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1 Preliminaries on Rational Canonical Structure

We take a geometric approach towards the choice of sampling locations for inferring wτ in (3). To
do so, we utilize the Frobenius canonical form and Jordan canonical decomposition of A [4]. We
use the notation V , with dim(V) = M , to emphasize the fact that these theorems hold for any finite-
dimensional vector space. The linear operatorA : V → V has a characteristic polynomial π(λ) such
that π(A) = 0 by the Cayley-Hamilton theorem. The minimal polynomial (MP) of A is the monic
polynomial α(λ) of least degree (denoted by deg(·)) such that α(λ) = a0 +a1λ+ · · ·+λdeg(α) = 0,
and α(A) = a0I + a1A + · · · + Adeg(α) = 0. The MP is unique and divides π(λ), so that
deg(α) ≤ deg(π). The MP of a vector v ∈ V relative to A is the unique monic polynomial ξv of
least degree such that ξv(A)v = a0v+ a1Av+ · · ·+Adeg(α)v = 0. If deg(α) = M , thenA is said
to be cyclic and there exists v ∈ V , such that the vectors {v,Av, . . . ,AM−1v} form a basis for V;
this is the same as saying that the pair (vT ,AT ) is observable.

A subspace VS ⊂ V s.t. AVS ⊂ VS is A-cyclic if A|VS , the restriction of A to the subspace VS ,
is cyclic. If α(λ) is the minimal polynomial of A and deg(α) = m < M , ∃ v ∈ V such that
{v,Av, . . . ,Am−1v} span an m-dimensional A-cyclic subspace VS , with v being the cyclic gener-
ator of VS . The subspace VS decomposes V relative to A. By the rational (or Frobenius) canonical
structure theorem, A can be successively decomposed into subspaces Vi ⊂ V , i ∈ {1, . . . , `}, s.t.
V = V1 ⊕ ... ⊕ V`, AVi ⊂ Vi, and A|Vi , i ∈ {1, . . . , `}, are cyclic1. The integer ` is unique and
is called the cyclic index of A. One of our main results is to show that the cyclic index is a lower
bound on the number of measurements required to reconstruct wτ (see Proposition 3 and Algorithm
1).

Recall also that for any matrix A ∈ RM×M , ∃P ∈ RM×M invertible such that A = PΛP−1,
where Λ is a unique block diagonal matrix with Jordan blocks with λi along the diagonal. If all the
eigenvalues λi are nonzero and real, we say the matrix has a full-rank Jordan decomposition.

2 Discussion of Theoretical Results

The systems-theoretic approach taken in this paper reveals something rather surprising: functions
with complex dynamics (with a small cyclic index) can be recovered with less sensor placements
than functions with simpler dynamics. Although seemingly counterintuitive, it becomes clear that
this is because complex dynamics, which are characterized by a lower geometric multiplicity of the

1In general, the subspaces Vi are not unique for a fixed A.
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eigenvalues, ensure that the orbit Θ := {Âwτ}τ∈Υ traverses a greater portion of RM ≡ Ĥ and
thus that fewer sensors can recover more geometric information. On the other hand, in ‘simpler’
functional evolution, Θ evolves along strict subspaces of RM , and so more independent sensors are
required to infer the same amount of information. Recall that cyclic index ` > 1 implies that there
exist spaces Vi s.t. RM = V1⊕ · · ·⊕V`, which induces the decomposition Ĥ = Ĥ1⊕ · · ·⊕ Ĥ`. As
the simplest nontrivial case, consider ψ̂(x) defined as in (2), where C = {c1, c2}, ci ∈ Ω, and pick
one sensor location x1 ∈ Ω. Let (3) be given by Â =

[
λ 0
0 λ

]
, λ ∈ R and |λ| < 1, and let the system

be deterministic (i.e. ητ , ζτ = 0). Here, ` = 2, because there exists no v ∈ R2 s.t. span{v, Âv} =
R2. For any initial condition w0 we get a discrete sequence {w0, λw0, λ

2w0, . . . } going to zero
along the 1-dimensional subspace generated by w0 (i.e. w0 is an eigenvector of Â). Let the set of
time instances Υ be given by Υ = {0, 1}, and consider a shaded matrix K = [ k11 k12 ]: then the
observability matrix is given by OΥ = [KT (KÂ)T ]

T
=
[
k11 k12

λk11 λk12

]
=
[

kT

λkT

]
, which is obviously

rank-deficient, and where [ k11 k12 ]
T

:= k. Intuitively, we have that OΥw0 =
[
〈k,w0〉R2

λ〈k,w0〉R2

]
, which

implies that k doesn’t have enough geometric information to recover the initial state. Contrast this
with the case when Â =

[
λ 1
0 λ

]
; here, ` = 1, and OΥ =

[
k11 k12

λk11 k11+λk12

]
, which is full rank for

a shaded kernel matrix K, and hence leads to observability. This fundamental insight is be gained
from considering dynamical evolutions in the structure of the model.

Another point to note is that since the collection of bases {ψ̂i(x)}Mi=1 determines the richness of the
function space Ĥ ≈ H we operate in, it determines the fidelity of the model approximation to the
true time-varying function. As a consequence, observability of the system in Ĥ refers to the best
possible approximation in Ĥ. The greater the number of bases, the higher the dimensionality, which
results in greater model fidelity, but which may require a much greater number of measurements
for state recovery. This is where the lower bounds presented in the paper are particularly useful,
because they show that for functional evolutions corresponding to certain Â, the number of sensor
placements are essentially independent of the dimensionality M , but depend rather on the cyclic
index of Â.

3 Training and prediction times for section 3.2 of main Article

Table 1: Total training and prediction times for Figs. 4 and 5

Intel Berkeley Irish Wind
Data Size 25-72 12-36
(bases-timesteps)
Kernel Observer 2.1 sec 0.1 sec
PCLSK 121.4 sec 7.0 sec
LEIS 43.8 sec 2.8 sec

4 Proofs of Main Theorems

Definition 1. (Shaded Observation Matrix) Given k : Ω×Ω→ R positive-definite on a domain Ω,
let {ψ̂1(x), . . . , ψ̂M (x)} be the set of bases generating an approximate feature map ψ̂ : Ω→ Ĥ, and
let X = {x1, . . . , xN}, xi ∈ Ω. Let K ∈ RN×M be the observation matrix, where Kij := ψ̂j(xi).
For each row K(i) := [ ψ̂1(xi) ··· ψ̂M (xi) ], define the set I(i) := {ι(i)1 , ι

(i)
2 , . . . , ι

(i)
Mi
} to be the indices

in the observation matrix row i which are nonzero. Then if
⋃
i∈{1,...,N} I(i) = {1, 2, . . . ,M}, we

denote K as a shaded observation matrix (see Figure 2a).

This definition seems quite abstract, so the following remark considers a more concrete example.

Remark 1. let ψ̂ be generated by the dictionary given by C = {c1, . . . , cM}, ci ∈ Ω. Note that since
ψ̂j(xi) = 〈ψ(xi), ψ(cj)〉H = k(xi, cj), K is the kernel matrix between X and C. For the kernel
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matrix to be shaded thus implies that there does not exist an atom ψ(cj) such that the projections
〈ψ(xi), ψ(cj)〉H vanish for all xi, 1 ≤ i ≤ N . Intuitively, the shadedness property requires that the
sensor locations xi are privy to information propagating from every cj . As an example, note that, in
principle, for the Gaussian kernel, a single row generates a shaded kernel matrix2.

Before we prove Proposition 1, recall that a Jordan decomposition of a matrix Â ∈ RM×M with
no repeated eigenvalues can be composed of O Jordan blocks, where O can be strictly less than M .
This is in direct contrast to the case where the matrix Â has an eigenvalue decomposition, in which
case no repeated eigenvalues implies that O = M .

Proposition 1. Given k : Ω× Ω→ R positive-definite on a domain Ω, let {ψ̂1(x), . . . , ψ̂M (x)} be
the set of bases generating an approximate feature map ψ̂ : Ω → Ĥ, and let X = {x1, . . . , xN},
xi ∈ Ω. Consider the discrete linear system on Ĥ given by the evolution and measurement equations
(3). Suppose that a full-rank Jordan decomposition of Â ∈ RM×M of the form Â = PΛP−1

exists, where Λ = [ Λ1 ··· ΛO ], and there are no repeated eigenvalues. Then, given a set of time
instances Υ = {τ1, τ2, . . . , τL}, and a set of sampling locations X = {x1, . . . , xN}, the system
(3) is observable if the observation matrix Kij is shaded according to Definition 1, Υ has distinct
values, and |Υ| ≥M .

Proof. To begin, consider a system where Â = Λ, with Jordan blocks {Λ1,Λ2, . . . ,ΛO} along the
diagonal. Then Âτi = diag([Λτi1 Λτi2 · · · ΛτiO ]). We have that

OΥ =

KÂτ1· · ·
KÂτL .


︸ ︷︷ ︸
OΥ∈RNL×M

We need to prove that the column rank ofOΥ isM , which is not immediately obvious since typically
N � M . To prove the statement, we will show that computing the rank of OΥ is equivalent to the
rank computation of the product of two simple matrices. In what follows, we use the notation 0RI×J

to denote an I × J matrix of all zeros.

In the first step, we write the above matrix as the product of two matrices. Then it can be shown that
OΥ is the product of two block matrices

OΥ =


K 0RN×M · · · 0RN×M

0RN×M K · · · 0RN×M

...
...

. . .
...

0RN×M 0RN×M · · · K


︸ ︷︷ ︸

K̂∈RNL×ML



Λτ11 0 · · · 0
0 Λτ12 · · · 0
...

...
. . .

...
0 0 · · · Λτ1O
...

...
. . .

...
ΛτL1 0 · · · 0

0 ΛτL2 · · · 0
...

...
. . .

...
0 0 · · · ΛτLO


︸ ︷︷ ︸

Â∈RML×M

.

We need to simplify K̂ even further. Recall that a matrix’s rank is preserved under a product with an
invertible matrix. Design a matrix of elementary row operations U ∈ RN×N such that K̆ := UK
is a matrix with at least one row vector of nonzeros; this can be achieved by having an elementary
matrix that adds rows together. By the shadedness assumption, such a matrix exists. We can write
this operation as

UK =


K̆11 K̆12 · · · K̆1M

K̆21 K̆22 · · · K̆2M

...
...

. . .
...

K̆N1 K̆N2 · · · K̆NM .


2

However, in this case, the matrix can have many entries that are extremely close to zero, and will probably be very ill-conditioned.
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Without loss of generality, and abusing notation slightly, let this multiplication lead to one nonzero
row, with the rest of the elements of the matrix being zero, as

UK =


k11 k12 · · · k1M

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .

Since elementary matrices are full-rank, we then have that rank(UK) = rank(K).

To analyze the rank ofOΥ, we apply these elementary matrices to every K ∈ K̂. To do so, consider
the block-diagonal matrix U ∈ RNL×NL withU ∈ RN×N along the diagonal, and zeros everywhere
else. It can be shown that U is full-rank, i.e. has rank NL. Going back to the observability matrix,
we have that

UOΥ =


U 0RN×N · · · 0RN×N

0RN×N U · · · 0RN×N

...
...

. . .
...

0RN×N 0RN×N · · · U


︸ ︷︷ ︸

U∈RNL×NL


K 0RN×M · · · 0RN×M

0RN×M K · · · 0RN×M

...
...

. . .
...

0RN×M 0RN×M · · · K


︸ ︷︷ ︸

K̂∈RNL×ML



Λτ11 0 · · · 0
0 Λτ12 · · · 0
...

...
. . .

...
0 0 · · · Λτ1O
...

...
. . .

...
ΛτL1 0 · · · 0

0 ΛτL2 · · · 0
...

...
. . .

...
0 0 · · · ΛτLO


︸ ︷︷ ︸

Â∈RML×M

=


UK 0RN×M · · · 0RN×M

0RN×M UK · · · 0RN×M

...
...

. . .
...

0RN×M 0RN×M · · · UK


︸ ︷︷ ︸

UK̂∈RNL×ML



Λτ11 0 · · · 0
0 Λτ12 · · · 0
...

...
. . .

...
0 0 · · · Λτ1O
...

...
. . .

...
ΛτL1 0 · · · 0

0 ΛτL2 · · · 0
...

...
. . .

...
0 0 · · · ΛτLO


︸ ︷︷ ︸

Â∈RML×M

,

since 0RN×N 0RN×M = 0RN×M . Due to the fact that rank(UOΥ) = rank(OΥ), we can therefore
perform our rank analysis on the simpler matrix rank(UOΥ). Note that

UKÂτj =


k11 k12 · · · k1M

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 Âτj

=


k11λ

τj
1

(
τj
1

)
λ
τj−1
1 + k12λ

τj
1 · · · k1Mλ

τj
O

0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

 .

4



Therefore, following some more elementary row operations encoded by V ∈ RML×ML, we have
that

V UOΥ =


k11λ

τ1
1 · · · k1Mλ

τ1
O

k11λ
τ2
1 · · · k1Mλ

τ2
O

...
. . . 0

k11λ
τL
1 · · · k1Mλ

τL
O

0RM(L−1)×1 · · · 0RM(L−1)×1


=

[
Φ

0RM(L−1)×M

]
.

If the individual entries k1i are nonzero, and the Jordan block diagonals have nonzero eigenvalues,
the columns of Φ become linearly independent. Therefore, if L ≥M , the column rank ofOΥ is M ,
which results in an observable system.

To extend this proof to matrices Â = PΛP−1, note that

OΥ =

KÂτ1· · ·
KÂτL


=

KPΛτ1P−1

· · ·
KPΛτLP−1.


= K̂PΛtP−1,

where P ∈ RML×ML, Λt ∈ RML×ML, and P−1 ∈ RML×ML are the block diagonal matrices
associated with the system. Since P is an invertible matrix, the conclusions about the column rank
drawn before still hold, and the system is observable.

When the eigenvalues of the system matrix are repeated, it is not enough for K to be shaded. The
next proposition proves a lower bound on the number of sampling locations required.
Proposition 2. Suppose that the conditions in Proposition 1 hold, with the relaxation that the Jordan
blocks [ Λ1 ··· ΛO ] may have repeated eigenvalues (i.e. ∃Λi and Λj s.t. λi = λj). Then there exist
kernels k(x, y) such that the lower bound ` on the number of sampling locations N is given by the
cyclic index of Â.

Proof. We first prove the lower bound. Pick the Gaussian kernel in the dictionary of atoms frame-
work, with sampling locations xi ∈ X and centers cj ∈ C, with the additional property that
xi 6= xj∀i{1, . . . , N}, j{1, . . . ,M}. In this case, K has ` − 1 nonzero, linearly independent
rows, and can be written as

K =

 k11 k12 · · · k1M

...
... · · ·

...
k(`−1)1 k(`−1)2 · · · k(`−1)M

 .
Since the cyclic index is `, this implies that at least one eigenvalue, say λ, has ` Jordan blocks.
Define indices j1, j2, . . . , j` ∈ {1, 2, . . . ,M} as the columns corresponding to the leading entries
of the ` Jordan blocks corresponding to λ. WLOG, let j1 = 1. Using ideas similar to the last proof,
we can write the observability matrix as

OΥ :=



k11λ
τ1 · · · k1j`λ

τ1 · · ·
...

. . .
...

. . .
k11λ

τL k1j`λ
τL · · ·

...
. . .

...
. . .

k(`−1)1λ
τ1 · · · k(`−1)j`λ

τ1 · · ·
...

. . .
...

. . .
k(`−1)1λ

τL · · · k(`−1)j`λ
τL · · ·


.
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Define λ := [λτ1 λτ2 · · ·λτL ]
T . Then the above matrix becomes

OΥ :=

 k11λ · · · k1j2λ · · · k1j`λ · · ·
...

. . .
...

. . .
...

. . .
k(`−1)1λ · · · k(`−1)j2λ · · · k(`−1)j`λ · · ·

 .
We need to show that one of the columns above can be written in terms of the others. This is
equivalent to solving the linear system

k1j1
k2j1

...
k(`−1)j1

 =


k1j2 · · · k1j`
k2j2 · · · k2j`

...
. . .

...
k(`−1)j2 · · · k(`−1)j`




c1
c2
...

c(`−1)

 .
Since the kernel matrix on the RHS is generated from the Gaussian kernel, from [1], it’s known that
every principal minor of a Gaussian kernel matrix is invertible, which implies that OΥ cannot be
observable.

Section 2 gives a concrete example to build intuition regarding this lower bound. We now show how
to construct a matrix K̃ corresponding to the lower bound `.
Proposition 3. Given the conditions stated in Proposition 2, it is possible to construct a measure-
ment map K̃ ∈ R`×M for the system given by (3), such that the pair (K̃, Â) is observable.

Proof. The construction of the measurement map K̃ is based on the rational canonical structure
of ÂT (discussed in section 1), which decomposes V into ÂT -cyclic direct summands such that
V = V1⊕· · ·⊕V`, where ` is the cyclic index of Â as defined in Proposition 2. Let ξv be the minimal
polynomial (m.p.) of v (relative to ÂT ): it is then the unique monic polynomial of least degree such
that ξv(ÂT )v = 0. Let α1(λ) be the m.p. of ÂT|V1

: then deg(α1(λ)) < M . By the rational canonical
structure theorem [4], there exists a vector v̂1, such that ξv1

(λ) = α1(λ). Similarly there exists
a vector v̂2, such that ξv2

(λ) = α2(λ), where α2(λ), is the minimal polynomial of ÂT|V2
and so

on. Thus we can obtain ` such vectors that form the measurement map K̃ = [v̂1, v̂2, · · · , v̂`]T .
Construction of these vectors v̂i, can be simplified by first performing the Jordan decomposition
as ÂT = PΛP−1. Then the vectors ṽi, i ∈ ` for Λ, can be constructed such that the entries
corresponding to the leading entries of Jordan blocks of Λ|Vi are nonzero. Such a construction
ensures that the m.p. of vector ṽi w.r.t Λ|Vi , is also the corresponding m.p. of Λ|Vi . Hence the
required map is given by K̃ = [ṽ1, ṽ2, . . . , ṽ`]

TP−1.

The construction provided in the proof of Proposition 3 is utilized in Algorithm 1, which uses
the rational canonical structure of Â to generate a series of vectors vi ∈ RM , whose iterations
{v1, . . . , Â

m1−1v1, . . . , v`, . . . , Â
m`−1v`} generate a basis for RM (see Section 1). Unfortunately,

the measurement map K̃, being an abstract construction unrelated to the kernel, does not directly
select X . We will show how to use the measurement map to guide a search for X in Remark 2. For
now, we state a sufficient condition for observability of a general system.
Theorem 1. Suppose that the conditions in Proposition 1 hold, with the relaxation that the Jordan
blocks [Λ1 Λ2 · · · ΛO] may have repeated eigenvalues. Let ` be the cyclic index of Â. We
define

K = [K(1)T ··· K(`)T ]
T (1)

as the `-shaded matrix which consists of ` shaded matrices with the property that any subset of `
columns in the matrix are linearly independent from each other. Then system (3) is observable if Υ
has distinct values, and |Υ| ≥M .

Proof. A cyclic index of ` for this system implies that there exists an eigenvalue λ that’s repeated
` times. We prove the theorem for repeated eigenvalues of dimension 1: the same statement can

6



Algorithm 1 Measurement Map K̃

Input: Â ∈ RM×M

Compute Frobenius canonical form, such that C = Q−1ÂTQ. Set C0 := C, and M0 := M .
for i = 1 to ` do

Obtain MP αi(λ) of Ci−1. This returns associated indices J (i) ⊂ {1, 2, . . . ,Mi−1}.
Construct vector vi ∈ RM such that ξvi(λ) = αi(λ) .
Use indices {1, 2, . . . ,Mi−1} \ J (i) to select matrix Ci. Set Mi := |{1, 2, . . . ,Mi−1} \ J (i)|

end for
Compute K̊ = [vT1 , v

T
2 , ..., v

T
` ]T

Output: K̃ = K̊Q−1

be proven for repeated eigenvalues for Jordan blocks using the ideas in the proof of Proposition 1.
WLOG, let K have ` fully shaded, linearly independent rows, and, assume that the column indices
corresponding to this eigenvalue are {1, 2, . . . , `}. Define λi := [λτ1i λτ2i · · ·λτLi ]

T . Then

OΥ :=

k11λ1 k12λ2 · · · k1MλM
...

...
. . .

...
k`1λ1 k`2λ2 · · · k`MλM

 .
Let λ1 = λ2 = · · ·λ` := λ. Focusing on these first ` columns of this matrix, this implies that we
need to find constants c1, c2, . . . , c`−1 such thatk11

...
k`1

 = c1

k12

...
k`2

+ · · ·+ c`−1

k1`

...
k``

 .
However, these columns are linearly independent by assumption, and thus no such constants exist,
implying that OΥ is observable.

While Theorem 1 is a quite general result, the condition that any ` columns of K be linearly inde-
pendent is a very stringent condition. One scenario where this condition can be met with minimal
measurements is in the case when the feature map ψ̂(x) is generated by a dictionary of atoms with
the Gaussian RBF kernel evaluated at sampling locations {x1, . . . , xN} according to (2), where
xi ∈ Ω ⊂ Rd, and xi are sampled from a non-degenerate probability distribution on Ω such as
the uniform distribution. For a semi-deterministic approach, when the dynamics matrix Â is block-
diagonal, we can utilize a simple heuristic:
Remark 2. Let Ω be compact, C = {c1, . . . , cM}, ci ∈ Ω, and let the approximate feature map be
defined by (2). Consider the system (3) with Â = Λ, and let Υ = {0, 1, . . . ,M − 1}. Then the mea-
surement map K̃’s values lie in {0, 1}; in particular, each row K̃(j), j ∈ {1, . . . , `}, corresponds to
a subspace Ĥj , generated by a subset of centers C(j) ⊂ C. Generate samples x(j)

i to create a kernel
matrix K(j) that is shaded only with respect to centers C(j). Once this is done, move on to the next
subspace Ĥj+1. When all ` rows of K̃ are accounted for, construct the matrix K as in (1). Then the
resulting system (K, Â) is observable.

This heuristic is formalized in Algorithm 2. Note that in practice, the matrix Â needs to be inferred
from measurements of the process fτ . If no assumptions are placed on Â, it’s clear that at least
M sensors are required for the system identification phase. Future work will study the precise
conditions under which system identification is possible with less than M sensors.

5 Numerical Computation of the Canonical Forms

Realizing the minimum number of sensors relies on the rational canonical form, which can be com-
puted using the Jordan canonical form. Computing the Jordan normal form can be extremely expen-
sive: older algorithms report computation times of the order of O(M5M(M)) [2], where (M(M)
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Algorithm 2 Sampling locations set X
Input: Â = C, lower bound `
Decompose C to generate invariant subspaces Ĥj , j ∈ {1, 2, . . . , `} (see section 1)
for j = 1 to ` do

Obtain centers C(j) w.r.t subspace Ĥj ,
Generate samples x(j)i to create a kernel matrix K(j) that is shaded only with respect to centers C(j)

end for
Output: Sampling locations set X = {x(1), x(2) · · · , x(l)}.

Algorithm 3 Kernel Observer (Transition Learning)
Input: Kernel k, basis centers C, final time step T .
while τ ≤ T do

1) Sample data {yiτ}Mi=1 from fτ .
2) Estimate ŵτ via standard kernel inference procedure.
3) Store weights ŵτ in matrixW ∈ RM×T .

end while
To infer Â, define matrix Φ =WTW . Then:
for i = 1 to M do

At step i, solve system

Â(i) =
(

(Φ + λI)−1 (WTW(i))
)T

, (2)

where Â(i), andW(i) are the ith columns of Â andW(i) respectively.
end for
Compute the covariance matrix B̂ of the observed weightsW .
Output: estimated transition matrix Â, predictive covariance matrix B̂.

Algorithm 4 Kernel Observer (Monitoring and Prediction)

Input: Kernel k, basis centers C, estimated system matrix Â, estimated covariance matrix B̂.
Compute Observation Matrix: Compute the cyclic index ` of Â, and compute K.
Initialize Observer: Use Â, B̂, and K to initialize a state-observer (e.g. Kalman filter (KF)) on Ĥ.
while measurements available do

1) Sample data {yiτ}Ni=1 from fτ .
2) Propagate KF estimate ŵτ forward to time τ+1, correct using measurement feedback with {yiτ+1}Ni=1.
3) Output predicted function f̂τ+1 of KF.

end while

denotes operations sufficient to multiply two M × M matrices over R): iterative approximation
algorithms such as the one in [3] can be used to reduce the computation time. Algorithms also exist
for computing approximate Jordan decompositions. We have examined strategies for avoiding this
computation by directly considering the invariant subspaces obtained from eigendecompositions of
the dynamics matrix Â: this algorithm will be reported in future work.

8



Table 2: Notations

Notations
A Linear transition operator in the RKHSH
Â Linear transition operator in the strict subspace Ĥ of

RKHSH
α(λ) Minimal polynomial
αi(λ) Minimal polynomial w.r.t Λi−1 or A|Vi
B Banach space
C Array of basis centers generating a finite-dimensional

covering ofH
C(j) Subset of basis centers C
ci Basis center, ith element of C
fτ Mean of time-varying stochastic process at instant τ
H Reproducing Kernel Hilbert Space (RKHS)
Ĥ Approximate Reproducing Kernel Hilbert Space
Ĥj jth subspace of Ĥ
k(·, ·) Positive-definite kernel on a domain Ω

K̃ Measurement map ∈ R`×M
K̊ Measurement map ∈ R`×M corresponding to Jordan

normal form Λ
K Linear measurement operator that mapsH → RN
K Kernel matrix between the data points and basis

vectors
` Lower bound on sampling locations, the cyclic index

of a matrix
L Total number of time instances, at which measurement

or samples are taken.
L Linear operator in Banach space B
M Number of atoms in Ĥ
N Number of sensing or sampling locations
Λ Jordan normal form
OΥ Observability Matrix
Υ Set of instances τi
P Similarity transformation matrix
ψ(·) Smooth map ψ : Ω→ H
τ Discrete time index
u a function in Banach space B
V Linear space
wτ Weight vector ∈ RMat instant τ
w0 Initial weight vector
ŵτ Estimate of wτ
xi ith sensing or sampling location
x

(j)
i ith sensing or sampling location w.r.t C(j) ⊂ C
x(j) Sensing or sampling locations w.r.t C(j) ⊂ C
X Set of sampling or sensing locations
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