
A Detailed Proofs in Sections 2 and 3
A.1 Proof of Lemma 1
Proof. We only need to show
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where the summations above iterate through all monomial terms. Plugging in x
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expectations, we conclude that under Assumption 1
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Note that from the constraint of our optimization problem Eq. (2.2), we have
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Combining both Eqs. (A.2) and (A.3) we conclude Eq. (A.1) and hence the lemma. ⌅

A.2 Proof of Proposition 1

Proof. Let F
n

= �(u(n0)
: n

0  n) be the �-field filtration generated by the iteration u(n), viewed
as a stochastic process. From the recursion equation in Eq. (2.3) we have a Markov transition kernel
p(u,S) such that for each Borel set A ✓ Sd�1

P
⇣
u(n) 2 A | F

n�1

⌘
= p(u(n�1)

,A).

Therefore it is a time-homogeneous Markov chain. The strong Markov property holds directly from
Markov property, see [16] as a reference. This proves Proposition 1.

⌅

A.3 Proof of Theorem 1
We first use the standard one-step analysis and conclude the following proposition, whose proof is
deferred to Subsection C.1.
Proposition 3. For brevity let v = v(0) and Y = Y (1), separately. Under Assumption 1, when

B

2
�  2/3, (A.4)

for each k = 1, 2, . . . , d and n � 0 we have the following:
(i) There exists a random variable R

k

that depends solely on v,Y with |R
k

|  9B

4
�

2 almost
surely, such that the increment v(1)

k

� v

(0)
k

can be represented as

v

(1)
k

� v

(0)
k

= �

⇣�
v>Y

�3
Y

k

� v

k

�
v>Y

�4⌘
+ R

k

; (A.5)
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In Proposition 3, (i) characterizes the relationship between the increment on v

k

and the online sample,
and (ii) bounds such increment. From (iii) we can compute the infinitesimal mean and variance for
SGD for tensor method and conclude that as the stepsize � ! 0

+, the iterates generated by Eq. (2.3),
under the time scaling that speeds up the algorithm by a factor ��1, can be globally approximated by
the solution to the following ODE system in Eq. (3.2) as
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To characterize such approximation we use theory of weak convergence to diffusions [17, 40]. We
remind the readers of the definition of weak convergence Z

� ) Z in stochastic processes: for any
0  t1 < t2 < · · · < t
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To highlight the dependence on � we add it in the superscipts of iterates v�,(n)
= v(n).

Proof of Theorem 1. Let V �

k

(t) = v
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where |R
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|  9B
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2. Eq. (A.7) implies that if the infinitesimal mean is [17]
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Using Eq. (A.6) we have the infinitesimal variance
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which tends to 0 as � ! 0

+. Let V
k

(t) be the solution to ODE system Eq. (3.2) with initial values
V
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(0) = v

�,(0)
k

. Applying standard infinitesimal generator argument [17, Corollary 4.2 in Sec. 7.4]
one can conclude that as � ! 0

+, the Markov process V �
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k

(t).
⌅

A.4 Proof of Proposition 2
For simplicity we denote in the proofs that the initial value V

k

(0) = V

k

, k = 1, . . . , d. Also,
throughout this subsection we assume without loss of generality that V 2
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2
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,
k = 1, . . . , d, and furthermore
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Lemma 2. For V 2 Sd�1 that satisfies Eq. (A.8), then we have for all t � 0
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2
. (A.9)

Proof. We compare the coordinate between two distinct coordinates i, j and have by calculus that for
all k > 1
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So if initially Eq. (A.8) is valid then log
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Rearranging the above display and taking maximum over k = 2, . . . , d gives Eq. (A.9).
⌅
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We then establish a lemma that gives the lower bound of drift term related to V1. To bound the bracket
term on the right hand of ODE, one has
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which gives us an upper bound. To obtain a lower bound estimate we first state a lemma stating that
the gap between the first and all other coordinates is nondecreasing.
Lemma 3. For V 2 Sd�1 that satisfies Eq. (A.8) we have
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Proof. Note Hölder’s inequality gives
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where the equality in the above display holds when V

2
2 = · · · = V
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. Using Eq. (A.8) and (A.13) one
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This completes the proof.
⌅

Lemma 4. For the ODE in Eq. (3.4) which is
dy

dt

= y

2
(1 � y) , (A.15)

with y(0) = 2/(d + 1). By letting T0 be such that y(T0) = 1 � �, we have
T0  d� 3 + 4 log(2�)

�1
. (A.16)

Proof. Let T1 be the traverse time from 2/(d + 1) to 1/2, and T2 be from 1/2 to 1 � �. We have for
y 2 [0, 1/2]
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.
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⌅

Proof of Proposition 2. From the ODE in Eq. (3.2) we have
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If the starting value of algorithm has V

2
1 � 2 max

k>1 V
2
k

then V

2
1 � 2/(d + 1). By comparison
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2
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Combining with Lemma 4 we are done.
⌅

B Detailed Proofs in Section 4
B.1 Proof of Theorem 2
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Eq. (A.7) implies that the infinitesimal mean is
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Using Eq. (A.6) we have the infinitesimal variance
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⌅

B.2 Proof of Theorem 3
We first prove an auxillary lemma on moment calculations. Proof is deferred to Subsection C.2
Lemma B.1. We have for each k = 1, . . . , d the following moment expressions:
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Proof of Theorem 3. Note from the definition in Eq. (4.3) we have for distinct coordinate pair k, k0,
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By symmetry we without loss of generality that v(0)
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However Proposition 3 indicates that
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Note the second-order term
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From standard polynomial manipulations we have
dQ1+d(d�1)Q2 = d 8+28d(d�1) 6+35d(d�1)(1+12(d�1)(d�2)) 4+105d(d�1)(d�2)(d�3),

and
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2
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Summarize the above calculations we obtain as � ! 0
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Combining the last two displays concludes the theorem.
⌅
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C Proof of Auxillary Results
C.1 Proof of Proposition 3

For v(0)
= v 2 Sd�1 the update equation becomes

v(1)
=

��v + �

�
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�3
Y
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⇣
v + �
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�3
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⌘
.

For the simplicity for discussion we prove under the condition  > 3 (the case of  < 3 is analogous).
To prove Proposition 3 in the case of  > 3, we first introduce
Lemma 5. For x 2 [0, 1) we have
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. (C.1)

Proof. Taylor expansion suggests for |x| < 1
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,

which completes the proof of Lemma 5.
⌅

Proof of Proposition 3. When Eq. (A.4) is satisfied, and noting |v>Y |2  kY k2  B, we have
from Eq. (A.4)
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and hence from Eq. (C.1) in Lemma 5 there exists a Q1(v,Y ) with

|Q1(v,Y )|  2

✓
�(v>Y )

4
+

1

2

�

2
(v>Y )

6kY k2
◆2

 32

9

B

4
�

2
,
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Using Eqs. (C.2) and (C.3) we have
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which has the following estimate
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(C.6)

Denoting Q3(v,Y ) by the random variable R

k

, Eqs. (C.4), (C.5), (C.6) together concludes (i) of
Prop. 3.
For (ii), note Eq. (A.5) gives���v(1)

k

� v

(n)
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���  �
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4
�
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2
�,

so it is concluded.
For (iii), we set E

k

(v) = E
⇥
R

k

| v(0)
= v

⇤
. Under Assumption 1 we take conditional expectation

on v(n)
= v on both sides of Eq. (A.5) to obtain
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(C.7)
Similar to the proof of Lemma 1 in Subsection A.1 we quote another polynomial expansion [9]

⇣X
x

i

⌘3
=

X
x

3
i

+ 3

X
x

2
i

x

j

+ 6

X
x

i1xi2xi3 .

where the summations above iterate through all monomial terms. Plugging in x

i

= v

i

Y

i

and taking
conditional expectations, we conclude that under Assumption 1
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(C.8)

In Eq. (A.1) we have
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(C.9)
Combining Eqs. (C.7) and (C.9) completes the proof.

⌅

C.2 Proof of Lemma B.1
Proof. As in proof of Lemmas 1 and Proposition 3, we have the final polynomial expansions [9] that
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and using some combinatorics counting we have
⇣X

x

i

⌘8
=

X
x

8
i

+ 28

X
x

6
i

x

2
j

+ 70

X
x

4
i

x

4
j

+ 420

X
x

4
i

x

2
j

x

2
k

+ 2520

X
x

2
i

x

2
j

x

2
k

x

2
l

+ terms that has odd-order factors.

Therefore to show the first equality, note from Assumption 1 we can assume WLOG that k = 1. Thus
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= EY 8
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Also
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which is equal to
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This completes the proof.
⌅
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