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A Proofs for Convex Recovery

In the following, we present the proofs of Theorems 1 and 2. The matrix concentration bounds play
an important role in these proofs, and are given as Lemmas 7 and 10.

A.1 Notation

In this paper, we consider the heterogenous stochastic block model described in Section 1.1. Con-
sider a partition of the n nodes into V0, V1, . . . , Vr , where |Vk| = nk , k = 0, 1, . . . , r . Consider
n̄ =

∑r
k=1 nk and denote the number of isolated nodes by n0 ; hence, n0 + n̄ = n . Ignor-

ing n0 , we further define nmin and nmax as the minimum and maximum of n1, . . . , nk respec-
tively. The nodes in V0 are isolated and the nodes in Vk form the community Ck = Vk × Vk , for
k = 1, . . . , r . The union of communities is denoted by C = ∪r

k=1Ck and Cc denotes the comple-
ment; i.e. Cc = {(i, j) : (i, j) ̸∈ Ck for any k = 1, . . . , r, and i, j = 1, . . . , n}. Denote by Y the
set of admissible adjacency matrices according to a community assignment as above, i.e.

Y := {Y ∈ {0, 1}n×n : Y is a valid community matrix w.r.t. V0, V1, . . . , Vr where |Vk| = nk} .
We will denote by 1C ∈ Rn×n a matrix which is 1 on C ⊂ {1, . . . , n}2 and zero elsewhere. log
denotes the natural logarithm (base e), and the notation θ ! 1 is equivalent to θ ≥ O(1) . A
Bernoulli random variable with parameter p is denoted by Ber(p) , and a Binomial random variable
with parameters n and p is denoted by Bin(n, p) . ∥ · ∥⋆ denotes the matrix nuclear norm or trace
norm, i.e., the sum of singular values of the matrix. The dual to the nuclear norm is the spectral
norm, denoted by ∥ · ∥ .

Given a single graph drawn from the heterogenous stochastic block model, the goal is to recover the
underlying community matrix Y ⋆ ∈ Y exactly. We will need the following definitions:

Define the relative density of a community as

ρk = (pk − q)nk

which gives
∑r

k=1 ρk =
∑r

k=1 pknk − qn . Define the total variance σ2
k = nkpk(1 − pk) over the

kth community, and let σ2
0 = nq(1− q) . Also, define

σ2
max = max

k=1,...,r
σ2
k = max

k=1,...,r
nkpk(1− pk) .

The Neyman Chi-square divergence (e.g., see [17]) between the two discrete random variables
Ber(p) and Ber(q) is given by

D̃(p, q) :=
(p− q)2

q(1 − q)

and we have D̃(p, q) ≥ DKL(p, q) := DKL(Ber(p),Ber(q)) ; see (B.19). Chi-square divergence
is an instance of a more general family of divergence functions called f -divergences or Ali-Silvey
distances [6]. This family also has KL-divergence, total variation distance, Hellinger distance and
Chernoff distance as special cases. Moreover, the divergence used in [3] is an f -divergence.

A.2 Proof of Theorem 1

We are going to prove that under the heterogenous stochastic block model (HSBM), with high prob-
ability, the output of the convex recovery program in (2.4) coincides with the underlying community
matrix Y ⋆ =

∑r
k=1 1Vk

1
T
Vk

provided that

ρ2k ! nkpk(1 − pk) lognk

(pmin − q)2 ! q(1− q) log nmin

nmin

ρ2min ! max

{
max

k
nkpk(1 − pk), nq(1− q), logn

} (A.1)
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as well as
∑r

k=1 n
−α
k = o(1) for some α > 0 .

Notice that pk(1 − pk)nk ! lognk , for all k = 1, . . . , r , is implied by the first condition, as
mentioned in Remark 1.

Remark 1 For exact recovery to be possible, we need all communities (but at most one) to be
connected. Therefore, in each subgraph, which is generated by G(nk, pk) , we need pknk > lognk,
for k = 1, . . . , r . Observe that this connectivity requirement is implicit in the first condition of
Theorems 1, 2: for example, the first condition of Theorem 1 can be equivalently expressed as

nkD̃(q, pk) ! lognk . Moreover, for q < p , when both p and q/p are bounded away from 1 , we
have

D̃(q, p) = p
(1− q/p)2

1− p
≈ p .

Before proving Theorem 1, we state a crucial result from random matrix theory that allows us to
bound the spectral radius of the matrix A−E(A) where A is an instance of adjacency matrix under
HSBM. This result appears, for example, as Theorem 3.4 in [11]1. Although Lemma 2 from [36]
appears to state a weaker version of this result, the proof presented there actually supports the version
we give below in Lemma 5. Finally, Lemma 8 from [38] states the same result and presents a very
brief sketch of the proof idea, along the lines of the proof presented fully in [36].

Lemma 5 Let A = {aij} be a n × n symmetric random matrix such that each aij represents an
independent random Bernoulli variable with E(aij) = pij . Assume that there exists a constant C0

such that σ2 = maxi,j pij(1 − pij) ≥ C0 logn/n. Then for each constant C1 > 0 there exists
C2 > 0 such that

P
(
∥A− E(A)∥ ≥ C2σ

√
n
)

≤ n−C1 .

As an immediate consequence of this, we have the following corollary.

Corollary 6 Let A = {aij} be a n× n symmetric random matrix such that each aij represents an
independent random Bernoulli variable with E(aij) = pij . Assume that there exists a constant C0

such that σ2 = maxi,j pij(1 − pij) ≤ C0 logn/n . Then for each constant C1 > 0 there exists
C3 > 0 such that such that

P

(
∥A− E(A)∥ ≥ C3

√
logn

)
≤ n−C1 .

Proof. The corollary follows from Lemma 5, by replacing the (1, 1) entry of A with a Bernoulli
variable of probability p11 = C0 logn/n. Given that the old (1, 1) entry and the new (1, 1) entry
are both Bernoulli variables, this can change ∥A− E(A)∥ by at most 1. The new maximal variance
is equal to maxi,j pij(1 − pij) = C0 logn/n . Therefore Lemma 5 is applicable to the new matrix
and the conclusion holds.

We use Lemma 5 to prove the following result.

Lemma 7 Let A be generated according to the heterogenous stochastic block model (HSBM). Sup-
pose

(1) pk(1− pk)nk ! log nk , for k = 1, . . . , r , and

(2) there exists an α > 0 such that
∑r

k=0 n
−α
k = o(1) .

Then with probability at least 1− o(1) we have

∥A− E(A)∥ " max
i

√
pi(1− pi)ni +

√
max{q(1− q)n , logn} . (A.2)

Proof. We split the matrix A into two matrices, B1 and B2 . B1 consists of the block-diagonal
projection onto the clusters, and B2 is the rest. Denote the blocks on the diagonal of B1 by C1,

1As a more general result about the norms of rectangular matrices, but with the slightly stronger growth
condition σ2 ≥ log6+ϵ n/n.
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C2, . . . , Cr, where Ci corresponds to the ith cluster. Then ∥B1 − E(B1)∥ = maxi ∥Ci − E(Ci)∥,

and for each i, ∥Ci − E(Ci)∥ !
√
pi(1− pi)ni with probability at most n−α

i , by Lemma 5. By
assumptions (1) and (2) of Lemma 7 and applying a union bound, we conclude that

∥B1 − E(B1)∥ " max
i

√
pi(1− pi)ni

with probability at least 1 −
∑r

i=1 n
−α
i = 1 − o(1) . We shall now turn our attention to B2 . Let

σ2 = max{q(1 − q), logn/n} . By Corollary 6, ∥B2 − E(B2)∥ " max{
√
q(1− q)n,

√
logn} ,

with high probability. Putting the two norm estimates together, the conclusion of Lemma 7 follows.

We are now in the position to prove Theorem 1.

Proof. [of Theorem 1] We need to show that for any feasible Y ̸= Y ⋆ , we have ∆(Y ) := ⟨A, Y ⋆ −
Y ⟩ > 0 . Rewrite ∆(Y ) as

∆(Y ) = ⟨A, Y ⋆ − Y ⟩ = ⟨E[A], Y ⋆ − Y ⟩+ ⟨A− E[A], Y ⋆ − Y ⟩ .

Note that
∑

i,j Y
⋆
ij =

∑
i,j Yij =

∑r
k=1 n

2
k, thus

∑
i,j(Y

⋆
ij − Yij) = 0 . Express this as

r∑

k=1

∑

i,j∈Vk

(Y ⋆ − Y )ij = −
∑

k′ ̸=k′′

∑

i∈Vk′ , j∈Vk′′

(Y ⋆ − Y )ij .

Then we have

⟨E[A], Y ⋆ − Y ⟩ =
r∑

k=1

∑

i,j∈V ⋆
k

pk(Y
⋆ − Y )ij +

∑

k′ ̸=k′′

∑

i∈Vk′ , j∈Vk′′

q(Y ⋆ − Y )ij

=
r∑

k=1

∑

i,j∈Vk

(pk − q)(Y ⋆ − Y )ij .

Finally, since 0 ≤ (Y ⋆ − Y )ij ≤ 1 for i, j ∈ Vk , we can write

⟨E[A], Y ⋆ − Y ⟩ =
r∑

k=1

∑

i,j∈Vk

(pk − q)∥(Y ⋆ − Y )Ck
∥1 . (A.3)

Next, recall that the subdifferential (i.e., the set of all subgradients) of ∥ · ∥⋆ at Y ⋆ is given by

∂∥Y ⋆∥⋆ = {UUT + Z
∣∣ UTZ = ZU = 0 , ∥Z∥ ≤ 1}

where Y ⋆ = UKUT is the singular value decomposition for Y ⋆ with U ∈ Rn×r , K =
diag(n1, . . . , nr) , and Uik = 1/

√
nk if node i is in cluster Ck and Uik = 0 otherwise.

Let M := A − E[A] . Since conditions (1) and (2) of Lemma 7 are verified, there exists C1 > 0
such that ∥M∥ ≤ λ , with probability 1− o(1) , where

λ := C1

(
max

i

√
pi(1 − pi)ni +

√
max{q(1− q)n, logn}

)
. (A.4)

Furthermore, let the projection operator onto a subspace T be defined by

PT (M) := UUTM +MUUT − UUTMUUT ,

and also PT⊥ = I − PT , where I is the identity map. Since ∥PT⊥(M)∥ ≤ ∥M∥ ≤ λ with high
probability, UUT + 1

λPT⊥(M) ∈ ∂∥Y ⋆∥⋆ with high probability. Now, by the constraints of the
convex program, we have

0 ≥ ∥Y ∥⋆ − ∥Y ⋆∥⋆
≥ ⟨UUT + 1

λPT⊥(M), Y − Y ⋆⟩
= ⟨UUT − 1

λPT (M), Y − Y ⋆⟩+ 1
λ⟨M,Y − Y ⋆⟩ ,

(A.5)
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which implies ⟨M,Y ⋆ − Y ⟩ ≥ ⟨PT (M)− λUUT , Y ⋆ − Y ⟩ . Combining (A.2) and (A.3) we get,

∆(Y ) ≥
r∑

k=1

(pk − q)∥(Y ⋆ − Y )Ck
∥1 + ⟨PT (M)− λUUT , Y ⋆ − Y ⟩

≥
r∑

k=1

(pk − q)∥(Y ⋆ − Y )Ck
∥1

−
r∑

k=1

∥(PT (M)− λUUT )Ck
∥∞︸ ︷︷ ︸

(µkk)

∥(Y ⋆ − Y )Ck
∥1

−
∑

k′ ̸=k′′

∥(PT (M)− λUUT )Vk′×Vk′′
∥∞︸ ︷︷ ︸

(µk′k′′ )

∥(Y ⋆ − Y )Vk′×Vk′′
∥1

(A.6)

where we have made use of the fact that an inner product can be bounded by a product of dual
norms. We now derive bounds for the quantities µkk and µk′k′′ marked above. Note that the former
indicates sums over the clusters, while the latter indicates sums outside the clusters.

For µkk, if (i, j) ∈ Ck then
(
PT (M)− λUUT

)
ij
=

(
UUTM +MUUT − UUTMUUT − λUUT

)
ij

=
1

nk

∑

l∈Ck

Mlj +
1

nk

∑

l∈Ck

Mil −
1

n2
k

∑

l,l′∈Ck

Mll′ −
λ

nk
.

Recall Bernstein’s inequality (e.g. see Theorem 1.6.1 in [37]):

Proposition 8 (Bernstein Inequality) Let S1, S2, . . . , Sn be independent, centered, real random
variables, and assume that each one is uniformly bounded:

E[Sk] = 0 and |Sk| ≤ L for each k = 1, . . . , n .

Introduce the sum Z =
∑n

k=1 Sk, and let ν(Z) denote the variance of the sum:

ν(Z) = E[Z2] =
n∑

k=1

E[S2
k] .

Then

P[ |Z| ≥ t ] ≤ 2 exp

(
−t2/2

ν(Z) + Lt/3

)
for all t ≥ 0 .

We will apply it to bound the three sums in µkk , using the fact that each of the sums contains only
centered, independent, and bounded variables, and that the variance of each entry in the sum is

pk(1 − pk) . For the first two sums, we can use t ∼
√
nkpk(1− pk) lognk to obtain a combined

failure probability (over the entire cluster) of O(n−α
k ). Finally, for the third sum, we may choose

t ∼ nk

√
pk(1− pk) lognk, again for a combined failure probability over the whole cluster of no

more than O(n−α
k ).

We have thusly

µkk ≤ | 1
nk

∑

l∈Ck

Mlj |+ | 1
nk

∑

l∈Ck

Mil|+ | 1
n2
k

∑

l,l′

Ml,l′ |+
λ

nk

"

√
pk(1− pk)

nk
lognk +

√
pk(1− pk) lognk

nk
+

λ

nk
,

for all i, j ∈ Ck, with probability 1−O(n−α
k ). Note that in the inequality above, the second term is

much smaller in magnitude than the first, so we can disregard it; using (A.4), we obtain

µkk "
1

nk

(√
nkpk(1− pk) lognk +max

i

√
pi(1− pi)ni +

√
max{q(1− q)n, logn}

)
(A.7)
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and by taking a union bound over k we can conclude that the probability that any of these bounds
fail is o(1) . Similarly, for µk′k′′ , for k′ ̸= k′′ , we can calculate that

µk′k′′ ≤ | 1
nk′

∑

l∈Ck′

Mlj|+ | 1
nk′′

∑

l∈Ck′′

Mil|+ | 1
nk′nk′′

∑

l′∈Ck′ , l′′∈Ck′′

Ml′,l′′ | (A.8)

"

√
q(1 − q)(

lognk′

nk′

+
lognk′′

nk′′

) +

√
q(1− q) log(nk′nk′′ )

√
nk′nk′′

,

with failure probability over all i ∈ Ck′ , j ∈ Ck′′ of no more than O(n−α
k′ n−α

k′′ ) . We do this by taking

t ∼
√
nk′q(1− q) log(nk′nk′′ ), respectively t ∼

√
nk′′q(1 − q) log(nk′nk′′ ) in the first two sums.

For the third, we just take t ∼
√
nk′nk′′q(1− q) log(nk′nk′′) . As before, note that the second term

is much smaller in magnitude than the first, and hence we can disregard it to obtain

µk′k′′ " max
k

√
q(1 − q) lognk

nk
=

√
q(1− q) log nmin

nmin
:= µoff , (A.9)

as the function log x/x is strictly increasing if x ≥ 3, with the probability that all of the above are
simultaneously true being 1 − o(1). Since the bound on µk′k′′ is independent of k′ and k′′ we can
rewrite (A.6) as

∆(Y ) ≥
r∑

k=1

(pk − q)∥(Y ⋆ − Y )Ck
∥1 −

r∑

k=1

µkk∥(Y ⋆ − Y )Ck
∥1 −

∑

k′ ̸=k′′

µk′k′′∥(Y ⋆ − Y )Vk′×Vk′′ ∥1

≥
r∑

k=1

(pk − q − µkk − µoff) ∥(Y ⋆ − Y )Ck
∥1

where we use the fact that
∑

k′ ̸=k′′ ∥(Y ⋆ − Y )Vk′×Vk′′
∥1 =

∑r
k=1 ∥(Y ⋆ − Y )Ck

∥1 . Finally, the

conditions of theorem guarantee the nonnegativity of the right hand side, hence the optimality of Y ⋆

as the solution to the convex recovery program in (2.4).

A.3 Proof of Theorem 2

We use a different result than Lemma 7, which we state below.

Lemma 9 (Corollary 3.12 in [7]) Let X be an n×n symmetric matrix whose entries Xij are inde-

pendent symmetric random variables. Then there exists for any 0 < ϵ ≤ 1
2 a universal constant cϵ

such that for every t ≥ 0
∥X∥ ≤ 2(1 + ϵ)σ̃ + t ,

with probability at least 1− n exp( −t2

cϵσ̃2
⋆
) , where

σ̃ = max
i

√∑

j

E[X2
ij ] , σ̃⋆ = max

i,j
∥Xij∥∞ .

We specialize Lemma 9 to HSBM to get the following result.

Lemma 10 Let A be generated according to the heterogenous stochastic block model (HSBM).
Then there exists for any 0 < ϵ ≤ 1

2 a universal constant cϵ such that

∥A− E(A)∥ ≤ 4(1 + ϵ)max{σmax,σ0}+
√
2cϵ logn (A.10)

with probability at least 1− n−1 .

We can now present the proof for Theorem 2.

Proof. The proof follows the same lines as the proof of Theorem 1. Given the similarities between
the proofs, we will only describe here the differences between the tools employed, and how they

5



affect the conditions in Theorem 2. The proof proceeds identically as before, up to the definition of
λ, which–since we use Lemma 10 rather than 7–becomes

λ := C2 max{σmax, σ0,
√
logn} , (A.11)

where C2 was chosen as a good upper bounding constant for Lemma 10.

The other two small changes come from the fact that we will need to make sure that the failure
probabilities for the quantities µkk and µk′k′′ are polynomial in 1/n, which leads to the replacement
of lognk in either of them by a logn. The rest of the proof proceeds exactly in the same way.

B Proofs for Recoverability and Non-recoverability

We use the same notation as in the main paper and in Appendix A.1.

B.1 Proofs for Recoverability

Proof. [of Theorem 3] For ∆(Y ) := ⟨A, Y ⋆ − Y ⟩ , we have to show that for any feasible Y ̸= Y ⋆ ,
we have ∆(Y ) > 0 . For simplicity we assume Yii = Y ⋆

ii = 0 for all i ∈ {1, . . . , n} . Consider an
splitting as

∆(Y ) = ⟨A, Y ⋆ − Y ⟩ = ⟨E(A), Y ⋆ − Y ⟩+ ⟨A− E(A), Y ⋆ − Y ⟩ . (B.1)

Notice that Y ⋆ =
∑r

k=1 1Ck
and E(A) = q11T +

∑r
k=1(pk − q)1Ck

. Considering dk(Y ) =
⟨Y ⋆

Ck
, Y ⋆ − Y ⟩ , the number of entries on Ck on which Y and Y ⋆ do not match, we get

⟨E(A), Y ⋆ − Y ⟩ =
r∑

k=1

(pk − q)dk(Y ) (B.2)

where we used the fact that Y, Y ⋆ ∈ Y and have the same number of ones and zeros, hence∑
i,j Yij =

∑
i,j Y

⋆
ij . On the other hand, the second term in (B.1) can be represented as

T (Y ) := ⟨A− E(A), Y ⋆ − Y ⟩ =
∑

Y ⋆
ij=1,Yij=0

(A− E(A))ij +
∑

Y ⋆
ij=0,Yij=1

(E(A)−A)ij

where each term is a centered Bernoulli random variable bounded by 1 . Observe that the total
variance for all the summands in the above is given by

σ2 =
r∑

k=1

dk(Y )pk(1 − pk) + q(1− q)
r∑

k=1

dk(Y ) .

Then, combining (B.1) and (B.2), and applying the Bernstein inequality yields

P(∆(Y ) ≤ 0) = P

(
T (Y ) ≤ −

∑

k

(pk − q)dk(Y )

)
≤ exp

(
−

t2

2σ2 + 2t/3

)
= exp

(
−

∑
k(pk − q)dk(Y )

2ν(Y ) + 2/3

)

where t =
∑

k(pk − q)dk(Y ) and

ν(Y ) =
σ2

t

=

∑r
k=1(pk(1 − pk) + q(1− q))dk(Y )∑

k(pk − q)dk(Y )

≤ max
k

pk(1− pk) + q(1− q)

pk − q

=
pmin(1− pmin) + q(1− q)

pmin − q
:= ν̄0 .

Considering ν̄ := 2ν̄0 + 2/3 and θk := ⌊ pk−q
pmin−q ⌋ , we get

P(∆(Y ) ≤ 0) ≤ exp

(
− 1

ν̄

∑

k

(pk − q)dk(Y )

)
≤ exp

(
− 1

ν̄ (pmin − q)
∑

k

θkdk(Y )

)
(B.3)

which can be bounded using the next lemma which is a direct extension of Lemma 4 in [15].
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Lemma 11 Given the values of θk and nk , for k = 1, . . . , r, and for each integer value ξ ∈
[min θk(2nk − 1),

∑
k θkn

2
k] , we have

∣∣{[Y ] ⊂ Y :
r∑

k=1

θkdk(Y ) = ξ}
∣∣ ≤

(
5ξ

τ

)2

n16ξ/τ (B.4)

where τ := mink θknk , and [Y ] = {Y ′ ∈ Y : Y ′
ijY

⋆
ij = YijY ⋆

ij} .

Now plugging in the result of Lemma 11 into (B.3) yields,

P

(
∃Y ∈ Y : Y ̸= Y ⋆,∆(Y ) ≤ 0

)
≤

∑

ξ

P
(
∃Y ∈ Y :

∑

k

θkdk(Y ) = ξ , ∆(Y ) ≤ 0
)

≤ 2
∑

ξ

(
5ξ

τ

)2

n16ξ/τ exp

(
− 1

ν̄ (pmin − q)ξ

)

= 50
∑

ξ

(
ξ

τ

)2

exp

(
(16 logn− 1

ν̄ (pmin − q)τ)
ξ

τ

)

≤ 50
∑

ξ

(
ξ

τ

)2

exp

(
(16 logn− 1

2ν̄ ρmin)
ξ

τ

)
(B.5)

In order to have a meaningful bound for the above probability, we need the exponential term in
(B.5) to be decreasing. Hence, we require ρmin ≥ 64ν̄ logn . Moreover, the function in (B.5) is a
decreasing function of ξ/τ for

ξ

τ
≥

4ν̄

ρmin − 32ν̄ logn
. (B.6)

Since ξ ≥ min θk(2nk − 1) ≥ min θknk = τ , requiring the following condition (for some η > 0
which will be determined later),

ρmin ≥ 2(16 + η)ν̄ logn+ 4ν̄ , (B.7)

implies
ξ

τ
≥ 1 ≥

4

4 + 2η log n
≥

4ν̄

ρmin − 32ν̄ logn

and allows us to bound the summation in (B.5) with the largest term (corresponding to the smallest
value of ξ/τ , or an even smaller value, namely 1) times the number of summands (which is bounded
by

∑
θkn2

k since θk’s are integers); i.e.,

(B.5) ≤ 50 (
∑

θkn
2
k) exp

(
16 logn− 1

2ν̄ ρmin

)
(B.8)

≤ 50
∑

θkn
2
k exp(−2− η logn) (B.9)

≤ 7 θmaxn
2−η (B.10)

≤ 7 pmax−q
pmin−q n

2−η , (B.11)

or, similarly,

(B.5) ≤ 50
∑

θkn
2
k exp(−2− η logn) ≤ 7

∑r
k=1 ρk

pmin − q
n1−η . (B.12)

Hence, if the condition in (B.7) holds we get the optimality of Y ⋆ with a probability at least equal
to the above. Finally, n ≥ 8 implies logn ≥ 2 and (B.7) follows from

ρmin ≥ 4(17 + η)

(
1

3
+

pmin(1− pmin) + q(1− q)

pmin − q

)
logn .
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Proof. [of Lemma 11] We extend the proof of Lemma 4 in [15] to our case. Fix a Y ∈ Y with∑r
k=1 θkdk(Y ) = ξ and consider the corresponding r clusters as well as the set of isolated nodes.

Notice that for any Y ′ ∈ [Y ] we also have
∑r

k=1 θkdk(Y
′) = ξ . In the following, we will construct

an ordering for the clusters of Y based on Y ⋆ . Denote the clusters of Y ⋆ by V ⋆
1 , . . . , V

⋆
r , and V ⋆

r+1 .

Consider the set of values of cluster sizes {n1, . . . , nr} = {η1, . . . , ηs} where η1, . . . , ηs are distinct,
and define Iℓ = {k : nk = ηℓ} ⊂ {1, . . . , r} for ℓ = 1, . . . , s . For any ℓ with |Iℓ| = 1, the cluster
in Y ∈ Y of size ηℓ can be uniquely assigned to a cluster among V ⋆

1 , . . . , V
⋆
r of similar size. We now

define an ordering for the remaining clusters. Consider a ℓ with |Iℓ| > 1, and restrict the attention to
clusters V of size ηℓ and clusters V ⋆

k for k ∈ I (all clusters in Y ⋆ of size ηℓ). This is similar to the
case in [15] where all sizes are equal: For each new cluster V of size ηℓ, if there exists a k ∈ Iℓ such
that |V ∩ V ⋆

k | >
1
2ηℓ then we label this cluster as Vk ; this label is unique. The remaining unlabeled

clusters are labeled arbitrarily by a number in Iℓ .

Hence, we labeled all the clusters of Y according to the clusters of Y ⋆ . For each (k, k′) ∈
{1, . . . , r} × {1, . . . , r + 1}, we use αkk′ := |V ⋆

k ∩ Vk′ | to denote the sizes of intersections of
clusters of Y and Y ⋆ . We observe that the new clusters (V1, . . . , Vr+1) have the following proper-
ties:

(A1) (V1, . . . , Vr+1) is a partition of {1, . . . , n} with |Vk| = nk for all k = 1, . . . , r ; since Y ∈ Y .

(A2) For ℓ ∈ {1, . . . , s} with |Iℓ| = 1 , we have αkk = nk for the index k ∈ Iℓ .

(A3) For ℓ ∈ {1, . . . , s} with |Iℓ| > 1 , consider any k ∈ Iℓ . Then, exactly one of the following is
true: (1) αkk > 1

2nk; (2) αkk′ ≤ 1
2nk for all k′ ∈ Iℓ .

(A4) For dk(Y ) = ⟨Y ⋆
Ck
, Y ⋆ − Y ⟩ , where k = 1 . . . , r , we have

dk(Y ) = |{(i, j) : (i, j) ∈ C⋆
k , Yij = 0}|

= |{(i, j) : (i, j) ∈ C⋆
k , i, j ∈ Vr+1}|

+
∑

k′ ̸=k′′

|{(i, j) : (i, j) ∈ C⋆
k , (i, j) ∈ Vk′ × Vk′′}|

= α2
k(r+1) +

∑

k′ ̸=k′′

αkk′αkk′′ ,

which implies

ξ =
r∑

k=1

θkdk(Y ) =
r∑

k=1

θkα
2
k(r+1) +

r∑

k=1

∑

k′ ̸=k′′

θkαkk′αkk′′ .

Unless specified otherwise, all the summations involving k′ or k′′ are over the range 1, . . . , r+
1 .

We showed that the ordered partition for a Y ∈ Y with
∑r

k=1 θkdk(Y ) = ξ satisfies the above
properties. Therefore,

|{[Y ] ∈ Y :
r∑

k=1

θkdk(Y ) = ξ}| ≤ |{(V1, . . . , Vr+1) satisfying the above conditions}| .

Next, we upper bound the right hand side of the above.

Fix an ordered clustering (V1, . . . , Vr+1) which satisfies the above conditions. Define,

m1 :=
∑

k′ ̸=1

α1k′

as the number of nodes in V ⋆
1 that are misclassified by Y ; hence m1 + α11 = n1 . Consider the

following two cases:

• if α11 > n1/4 we have
∑

k′ ̸=k′′

α1k′α1k′′ ≥ α11

∑

k′′ ̸=1

α1k′′ > 1
4n1m1
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• if α11 ≤ n1/4 we have m1 ≥ 3n1/4 , which from the aforementioned properties, we must
have α1k′ ≤ n1/2 for all k′ = 1, . . . , r . Then,

∑

k′ ̸=k′′

α1k′α1k′′+α2
1(r+1) ≥

∑

1̸=k′ ̸=k′′ ̸=1

α1k′α1k′′+α2
1(r+1) = m2

1−
r∑

k′=2

α2
1k′ ≥ m2

1− 1
2n1m1 ≥ 1

4n1m1

Therefore,

d1(Y ) =
∑

k′ ̸=k′′

α1k′α1k′′ + α2
1(r+1) ≥ 1

4n1m1

which holds for all other indices k ̸= 1 as well. This yields

ξ ≥ 1
4

r∑

k=1

θknkmk ≥ 1
4 (min

k
θknk)

r∑

k=1

mk =⇒ w̄ :=
r∑

k=1

mk ≤
4ξ

mink θknk
:= M

where w̄ is the number of misclassified non-isolated nodes. Since one misclassified isolated node
produces one misclassified non-isolated node, we have w0 ≤ w̄ ≤ M where w0 is the number of
misclassified isolated nodes.

• The pair of numbers (w̄, w0) can take at most (M + 1)2 different values.

• For each such pair of numbers, there are at most n̄2M ways to choose the identity of the
misclassified nodes.

• Each misclassified non-isolated node can be assigned to one of r− 1 ≤ n̄ different clusters
or be left isolated, and each misclassified isolated node can be assigned to one of r ≤ n̄
clusters.

All in all,

|{[Y ] ∈ Y :
r∑

k=1

θkdk(Y ) = ξ}| ≤ (M + 1)2n̄4M

=

(
4ξ

mink θknk
+ 1

)2

exp

(
16ξ

mink θknk
log n̄

)

≤
(

5ξ

mink θknk

)2

exp

(
16ξ

mink θknk
log n̄

)
.

B.2 Proofs for impossibility of recovery

We prove a more comprehensive version of Theorem 4.

Theorem 12 If any of the following conditions holds,

(1) 2 ≤ nk ≤ n/e , and

4
r∑

k=1

n2
kD̃(pk, q) ≤ 1

2

∑

k

nk log
n
nk

− r − 2 (B.13)

(2) 2 ≤ nk ≤ n/e , and

1
2r + log 1−pmin

1−pmax
+ 1 +

∑

k

n2
kpk ≤ (14n−

∑
n2
kpk) logn+

∑
(nkpk − 1

4 )nk lognk

(B.14)

(3) n ≥ 128 , r ≥ 2 and

max
k

nk

(
D̃(pk, q) + D̃(q, pk)

)
≤ 1

12 log(n− nmin) (B.15)
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then

inf
Ŷ

sup
Y ⋆∈Y

P[Ŷ ̸= Y ⋆] ≥
1

2

where the infimum is taken over all measurable estimators Ŷ based on the realization A generated
according to the heterogenous stochastic block model.

Proof. [of cases 1 and 2 of Theorem 12] Let P(Y ⋆,A) be the joint distribution of Y ⋆ and A, where
Y ⋆ is sampled uniformly from Y and A is generated according to the heterogenous stochastic block
model conditioning on Y ⋆. Note that

inf
Ŷ

sup
Y ⋆∈Y

P[Ŷ ̸= Y ⋆] ≥ inf
Ŷ

P(Y ⋆,A)[Ŷ ̸= Y ⋆] .

By Fano’s inequality we have,

P(Y ⋆,A)[Ŷ ̸= Y ⋆] ≥ 1−
I(Y ⋆;A) + 1

log |Y|
, (B.16)

where I(X ;Z) is the mutual information, and H(X) is the Shannon entropy for X . By counting

argument we find that |Y| =
(n
n̄

)
n̄!

n1!...nr !
. Using

√
n(n/e)n ≤ n! ≤ e

√
n(n/e)n and

(n
n̄

)
≥ (n/n̄)n̄,

it follows that

|Y| ≥
nn̄

√
n̄

er
√
n1 . . . nrn

n1

1 . . . nnr
r

which gives

log |Y| ≥
r∑

i=1

ni

(
log

n

ni
−

logni

2ni

)
− r ≥

1

2

r∑

i=1

ni log
n

ni
− r .

On the other hand, note that H(A) ≤
(
n
2

)
H(A12) by chain rule, the fact that H(X |Y ) ≤ H(X), and

the symmetry among identically distributed Aij ’s. Furthermore Aij ’s are conditionally independent

and hence H(A|Y ⋆) =
(n
2

)
H(A12|Y ⋆

12). Now it follows that

I(Y ⋆;A) = H(A)−H(A|Y ⋆) ≤
(
n

2

)
I(Y ⋆

12;A12).

Observe that

P(Y ⋆
12 = 1, (1, 2) ∈ Ci) =

( n−2
ni−2

)( n−ni

n1,...,ni−1,ni+1,...,nr ,n0

)

|Y|
=

ni(ni − 1)

n(n− 1)
:= αi .

Using the properties of KL-divergence, we have P(A12 = 1) =
∑r

i=1 αipi + (1 −
∑

i αi)q := β .
Therefore,

I(Y ⋆
12, A12) =

r∑

i=1

αiDKL(pi,β) + (1−
∑

i

αi)DKL(q,β)

= H(β)−
∑

αiH(pi)− (1−
∑

αi)H(q)

(B.17)

Since I(Y ⋆;A) ≤
(
n
2

)
I(Y ⋆

12;A12), plugging in the following condition in Fano’s inequality (B.16),

(
1
2

∑

i

ni log
n

ni
− r

)
≥ 2 + 2

(
n

2

)
I(Y ⋆

12;A12) , (B.18)

guarantees P(Y ⋆,A)(Ŷ ̸= Y ⋆) ≥ 1
2 . In the following, we bound I(Y ⋆

12;A12) in two different ways
to derive conditions 1 and 2 of Theorem 12. Throughout the proof we use the following inequality
from [15] for the Kullback-Leibler divergence of Bernoulli variables,

DKL(p, q) := DKL(Ber(p),Ber(q)) = p log
p

q
+ (1− p) log

1− p

1− q
≤

(p− q)2

q(1− q)
, (B.19)

where the inequality is established by log x ≤ x− 1 , for any x ≥ 0 .
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• From (B.17), we have

I(Y ⋆
12, A12) ≤

r∑

i=1

4αi(pi − q)2

q(1− q)
≤

4
∑r

i=1 n
2
i (pi − q)2

n(n− 1)q(1− q)
(B.20)

where we assumed
∑

n2
i ≤ 1

2n
2 . Now, the right hand side of B.18 can be bounded as

2

(
n

2

)
I(Y ⋆

12;A12) ≤
4
∑r

i=1 n
2
i (pi − q)2

q(1− q)
= 4

r∑

i=1

n2
i D̃(pi, q)

and gives the sufficient condition 1 of Theorem 12.

• Again from (B.17), we have

I(Y ⋆
12;A12) =

∑

i

αi

(
pi log

pi
β

+
(
1− pi

)
log

1− pi
1− β

)
+
(
1−

∑

i

αi

)
DKL(q,β)

≤
∑

αipi log
1

αi
+ log c+

(
1−

∑

i

αi

) (q − β)2

β(1 − β)

where the first term is bounded via β ≥
∑

i αipi ≥ αipi , the second term is bounded via
β ≤ pmax and c = (1 − pmin)/(1− pmax) , and we used (B.19) for the last term. Since
1− β = 1− q −

∑
i αi(pi − q) ≥ (1 −

∑
i αi)(1 − q) , the last term can be bounded as

(
1−

∑

i

αi

) (q − β)2

β(1 − β)
≤

(
1−

∑

i

αi

)
(∑

i αi(pi − q)
)2

(∑
i αipi

)(
1−

∑
i αi

)
(1− q)

≤
∑

i

αi(pi − q) ≤
∑

i

αipi .

This implies

I(Y ⋆
12;A12) ≤

∑

i

αipi log
1
αi

+
∑

i

αipi + log c ≤
∑

i

αipi log
e
αi

+ log c. (B.21)

Since ni ≥ 2, αi =
ni(ni−1)
n(n−1) ≥ n2

i

en2 . Hence

2

(
n

2

)
I(Y ⋆

12;A12) ≤ n(n− 1)
∑

i

ni(ni − 1)

n(n− 1)
pi log

e2n2

n2
i

+ 2 log c ≤ 2
∑

i

n2
i pi log

en

ni
+ 2 log c

which gives the sufficient condition 2 of Theorem 12.

Proof. [of case 3 in Theorem 12] Without loss of generality assume n1 ≤ n2 ≤ . . . ≤ nr . Let
M := n̄− nmin = n̄ − n1 , and Ȳ := {Y0, Y1, . . . , YM} . Y0 is the clustering matrix with clusters

{Cℓ}rℓ=1 that correspond to V1 = {1, . . . , n1} , Vℓ = {
∑ℓ−1

i=1 ni+1, . . . ,
∑ℓ

i=1 ni} for ℓ = 2, . . . , r .

Other members of Ȳ are given by swapping an element of ∪r
ℓ=2Vℓ with an element of V1 . Let Pi

be the distributional law of the graph A conditioned on Y ⋆ = Yi . Since Pi is product of 1
2n(n− 1)

Bernoulli random variables, we have

I(Y ⋆;A) = EY [DKL (P(A|Y ),P(A))]

= 1
M+1

M∑

i=0

DKL

(
Pi, 1

M+1

M∑

j=0

Pj

)

≤ 1
(M+1)2

M∑

i,j=0

DKL(Pi,Pj)

≤ max
i,j=0,...,M

DKL(Pi,Pj)

≤ max
i1,i2,i3=1,...,r

3∑

j=1

(
nij (pij − q)2

q(1− q)
+

nij (pij − q)2

pij (1− pij )

)

≤ 3 max
i=1,...,r

(
ni(pi − q)2

q(1− q)
+

ni(pi − q)2

pi(1− pi)

)

(B.22)
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where the third line follows from the convexity of KL-divergence, and the line before the last follows
from the construction of Ȳ and (B.19). Now if the condition of the theorem holds, then I(Y ⋆;A) ≤
1
4 log(n−nmin) =

1
4 log |Ȳ|. Note that for n ≥ 128 we get log |Ȳ| = log(n−nmin) ≥ log(n/2) ≥

4 . The conclusion follows by Fano’s inequality in (B.16) restricting the supremum to be taken over
Ȳ .

C Recovery by a Simple Counting Algorithm

In Section 2.1, we considered a tractable approach for exact recovery of (partially) observed models
generated according to the heterogenous stochastic block model. However, in the interest of com-
putational effort, one can further characterize a subset of models that are recoverable via a much
simpler method than the convex program. The following algorithm is a proposal to do so. Moreover,
the next theorem provides a characterization for models for which this simple thresholding algorithm
is effective for exact recovery. Here, we allow for isolated nodes as described in Section 2.

Algorithm 1 SIMPLE THRESHOLDING ALGORITHM

1: (Find isolated notes) For each node v, compute its degree dv. Declare i as isolated if

dv < min
k

(nk − 1)(pk − q)

2
+ (n− 1)q.

2: (Find all communities) For every pair of nodes (v, u), compute the number of common neigh-
bors Svu :=

∑
w ̸=v,u AvwAuw. Declare v, u as in the same community if

Svu > nq2 +
1

2

(
min
k

(
(nk − 2)p2k − nkq

2
)
+ q ·max

i̸=j
(ρk − pk + ρl − pl)

)

where ρk = nk(pk − q) .

Theorem 13 Under the stochastic block model, with probability at least 1−2n−1, the simple count-
ing algorithm 1 find the isolated nodes provided

min
k

(nk − 1)2(pk − q)2 ≥ 19(1− q)

(
max

k
nkpk + nq

)
logn . (C.1)

Furthermore the algorithm finds the cluster if

[
min
k

{
(nk − 2)p2k + (n− nk)q

2
}
− q max

k ̸=l
{(nk − 1)pk + (nl − 1)pl + (n− nk − nl)q}

]2

≥ 26(1− q2)

(
max

k
nkp

2
k + nq2

)
logn ,

(C.2)
while the term inside the bracket (which is squared) is assumed to be non-negative.

We remark that the following is a slightly more restrictive condition than (C.2)

[
min
k

nk(p
2
k − q2)− 2qρmax

]2
≥ 26(1− q2)

[
nq2 +max

k
nkp

2
k

]
logn . (C.3)

with better interpretability.

Proof. [of Theorem 13] For node v, let dv denote its degree. Let V̄ = ∪r
i=1Vi denote the set

of nodes which belong to one of the clusters, and V0 be isolated nodes. If v ∈ Vi for some i =
1, . . . , r , then dv is distributed as a sum of independent binomial random variables Bin(ni − 1, pi)
and Bin(n− ni, q) . If v ∈ V0 , then dv is distributed as Bin(n− 1, q) . Hence we have,

E[dv] =

{
(ni − 1)pi + (n− ni)q v ∈ Vi ⊂ V̄
(n− 1)q v ∈ V0 ,

12



and

Var[dv] =

{
(ni − 1)pi(1 − pi) + (n− ni)q(1− q) v ∈ Vi ⊂ V̄
(n− 1)q(1− q) v ∈ V0 .

Let κ2
0 := maxi nipi(1− q) + nq(1− q), and t = mini

(ni−1)(pi−q)
2 ≤ κ2

0

2 . Then Var[dv] ≤ κ2
0 for

any v ∈ V0 ∪ V̄ . By Bernstein’s inequality we get

P
[
|dv − E[dv]| > t

]
≤ 2 exp

(
−

t2

2κ2
0 + 2t/3

)
≤ 2 exp

(
−

3mini(ni − 1)2(pi − q)2

28κ2
0

)
≤ 2n−2,

(C.4)
where the last inequality follows from the condition (C.1). Now by union bound over all nodes, with
probability at least 1− 2n−1, for node v ∈ Vi ⊂ V̄ we have,

dv ≥ (ni − 1)pi + (n− ni)q − t > min
i

(ni − 1)(pi − q)

2
+ (n− 1)q , (C.5)

and for node v ∈ V0 ,

dv ≤ (n− 1)q(1 − q) + t < min
i

(ni − 1)(pi − q)

2
+ (n− 1)q . (C.6)

This proves the first statement of the theorem, and all the isolated nodes are correctly identified. For
the second statement, let Svu denote the common neighbor for nodes v, u ∈ V̄ . Then

Svu ∼d

{
Bin(ni − 2, p2i ) + Bin(n− ni, q2) (v, u) ∈ Vi × Vi

Bin(ni − 1, piq) + Bin(nj − 1, pjq) + Bin(n− ni − nj , q2) (v, u) ∈ Vi × Vj , i ̸= j

where ∼d denotes equality in distribution and + denotes the summation of independent random
variables. Hence

E[Svu] =

{
(ni − 2)p2i + (n− ni)q2 (v, u) ∈ Vi × Vi

(ni − 1)piq + (nj − 1)pjq + (n− ni − nj)q2 (v, u) ∈ Vi × Vj , i ̸= j

and

Var[Svu] =

⎧
⎨

⎩

(ni − 2)p2i (1− p2i ) + (n− ni)q2(1 − q2) (v, u) ∈ Vi × Vi

(ni − 1)piq(1− piq) + (nj − 1)pjq(1− pjq)
+(n− ni − nj)q2(1 − q2) (v, u) ∈ Vi × Vj , i ̸= j

Let

∆ = min
i

(
(ni − 2)p2i + (n− ni)q

2
)
−max

j

(
2(nj − 1)pjq + (n− 2nj)q

2
)

= min
i

(
(ni − 2)p2i − niq

2
)
−max

j

(
2(nj − 1)pjq − 2njq

2
)
,

Let κ2
1 := 2maxi nip2i (1− q2) + nq2(1− q2). Then Var[Svu] ≤ κ2

1 for all v, u . Then ∆ ≤ κ2
1/2 .

Bernstein’s inequality with t = ∆/2 yields

P
[
|Svu − E[Svu]| > t

]
≤ 2 exp

(
−

t2

2κ2
1 + 2t/3

)
≤ 2 exp

(
−

3∆2

26κ2
1

)
≤ 2n−3, (C.7)

where the last line follows from assumption (C.2). By union bound over all pair of nodes (v, u),
we get with probability at least 1 − 2n−1, Svu > Γ for all v, u in the same cluster and Svu < Γ
otherwise. Here

Γ :=
1

2

(
min
i

(
(ni − 2)p2i +(n−ni)q

2
)
+max

i̸=j

(
(ni − 1)piq+(nj − 1)pjq+(n−ni −nj)q

2
))

.
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D Detailed Computations for Examples in Section 3

In the following, we present the detailed computations for the examples in Section 3 and summarized
in Table 1. When there is no impact on the final result, quantities are approximated as denoted by
≈ .

First, we repeat the conditions of Theorems 1 and 2. The conditions of Theorem 1 can be equiva-
lently stated as

• ρ2k ! nkpk(1− pk) lognk = σ2
k lognk

• (pmin − q)2 ! q(1− q) log nmin

nmin

• ρ2min ! max {logn, nq(1− q),maxk nkpk(1− pk)}
•
∑r

k=1 n
−α
k = o(1) for some α > 0 .

Notice that nkpk(1−pk) ! lognk , for k = 1, . . . , r , is implied by the first condition, as mentioned
in Remark 1. The conditions of Theorem 2 can be equivalently stated as

• ρ2k ! nkpk(1− pk) logn

• (pmin − q)2 ! q(1− q) log n
nmin

• ρ2min ! max {nq(1− q),maxk nkpk(1− pk)}.

Remark 2 Provided that both pk and q/pk are bounded away from 1 , we have

D̃(q, pk) = pk
(1− q/pk)2

1− pk
≈ pk ,

ρ2k
σ2
k

=
(1− q/pk)2

1− pk
nkpk ≈ nkpk . (D.1)

This simplifies the first condition of Theorem 1 to a simple connectivity requirement. Hence, we can
rewrite the conditions of Theorems 1, 2 as

1 : nkpk ! lognk , D̃(pmin, q) !
log nmin

nmin
, ρ2min ! max

{
σ2
max, nq(1 − q), logn

}
,

r∑

k=1

n−α
k = o(1) for some α > 0

2 : nkpk ! logn , D̃(pmin, q) !
logn
nmin

, ρ2min ! max
{
σ2
max, nq(1− q)

}
.

Example 1: In a configuration with two communities (n−
√
n, n−2/3, 1) and (

√
n, 1

logn , 1) with

q = n−2/3−0.01 , we have nmin =
√
n and pmin = n−2/3 . We have,

D̃(pmin, q) ≈ n−2/3+0.01

which does not exceed either lognmin

nmin
≈ logn√

n
or log n

nmin
≈ logn√

n
, and we get no recovery guarantee

from Theorems 1 and 2 respectively. However, as pmin − q is not much smaller than q , while
ρmin ≈ n1/3 grows much faster than logn , the condition of Theorem 3 trivially holds.

Here are the related quantities for this configuration:

ρ1 = n1(p1−q) = (n−
√
n)(n−2/3−n−2/3−0.01) ≈ n1/3 , ρ2 = n2(p2−q) =

√
n( 1

logn−n−2/3−0.01) ≈
√
n

logn

which gives ρmin ≈ n1/3 . Furthermore,

σ2
1 = n1p1(1− p1) ≈ n1/3 , σ2

2 = n2p2(1 − p2) =
√
n

logn ,

which gives σmax =
√
n

logn . On the other hand nq(1− q) ≈ n1/3−0.01 which is smaller than σ2
max .

Example 2: Consider a configurations with (n − n2/3, n−1/3+ϵ, 1) and (
√
n, c

logn , n
1/6) and

q = n−2/3+3ϵ . Since all pk’s and q/pk’s are much less than 1 , the first condition of both Theorems

1 and 2 can be verified by Remark 2. Moreover, nmin =
√
n and pmin = n−1/3+ϵ which gives

D̃(pmin, q) = n−ϵ
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and verifies D̃(pmin, q) ! lognmin

nmin
for 1, as well as D̃(pmin, q) ! logn

nmin
for 2. Moreover, ρ1 ≈

n2/3+ϵ and ρ2 ≈
√
n

logn which gives ρmin ≈
√
n

logn !
√
logn . On the other hand, σ2

1 ≈ n2/3+ϵ and

σ2
2 ≈

√
n/ logn which gives

max{σ2
max , nq(1− q)} ≈ n2/3+ϵ .

Thus all conditions of Theorems 1 and 2 are satisfied. Moreover, as pmin − q is not much smaller

than q , while ρmin ≈
√
n

logn is growing much faster than logn , the condition of Theorem 3 trivially

holds.

Example 3: Consider a configurations with (
√
logn, O(1), m) and (n2, O( log n√

n
),
√
n) and q =

O(log n/n) , where n2 =
√
n −m

√
log n/n . Here, we assume m ≤ n/(2

√
logn) which implies

n2 ≥
√
n/2 . Since all pk’s and q/pk’s are much less than 1 , we can use Remark 2: the first

condition of Theorem 1 holds as n1p1 ≈
√
log n ! logn1 ≈ log log n and n2p2 ≈ logn ! logn2 .

However, n1p1 ≈
√
logn ̸! logn and Theorem 2 does not offer a guarantee for this configuration.

Moreover, nmin =
√
logn and pmin = O( log n√

n
) which gives

D̃(pmin, q) = logn

and verifies D̃(pmin, q) !
lognmin

nmin
≈ log logn√

logn
for 1, as well as D̃(pmin, q) !

logn
nmin

=
√
logn for 2.

Moreover, σ2
1 =

√
logn (also ρ1) and σ2

2 = logn (also ρ2) which gives

max{σ2
max , nq(1− q)} ≈ logn

and ρ2min ≈ logn . For the last condition of Theorem 1 we need

m(log n)−α/2 +
√
n(
√
n− k

√
logn
n )−α = o(1)

for some α > 0 which can be guaranteed provided that m grows at most polylogarithmically in n .
All in all, we verified the conditions of Theorem 1 while the first condition of 2 fails. Observe that
ρmin fails the condition of Theorem 3.

Alternatively, consider a configuration with (
√
logn, O(1), m) and (

√
n, O( log n√

n
), m′) and q =

O( log n
n ) , where m′ =

√
n − m

√
logn/n to ensure a total of n vertices. Here, we assume m ≤

n/(2
√
logn) which implies m′ ≥

√
n/2 . Similarly, all conditions of Theorem 1 can be verified

provided that m grows at most polylogarithmically in n . Moreover, the conditions of Theorems 2
and 3 fail to satisfy.

Example 4: Consider a configuration with (12n
ϵ, O(1), n1−ϵ) and (12n, n

−α logn, 1) and q =
n−β logn , where 0 < α < β < 1 and 0 < ϵ < 1 .

We have ρ1 ≈ nϵ and ρ2 ≈ n1−α logn . Since ρ2min ! logn , the last condition of Theorem 1 holds,
and lognmin ≈ logn , we need to check for similar conditions to be able to use Theorems 1 and
2. Using Remark 2, the first condition of both Theorems holds because of n1p1 ≈ nϵ ! logn and
n2p2 ≈ n1−α logn ! logn . Moreover, the condition

D̃(pmin, q) ≈ nβ−2α logn ! logn
nmin

≈ logn
nϵ

is equivalent to β+ ϵ > 2α . Furthermore, σ2
1 = nϵ and σ2

2 = n1−α logn , and for the last condition
we need

min{n2ϵ , n2−2α log2 n} ! max{nϵ , n1−α logn , n1−β logn}
which is equivalent to 2ϵ+α > 1 and ϵ+2α < 2 . Notice that β+1 > 2α is automatically satisfied
when we have β + ϵ > 2α from the previous part.

Example 5: Consider a configuration with (log n, O(1), n
logn − m

√
n

log n ) and

(
√
n logn, O(

√
logn
n ), m) and q = O( log n

n ) . All of ρ1 , ρ2 , σ2
1 , σ2

2 , and nq(1 − q) , are
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approximately equal to logn . Thus, the first and third conditions of Theorems 1 and 2 are satisfied.
Moreover,

D̃(pmin, q) ≈ 1 ! lognmin

nmin
≈ log log n

logn

which establishes the conditions of Theorem 2. On the other hand, the last condition of Theorem 1
is not satisfied as one cannot find a constant value α > 0 for which

r∑

k=1

nα
k =

(
n

log n −m
√

n
logn

)
log−α n+m(n logn)−α/2

is o(1) while n grows.

Example 6: For the first configuration, Theorem 1 requires f2(n) ! max{ logn1

n1
, lognmin

nmin
, n

n2
1

}
while Theorem 2 requires f2(n) ! max{ logn1

n1
, logn

nmin
, n

n2
1

} and both require nmin !
√
n . There-

fore, both set of requirements can be written as

f2(n) ! max{ logn
nmin

, n
n2
1

} , nmin !
√
n .

E Statistical and Computational Regimes; A Literature Review

What we can infer about the community structure from a single draw of the random graph varies
based on the regime of model parameters. Often, the following community retrieval scenarios are
considered.

1. Recovery, where the proportion of misclassified nodes is negligible; either 0 or asymptotically 0
as the number of nodes grow, corresponding to the subregimes below.

1a) Exact Recovery (or Recovery with Strong Consistency). In this regime it is possible to re-
cover all labels, with high probability. That is, an algorithm has been proved to do so,
whether in polynomial time or not. For example, [15, 3] studied the exact recovery problem
for special cases of SBM.

1b) Almost Exact Recovery (or Recovery with Weak Consistency). In this case, algorithms exist
to recover a proportion 1− o(1) of the nodes, but not all of them. See [34] for early works
on weakly consistent recovery, [33] for the case of binary SBM, [40] for finite number of
linear-sized communities, and [41, 19] for a growing number of approximately same-sized
communities.

2. Approximation, where a finite fraction (bounded away from 1) of the vertices is recovered.

2a) Partial Recovery (or Approximation) Regime. Only a fraction of vertices, i.e. (1 − α)n for
some 0 < α < 1 , can be guaranteed to be recovered correctly. This regime was first intro-
duced in [16, 18]. A series of works have provided partial recovery conditions for the cases
of two equivalent communities [32, 26, 30, 31], finite number of linear-sized communities
[3], and heterogenous SBM [20, 24].

2b) Detectability. One may construct a partition of the graph which is correlated with the true
partition (which in this context means doing better than guessing), but one cannot guarantee
any kind of quantitative improvement over random guessing. This happens in very sparse
regimes when some pk’s and q are of the same, small, order; e.g. see [32, 4].

The levels of correct labeling in community detection described above can be studied from two
points of view:

Statistically, one can ask about the parameter regimes for which the model can be retrieved based
on one of the above objectives for retrieval (recovery or approximation).Such characterizations are
specially important when an information-theoretical lower bound (below which retrieval is not pos-
sible with high probability) is shown to be achievable with an algorithm (with high probability),
hence characterizing a phase transition in model parameters. Recently, there has been significant
interest in identifying such sharp thresholds for various parameter regimes; e.g. [3] for the exact
recoverability of a fixed number of linear-sized communities, [30, 26] (building upon [18, 32]) for
detectability in binary SBM, and [4, 8] for more than two equivalent communities.
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Computationally, one might be interested to study algorithms for recovery or approximation. In the
older approach, algorithms were studied to provide upper bounds on the parameter regimes for re-
covery or approximation. See [13] or [3, Section 5] for a summary of such results. More recently, the
paradigm has shifted towards understanding the limitations and strengths of tractable methods (e.g.
see [29] on semidefinite programming based methods) and assessing whether successful retrieval
can be achieved by tractable algorithms at the sharp statistical thresholds or there is a gap. So far, it
is understood that there is no such gap in the case of exact recovery of binary SBM (e.g. via spectral
methods in [33] or a partial recovery algorithm combined with a local improvement procedure in
[2]), almost exact recovery of binary SBM (e.g., via spectral methods in [33, 40]), approximation of
binary SBM (e.g., via weighted non-backtracking walks between vertices in [30] or counting self-
avoiding walks in [26]), and exact recovery of linear-sized communities in [3]. However, this is still
an open question for more general cases; e.g., see [4] and the list of unresolved conjectures therein.

As mentioned before, for SBM with only two equivalent communities, all of the above questions
have been addressed in a series of recent papers [18, 32, 30, 26, 31, 33, 2, 21]. Apart from the
binary SBM, the best understood cases are where there is a finite number r of equivalent or linear-
sized communities. As noted in [1], outside of the settings described above, the full picture has
not yet emerged; many questions are unresolved, and many of the existing results give bounds that
incorporate large or unknown constants.
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