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1 Proof of Theorem 1 for α = 1

As the proof presented in the paper for α =∞, our proof consists in construction a vector supported
on J , obeying the implicit relationship (6) which becomes in this case

xτ,J = x0,J + Φ̃−1Θw − τv∞,J , (12)

and which is indeed a solution to (Pτ∞(Φx0 + w)) for an appropriate regime of the parameters
(τ, ||w||α). Note that we assume that (INJ1) holds and in particular, Φ̃ is invertible. If we define
Zp

def.
= sat(p), note that

∂||p||∞ =
{
u
∣∣∣ uZc

p
= 0, 〈uZp , sign(pZp)〉 = 1, sign(uZp) = sign(pZp)

}
,

so that for an optimal primal-dual pair (x, p), the condition (8) reads,

yZc
p

= ΦZc
p,·x , 〈Φ∗Zp,· sign(pZp

), x〉 = 〈sign(pZp
), yZp

〉 − τ, (13)

and
sign(yZp − ΦZpx) = sign(pZp). (14)

To simplify the notations, we use

Θp
def.
=

[
IdZc

p,·
sign(p∗Zp

)IdZp,·

]
and Φ̃p

def.
= ΘpΦ·,J .

One should then look for a candidate primal-dual pair (x̂, p̂) such that supp(x̂) = J and satisfying

Φ̃p̂x̂J = ỹp̂ = Θp̂y − τδ|J| = Φ̃p̂x0,J + Θp̂w − τδ|J|. (15)

We now need to show that the first order conditions (7) and (8) hold for some p = p̂ solution of
the “perturbed” dual problem (Dτ∞(Φx0 + w)) with x = x̂. Actually, we will show that under the
conditions of the theorem, this holds for p̂ = p∞, i.e., p∞ is solution of (Dτ∞(Φx0 + w)) so that

x̂J = x0,J + Φ̃−1Θw − τ Φ̃−1δ|J| = x0,J + Φ̃−1Θw − τv∞,J .
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We remind that as defined in Section 1.4, Θ = Θp∞ and Φ̃ = Φ̃p∞ and that v∞,J = Φ̃−1δ|J|. Let us
start by proving the equality part of (7), Φ∗·,Jp∞ = sign(x̂J). Noting IdI,J the restriction from J to
I , we have

sign
(
x0,I + IdI,J Φ̃−1Θw − τv∞,I

)
= sign (x0,I)

as soon as ∣∣∣(Φ̃−1Θw
)
i
− τv∞,i

∣∣∣ < |x0,I | ∀i ∈ I.
It is sufficient to require

||IdI,J Φ̃−1Θw − τv∞,I ||∞ < x

||Φ̃−1Θ||∞,∞||w||∞ + τ ||v∞,I ||∞ < x,

with x = mini∈I |x0,I |. Injecting the fact that ||w||∞ < c1τ (the value of c1 will be derived later), we
get the condition

τ (bc1 + ν) 6 x,

with b = ||Φ̃−1Θ||∞,∞ and ν = ||v∞||∞ 6 b. Rearranging the terms, we obtain

τ 6
x

bc1 + ν
= c2x,

which guarantees sign(x̂I) = sign(x0,I). Outside I , defining IdJ̃,J as the restriction from J to J̃ ,
we must have

Φ∗·,J̃p∞ = sign
(

IdJ̃,J Φ̃−1Θw − τv∞,J̃
)
.

From Lemma 1, we know that − sign(v∞,J̃) = Φ∗·,J̃p∞, so that the condition is satisfied as soon as∣∣∣∣(Φ̃−1Θw
)
j

∣∣∣∣ < τ |v∞,j | ∀j ∈ J̃ .

Noting v = minj∈J̃ |v∞,j |, we get the sufficient condition for (7),

||Φ̃−1Θw||∞ < τv,

||w||∞ < τ
v

b
. (c1a)

We can now verify (13) and (14). From (15) we see that (13) is satisfied i.e.,

yZc = ΦZc,J x̂J and sign(p∞,Z)∗ΦZ,J x̂J = sign(p∞,Z)∗yZ − τ.

On Z, we have
yZ − ΦZ,·x̂ = wZ − ΦZ,J Φ̃−1Θw + τΦZ,Jv∞,J .

We know from Lemma 1 that

sign(p∞,Z) = sign (ΦZ,Jv∞,J)

so that (14) holds, i.e., sign(y − Φx̂)Z = sign(p∞,Z) as soon as

||wZ − ΦZ,J Φ̃−1Θw||∞ 6 τ min
i∈Z
|Φi,Jv∞,J |

||IdZ,· − ΦZ,J Φ̃−1Θ||1,∞||w||1 6 zτ

with z def.
= mini∈Z |Φi,Jv∞,J | and finally, noting a def.

= ||IdZ,· − ΦZ,J Φ̃−1Θ||1,∞,

||w||1 6
z

a
τ. (c1b)

(c1a) and (c1b) together give the value of c1. This ensures that x̂ is solution to (Pτ1 (Φx0 + w)) and
p∞ solution to (Dτ∞(Φx0 + w)), which concludes the proof.
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