaussian random matrix. [ ]
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