
A Follow-the-Regularized-Leader (FTRL) Regret

Recall that the FTRL algorithm uses the strategy wt+1 = argminψt(w) +
∑t
t′=1 `t′(w), where the functions

ψt are called regularizers.
Theorem 4. FTRL with regularizers ψt and ψ0(w1) = 0 obtains regret:

Rt(u) ≤ ψT (u) +
T∑

t=1

ψt−1(wt+1)− ψt(wt+1) + `t(wt)− `t(wt+1) (3)

Further, if the losses are linear `t(w) = gt · w and ψt(w) = 1
ηt
ψ(w) for some values ηt and fixed function ψ,

then the regret is

Rt(u) ≤ 1

ηT
ψ(u) +

T∑

t=1

(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1) (4)

Proof. The first part follows from some algebraic manipulations:
T∑

t=1

`t(u) + ψT (u) ≥ ψT (wT+1) +

T∑

t=1

`t(wT+1)

−
T∑

t=1

`t(u) ≤ ψT (u)− ψT (wT+1)−
T∑

t=1

`t(wT+1)

RT (u) =

T∑

t=1

`t(wt)−
T∑

t=1

`t(u)

≤ ψT (u)− ψT (wT+1) +

T∑

t=1

`t(wt)− `t(wT+1)

= ψT (u)− ψT (wT+1) + `T (wT)− `T (wT+1) +RT−1(wT+1)

≤ ψT (u)− ψT (wT+1) + `T (wT)− `T (wT+1)+

+

T−1∑

t=1

ψt(wt+2)− ψt(wt+1) + `t(wt)− `t(wt+1)

= ψT (u) + `1(w1)− `1(w2)− ψ1(w2)

+

T∑

t=2

ψt−1(wt+1)− ψt(wt+1) + `t(wt)− `t(wt+1)

= ψT (u) +

T∑

t=1

ψt−1(wt+1)− ψt(wt+1) + `t(wt)− `t(wt+1)

where we’re assuming ψ0(w1) = 0 in the last step.

Now let’s specialize to the case of linear losses `t(w) = gt · w and regularizers of the form ψt(w) =
1
ηt
ψ(w)

for some fixed regularizer ψ and varying scalings ηt. Plugging this into the previous bound gives:

Rt(u) ≤ 1

ηT
ψ(u) +

T∑

t=1

(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1)

While this formulation of the regret of FTRL is sufficient for our needs, our analysis is not tight. We refer the
reader to [28] for a stronger FTRL bound that can improve constants in some analyses.

B Proof of Lemma 3

We start off by computing the FTRL updates with regularizers ψ(w)/ηt:

∇ψ(w) = log(‖w‖+ 1)
w

‖w‖

10

so that

wT+1 = argmin
1

ηT
ψ(w) +

T∑

t=1

gt · w

= − g1:t
‖g1:t‖

(exp(ηT ‖g1:T ‖)− 1)

Our goal will be to show that the terms
(

1
ηt−1

− 1
ηt

)
ψ(wt+1)+ gt · (wt−wt+1) in the sum in (4) are negative.

In particular, note that sequence of ηt is non-increasing so that
(

1
ηt−1

− 1
ηt

)
ψ(wt+1) ≤ 0 for all t. Thus our

strategy will be to bound gt · (wt − wt+1).

B.1 Reduction to one dimension

In order to bound
(

1
ηt−1

− 1
ηt

)
ψ(wt+1) + gt · (wt − wt+1), we first show that it suffices to consider the case

when gt and g1:t−1 are co-linear.

Theorem 5. Let W be a separable inner-product space and suppose (with mild abuse of notation) every loss
function `t :W → R has some subgradient gt ∈W ∗ such that gtw = 〈gt, w〉 for some gt ∈W . Suppose we
run an FTRL algorithm with regularizers 1

ηt
ψ(‖w‖) on loss functions `t such that wt+1 = g1:t

‖g1:t‖f(ηt‖g1:t‖)
for some function f for all t where ηt = c√

Mt+‖g‖21:t
for some constant c. Then for any gt with ‖gt‖ = L, both

(η−1
t−1 − η−1

t)ψ(‖wt+1‖) + gt(wt − wt+1) and gt(wt − wt+1) are maximized when gt is a scalar multiple of
g1:t−1.

Proof. The proof is an application of Lagrange multipliers. Our Lagrangian for (η−1
t−1 − η−1

t)ψ(‖wt+1‖) +
gt(wt − wt+1) is

L = (η−1
t−1 − η−1

t)ψ(‖wt+1‖) + gt(wt − wt+1) + λ‖gt‖2/2

= (η−1
t−1 − η−1

t)ψ(f(ηt‖g1:t‖)) + gt

(
wt − g1:t

‖g1:t‖
f(ηt‖g1:t‖)

)
+ λ
‖gt‖2
2

Fix a countable orthonormal basis of W . For a vector v ∈W we let vi be the projection of v along the ith basis
vector of our countable orthonormal basis. We denote the action of∇L on the ith basis vector by∇Li.
Then we have

∇Li = λgt,i + wt,i − wt+1,i − gt,i
‖g1:t‖

f(ηt‖g1:t‖)

+
∑

j

gt,j(g1:t)j
‖g1:t‖3

(g1:t)if(ηt‖g1:t‖)

−
∑

j

(g1:t)jgt,j
‖g1:t‖

f ′(ηt‖g1:t‖)


 (g1:t)iηt
‖g1:t‖

−
‖g1:t‖c

(
∂Mt
∂gt,i

+ 2gt,i
)

2(Mt + ‖g‖21:t)3/2




+ (η−1
t−1 − η−1

t)ψ′(f(ηt‖g1:t‖))f ′(ηt‖g1:t‖)


 (g1:t)iηt
‖g1:t‖

−
‖g1:t‖c

(
∂Mt
∂gt,i

+ 2gt,i
)

2(Mt + ‖g‖21:t)3/2




− ψ(f(ηt‖g1:t‖))
∂Mt
∂gt,i

+ 2gt,i

2c
√
Mt + ‖g‖21:t

= λgt,i + wt,i − wt+1,i +Agt,i +B(g1:t−1)i + C
∂Mt

∂gt,i

where A, B and C do not depend on i. Since wt,i and wt+1,i are scalar multiples of g1:t−1 and g1:t respectively,
we can reassign the variables A and B to write

∇Li = Agt,i +B(g1:t−1)i + C
∂Mt

∂gt,i

11

Now we compute

∂Mt

∂gt,i
=
∂max(Mt−1, ‖g1:t‖/p− ‖g‖21:t)

∂gt,i

=

{
0 :Mt =Mt−1
(g1:t)i
p‖g1:t‖ − 2gt,i :Mt 6=Mt−1

Thus after again reassigning the variables A and B we have
∇Li = Agt,i +B(g1:t−1)i

Therefore we can only have∇L = 0 if gt is a scalar multiple of g1:t−1 as desired.

For gt(wt − wt+1), we apply exactly the same argument. The Lagrangian is

L = gt(wt − wt+1) + λ‖gt‖2/2

= gt

(
wt − g1:t

‖g1:t‖
f(ηt‖g1:t‖)

)
+ λ
‖gt‖2
2

and differentiating we have

∇Li = λgt,i + wt,i − wt+1,i − gt,i
‖g1:t‖

f(ηt‖g1:t‖)

+
∑

j

gt,j(g1:t)j
‖g1:t‖3

(g1:t)if(ηt‖g1:t‖)

−
∑

j

(g1:t)jgt,j
‖g1:t‖

f ′(ηt‖g1:t‖)


 (g1:t)iηt
‖g1:t‖

−
‖g1:t‖c

(
∂Mt
∂gt,i

+ 2gt,i
)

2(Mt + ‖g‖21:t)3/2




= λgt,i + wt,i − wt+1,i +Agt,i +B(g1:t−1)i + C
∂Mt

∂gt,i

= Agt,i +B(g1:t−1)i

so that again we are done.

We make the following intuitive definition:
Definition 6. For any vector v ∈W , define sign(v) = v

‖v‖ .

In the next section, we prove bounds on the quantity (η−1
t−1 − η−1

t)ψ(‖wt+1‖) + gt(wt − wt+1). By Theorem
5 this quantity is maximized when sign(gt) = ±sign(g1:t−1) and so we consider only this case.

B.2 One dimensional FTRL

In this section we analyze the regret of our FTRL algorithm with the end-goal of proving Lemma 3. We make
heavy use of Theorem 5 to allow us to consider only the case sign(gt) = ±sign(g1:t−1). In this setting we may
identify the 1-dimensional space spanned by gt and g1:t−1 with R. Thus whenever we are operating under the
assumption sign(gt) = sign(g1:t−1) we will use | · | in place of ‖ · ‖ and occasionally assume g1:t−1 > 0 as
this holds WLOG. We feel that this notation and assumption aids intuition in visualizing the following results.
Lemma 7. Suppose sign(gt) = sign(g1:t−1). Then

|ηt−1‖g1:t−1‖ − ηt‖g1:t‖| ≤ ηt‖gt‖ (5)
Suppose instead that sign(gt) = −sign(g1:t−1) and also ‖gt‖ ≤ L. Then we still have:

|ηt−1‖g1:t−1‖ − ηt‖g1:t‖| ≤
(
1 +

pL

2

)
ηt‖gt‖ (6)

Proof. First, suppose sign(gt) = sign(g1:t−1). Then sign(g1:t) = sign(g1:t−1). WLOG, assume g1:t−1 > 0.
Notice that ηtg1:t is an increasing function of gt for gt > 0 because ηtg1:t is proportional to either g1:t or

√
g1:t

depending on whether Mt =Mt−1 or not. Then since ηt < ηt−1 we have
|ηt−1g1:t−1 − ηtg1:t| = ηtg1:t − ηt−1g1:t−1

≤ ηtg1:t − ηtg1:t−1

= ηt|gt|

12

so that (5) holds.

Now suppose sign(gt) = −sign(g1:t−1) and ‖gt‖ ≤ L. We consider two cases.

Case 1: ηt|g1:t| ≥ ηt−1|g1:t−1|:
Since ηt−1 ≥ ηt, we have

ηt|g1:t| ≥ ηt−1|g1:t−1|
ηt|g1:t| ≥ ηt|g1:t−1|
|g1:t| ≥ |g1:t−1|
|gt| ≥ |g1:t|

where the last line follows since sign(g1:t−1) = −sign(gt). Therefore:

|ηt−1|g1:t−1| − ηt|g1:t|| ≤ ηt|g1:t| ≤ ηt|gt|
so that we are done.

Case 2: ηt|g1:t| ≤ ηt−1|g1:t−1|:
When gt < −g1:t−1 and ηt|g1:t| ≤ ηt−1|g1:t−1|, |ηt−1|g1:t−1| − ηt|g1:t|| is a decreasing function of |gt|
because ηt|gt:1| is an increasing function of |gt| for gt < −g1:t−1. Therefore it suffices to consider the case
gt ≥ −g1:t−1, so that sign(g1:t) = sign(g1:t−1) and |g1:t| ≤ |g1:t−1|:
Since |g1:t| ≤ |g1:t−1|, we have Mt =Mt−1 so that we can write:

ηt−1g1:t−1 − ηtg1:t = −gtηt + g1:t−1(ηt−1 − ηt)

= |gt|ηt + g1:t−1


 1

k
√
2
√
Mt−1 + ‖g‖21:t−1

− 1

k
√
2
√
Mt + ‖g‖21:t−1 + g2t




= |gt|ηt + g1:t−1

k
√
2


 1√

Mt−1 + ‖g‖21:t−1

− 1√
Mt−1 + ‖g‖21:t−1 + g2t




≤ |gt|ηt + g1:t−1

k
√
2
√
Mt + ‖g‖21:t−1 + g2t




√
Mt−1 + ‖g‖21:t−1 + g2t
√
Mt−1 + ‖g‖21:t−1

− 1




≤ |gt|ηt + g1:t−1ηt

(
1 +

g2t
2(Mt−1 + ‖g‖21:t−1)

− 1

)

≤ |gt|ηt + ηt
g1:t−1g

2
t

2(Mt−1 + ‖g‖21:t−1)

≤ |gt|ηt(1 + pL

2
)

we have used the identity
√
X + g2t ≤

√
X +

g2t
2
√
X

between lines 4 and 5, and the last line follows because
|gt| ≤ L and Mt−1 + ‖g‖21:t−1 ≥ |g1:t−1|/p.

Lemma 8. If

‖wT ‖ ≥ exp

(√
pB

k
√
2

)
− 1

then
‖g1:T−1‖ ≥ B

Proof. First note that by definition of MT−1 and ηT−1, ηT−1‖g1:T−1‖ ≤
√
p‖g1:T−1‖
k
√

2
. The proof now follows

from some algebra:

exp

(√
pB

k
√
2

)
≤ ‖wT ‖+ 1

= exp(ηT−1‖g1:T−1‖)

≤ exp

(√
p‖g1:T−1‖
k
√
2

)

Taking squares of logs and rearranging now gives the desired inequality.

13

We have the following immediate corollary:

Corollary 9. Suppose sign(gt) = ±sign(g1:t−1), ‖gt‖ ≤ L, and

‖wt‖ ≥ exp

(√
pL

k
√
2

)
− 1

Then sign(g1:t) = sign(g1:t−1).

Now we begin analysis of the sum term in (4).

Lemma 10. Suppose sign(g1:t) = sign(g1:t−1) and |gt| ≤ L. Then

|wt − wt+1| ≤ |gt|ηt(|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
gtηt

(
1 +

pL

2

)]

Proof. Since sign(g1:t) = sign(g1:t−1), we have:

|wt − wt+1| = |sign(g1:t−1) [exp (ηt−1|g1:t−1|)− 1]− [sign(g1:t) exp (ηt|g1:t|)− 1]|
= |exp (ηt−1|g1:t−1|)− exp (ηt|g1:t|)|
= (|wt+1|+ 1) |exp (ηt−1|g1:t−1| − ηt|g1:t|)− 1|

where the last line uses the definition of wt+1 to observe that |wt+1|+ 1 = exp(ηt|g1:t|). Now we consider
two cases: either ηt−1|g1:t−1| < ηt|g1:t| or not.

Case 1: ηt−1|g1:t−1| < ηt|g1:t|:
By convexity of exp, we have

|wt − wt+1| ≤ (|wt+1|+ 1) |exp (ηt−1|g1:t−1| − ηt|g1:t|)− 1|
≤ (|wt+1|+ 1) |ηt−1|g1:t−1| − ηt|g1:t||

≤ (|wt+1|+ 1)

(
1 +

pL

2

)
ηt|gt|

so that the lemma holds.

Case 2: ηt−1|g1:t−1| ≥ ηt|g1:t|:
Again by convexity of exp we have

|wt − wt+1| ≤ (|wt+1|+ 1) |exp (ηt−1|g1:t−1| − ηt|g1:t|)− 1|
≤ (|wt+1|+ 1) |ηt−1|g1:t−1| − ηt|g1:t|| exp (ηt−1|g1:t−1| − ηt|g1:t|)

≤ (|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
ηt|gt|

(
1 +

pL

2

)]
ηt|gt|

so that the lemma still holds.

The next lemma is the main workhorse of our regret bounds:

Lemma 11. Suppose ‖gt‖ ≤ L and either of the following holds:

1. p ≤ 2
L

, k =
√
2, and ‖wt‖ ≥ 15.

2. k =
√
2, pL ≥ 1, and ‖wt‖ ≥ 4 exp(p2L2).

Then (
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt(wt − wt+1) ≤ 0 (7)

Further, inequality (7) holds for any k and sufficiently large L if ‖wt‖ ≥ exp((pL)2).

Proof. By Theorem 5 it suffices to consider the case sign(gt) = ±sign(g1:t−1), so that we may adopt our
identification with R and use of | · | throughout this proof.

For p ≤ 2
L

, k =
√
2 we have 15 > exp(

√
pL

k
√
2
)− 1 and for sufficiently large L, exp((pL)2) > exp(

√
pL

k
√
2
)− 1.

Therefore in all cases |wt| ≥ exp(
√
pL

k
√

2
)− 1 so that by Corollary 9 and Lemma 10 we have

gt · (wt − wt+1) ≤ ηtg2t (|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
ηtgt

(
1 +

pL

2

)]
(8)

14

First, we prove that (7) is guaranteed if the following holds:

|wt+1|+ 1 ≥ exp

[
1 + pL

2

k2
exp

(
ηtgt

(
1 +

pL

2

))
+ 1

]
(9)

The previous line (9) is equivalent to:

k2(log(|wt+1|+ 1)− 1) ≥
(
1 +

pL

2

)
exp

(
ηtgt

(
1 +

pL

2

))
(10)

Notice that ψ(wt+1) = (|wt+1|+ 1)(log(|wt+1|+ 1)− 1) + 1 ≥ (|wt+1|+ 1)(log(|wt+1|+ 1)− 1). Then
multiplying (10) by ηt|gt| we have

(|wt+1|+ 1)

(
1 +

pL

2

)
exp

[
ηt|gt|

(
1 +

pL

2

)]
ηt|gt| ≤ k2ηt|gt|ψ(wt+1) (11)

Combining (8) and (11), we see that (9) implies

gt · (wt − wt+1) ≤ k2ηtg2tψ(wt+1)

Now we bound
(

1
ηt−1

− 1
ηt

)
ψ(wt+1):

1

ηt−1
− 1

ηt
= k
√
2

(√
Mt−1 + ‖g‖21:t−1 −

√
Mt + ‖g‖21:t−1 + g2t

)

≤ k
√
2





√
Mt + ‖g‖21:t−1 + g2t −

g2t +Mt −Mt−1

2
√
Mt + ‖g‖21:t−1 + g2t


−

√
Mt + ‖g‖21:t−1 + g2t




≤ −k
√
2

g2t

2
√
Mt + ‖g‖21:t

= −k2ηtg2t

Thus when (9) holds we have
(

1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt(wt − wt+1) ≤ −k2ηtg2tψ(wt+1) + k2η2t g

2
tψ(wt+1) ≤ 0

Therefore our objective is to show that our conditions on wt imply the condition (9) on wt+1.

First, we bound ηtgt in terms of |wt|. Notice that

|wt|+ 1 = exp


 |g1:t−1|
k
√
2
√
Mt−1 + ‖g‖21:t−1




≤ exp

(√
p
√
|g1:t−1

k
√
2

)

2k2 log2(|wt|+ 1)

p
≤ |g1:t−1|

Using this we have:

ηtgt =
gt

k
√
2
√
Mt + ‖g‖21:t

≤ gt

k
√
2
√
Mt−1 + ‖g‖21:t−1 + g2t

≤ gt
√
p

k
√
2
√
|g1:t−1|+ pg2t

≤ L
√
p

k
√
2
√

2k2

p
log2(|wt|+ 1) + pL2

15

so that we can conclude:

ηtgt ≤ Lp

k
√
2
√

2k2 log2(|wt|+ 1) + p2L2
(12)

Further, by Lemma 7 we have

|wt|+ 1

|wt+1|+ 1
= exp(ηt−1|g1:t−1| − ηt|g1:t|)

≤ exp

[
ηtgt

(
1 +

pL

2

)]

Therefore we have

|wt+1|+ 1 ≥ (|wt|+ 1) exp

[
−ηtgt

(
1 +

pL

2

)]
(13)

From (13), we see that (9) is guaranteed if we have

|wt|+ 1 ≥ exp

[
ηtgt

(
1 +

pL

2

)]
exp

[
1 + pL

2

k2
exp

(
ηtgt

(
1 +

pL

2

))
+ 1

]
(14)

If we use our expression (12) in (14), and assume |wt| ≥ exp(L2), we see that there exists some constant C
depending on p and k such that the RHS of (14) is O(exp(L)) and so (14) holds for sufficiently large L.

For p = 2/L, k =
√
2, and wt ≥ 15 we can verify (14) numerically by plugging in the bound (12).

For the case k =
√
2, |wt| ≥ 4 exp(p2L2), we notice that by using (12), we can write (14) entirely in terms of

pL. Graphing both sides numerically as functions of pL then allows us to verify the condition.

We have one final lemma we need before we can start stating some real regret bounds. This lemma can be
viewed as observing that ψ(w) is roughly 1

D
strongly-convex for |w| not much bigger than D.

Lemma 12. Suppose p ≤ 2/L, k =
√
2, ‖wt‖ ≤ D and ‖gt‖ ≤ L Then gt(wt − wt+1) ≤ 6(max(D +

1, exp(1/2)))g2t ηt.

Proof. By Theorem 5 it suffices to consider sign(gt) = ±sign(g1:t−1).

We show that |wt −wt+1| ≤ 6(max(D + 1, exp(1/2)))|gt|ηt so that the result follows by multiplying by |gt|.
From Lemma 7, we have |ηt−1|g1:t−1| − ηt|g1:t|| ≤ ηt|gt|

(
1 + pL

2

)
≤ 2ηt|gt|. Further, note that ηt|gt| ≤

1

k
√

2
= 1

2
. We consider two cases, either sign(g1:t) = sign(g1:t−1) or not.

Case 1: sign(g1:t) = sign(g1:t−1):

|wt − wt+1| = | exp(ηt−1|g1:t−1|)− exp(ηt|g1:t|)|
= (|wt|+ 1)| exp(ηt|g1:t| − ηt−1|g1:t−1|)− 1|
≤ 2(D + 1)ηt|gt| exp(2ηt|gt|)

≤ 2(D + 1)ηt|gt| exp
(

2

k
√
2

)

≤ 6(D + 1)ηt|gt|

Case 2: sign(g1:t) 6= sign(g1:t−1): In this case, we must have |g1:t| ≤ |gt|. Let X =
max(ηt|g1:t|, ηt−1|g1:t−1|). Then by triangle inequality we have

|wt − wt+1| ≤ 2max(|wt|, |wt+1|)
≤ 2(exp(X)− 1)

≤ 2X exp(X)

≤ 2(max(|wt|, |wt+1|) + 1)X

Since |ηt−1|g1:t−1| − ηt|g1:t|| ≤ 2ηtgt, we have X ≤ 2ηtgt + ηt|g1:t| ≤ 3ηt|gt| so that we have

|wt − wt+1| ≤ 6(max(|wt|, |wt+1|) + 1)ηt|gt|

16

Finally, we have |wt+1|+ 1 = exp(ηt|g1:t|) ≤ exp(ηt|gt|) ≤ exp(1/2), so that

|wt − wt+1| ≤ 6ηt|gt|(max(|wt|, |wt+1|) + 1)

≤ 6max(D + 1, exp(1/2))ηt|gt|

Now we are finally in a position to prove Lemma 3, which we re-state below:

Lemma 3. Set k =
√
2. Suppose ‖gt‖ ≤ L for t < T , 1/L ≤ p ≤ 2/L, gT ≤ Lmax and Lmax ≥ L. Let

Wmax = maxt∈[1,T] ‖wt‖. Then the regret of FTRL with regularizers ψt(w) = ψ(w)/ηt is:

RT (u) ≤ ψ(u)/ηT + 96
√
MT + ‖g‖21:T + 2Lmax min

[
Wmax, 4 exp

(
4
L2

max

L2

)
, exp(

√
T/2)

]

≤ (2ψ(u) + 96)

√√√√
T−1∑

t=1

L|gt|+ L2
max + 8Lmax min

[
exp

(
4L2

max

L2

)
, exp(

√
T/2)

]

≤ Lmax(2((‖u‖+ 1) log(‖u‖+ 1)− ‖u‖) + 96)
√
T + 8Lmax min

[
e

4L2
max
L2 , e

√
T/2

]

Proof of Lemma 3. We combine Lemma 11 with Lemma 12: if |wt| ≥ 15 we have for all t < T :
(

1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1) < 0

and if |wt| ≤ 15 we have
(

1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1) ≤ gt · (wt − wt+1)

≤ 6× (15 + 1)ηtg
2
t

= 96ηtg
2
t

Therefore for all t < T we have
(

1
ηt−1

− 1
ηt

)
ψ(wt+1) + gt · (wt − wt+1) ≤ 96ηtg

2
t .

RT (u) ≤ ψ(u)/ηT +

T∑

t=1

(
1

ηt−1
− 1

ηt

)
ψ(wt+1) + gt · (wt − wt+1)

≤ ψ(u)/ηT + 96

T∑

t=1

ηtg
2
t +

(
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1)

We have (
1

ηT−1
− 1

ηT

)
ψ(wT+1) < 0

so that (
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1) ≤ 2LmaxWmax

Further, again using Lemma 11 we have
(

1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1) < 0

for |wT | ≥ 4 exp(p2L2
max) since k =

√
2.

Finally, notice that by definition of ηt and L, we must have |ηtg1:t| ≤
√
p|g1:t|
k
√
2
≤
√
T/2, so that ‖wt‖ ≤

exp (ηt|g1:t|) ≤ exp
(√

T/2
)

. Thus we have
(

1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1) ≤ 2Lmax min(Wmax, 4 exp(4L

2
max/L

2), exp(
√
2T))

17

Now we make the following classic argument:
√
Mt + ‖g‖21:t −

√
Mt−1 + ‖g‖21:t−1 ≥

g2t +Mt −Mt−1

2
√
Mt + ‖g‖21:t

≥ g2t

2
√
Mt + ‖g‖21:t

= ηtg
2
t

so that we can bound:

RT (u) ≤ ψ(u)/ηT + 96

T∑

t=1

ηtg
2
t +

(
1

ηT−1
− 1

ηT

)
ψ(wT+1) + gT · (wT − wT+1)

≤ ψ(u)/ηT + 96
√
MT + ‖g‖21:T + 2Lmax min(Wmax, 4 exp(4L

2
max/L

2), exp(
√
2T))

To show the remaining two lines of the theorem, we prove by induction that Mt + ‖g‖21:t ≤ L
∑t
t′=1 |gt′ |

for all t < T . The statement is clearly true for t = 1. Suppose it holds for some t. Then notice that
|g1:t+1| ≤ |gt+1|+ |g1:t|. So we have

Mt+1 + ‖g‖21:t+1 = max

(
Mt + ‖g‖21:t+1,

|g1:t+1|
p

)

≤ max
(
Mt + ‖g‖21:t + L|gt+1|, L|g1:t+1|

)

≤ L
t+1∑

t′=1

|gt′ |

Finally, we observe that MT = max
(
MT−1 + ‖g‖21:T−1 + g2T ,

|g1:T |
p

)
≤ L2

max + L
∑T−1
t=1 |gt′ | and the last

two lines of the theorem follow immediately.

C Additional Experimental Details

C.1 Hyperparameter Optimization

For the linear classification tasks, we optimized hyperparameters in a two-step process. First, we tested every
power of 10 from 10−5 to 102. Second, if λ was the best hyperparameter setting in step 1, we additionally tested
βλ for β ∈ {0.2, 0.4, 0.8, 2.0, 4.0, 6.0, 8.0}
For the neural network models, we optimized ADAM and ADAGRAD’s learning rates by testing every power of
10 from 10−5 to 100. For stochastic gradient descent, we used an exponentially decaying learning rate schedule
specified in Tensorflow’s (https://www.tensorflow.org/) MNIST and CIFAR-10 example code.

C.2 Coordinate-wise updates

We proved all our results in arbitrarily many dimensions, leading to a dimension-independent regret bound.
However, it is also possible to achieve dimension-dependent bounds by running an independent version of our
algorithm on each coordinate. Formally, for OLO we have

RT (u) =

T∑

t=1

gt(wt − u) =
d∑

i=1

T∑

t=1

gt,i(wt,i − ui) =
d∑

i=1

R1
T (ui)

where R1
T is the regret of a 1-dimensional instance of the algorithm. This reduction can yield substantially

better regret bounds when the gradients gt are known to be sparse (but can be much worse when they are not).
We use this coordinate-wise update strategy for our linear classification experiments for RESCALEDEXP. We
also considered coordinate-wise updates and non-coordinate wise updates for the other algorithms, taking the
best-performing of the two.

For all algorithms in the linear classification experiments, we found that the difference between coordinate-wise
and non-coordinate wise updates was not very striking. However, for the neural network experiments we found
RESCALEDEXP performed extremely poorly when using coordinate-wise updates, and performed extremely well
with non-coordinate wise updates. We hypothesize that this is due to a combination of non-convexity of the
model and frequent resets at different times for each coordinate.

18

ADAGRAD RESCALEDEXP ADADELTA SCALEINVARIANT ADAM PISTOL
1.14 1.19 1.21 1.28 1.51 1.53

Table 1: Average normalized loss, using best hyperparameter setting for each algorithm.

C.3 Re-centering RESCALEDEXP

For the non-convex neural network tasks we used a variant of RESCALEDEXP in which we re-center our FTRL
algorithm at the beginning of each epoch. Formally, the pseudo-code is provided below:

Algorithm 2 Re-centered RESCALEDEXP

Initialize: k ←
√
2, M0 ← 0, w1 ← 0, t? ← 1 , w? ← 0

for t = 1 to T do
Play wt, receive subgradient gt ∈ ∂`t(wt).
if t = 1 then
L1 ← ‖g1‖
p← 1/L1

end if
Mt ← max(Mt−1, ‖gt?:t‖/p− ‖g‖2t?:t).
ηt ← 1

k
√

2(Mt+‖g‖2t?:t)

wt+1 ← w? + argminw
[
ψ(w)
ηt

+ gt?:tw
]
= w? − gt?:t

‖gt?:t‖ [exp(ηt‖gt?:t‖)− 1]

if ‖gt‖ > 2Lt then
Lt+1 ← ‖gt‖
p← 1/Lt+1

t? ← t+ 1
Mt ← 0
wt+1 ← 0
w? ← wt−1

else
Lt+1 ← Lt

end if
end for

So long as ‖w? − u‖ ≤ ‖u‖, this algorithm maintains the same regret bound as the non-re-centered version of
RESCALEDEXP. While it is intuitively reasonable to expect this to occur in a stochastic setting, an adversary can
easily subvert this algorithm.

C.4 Aggregating Studies

It is difficult to interpret the results of a study such as our linear classification experiments (see Section 4) in
which no particular algorithm is always the “winner” for every dataset. In particular, consider the case of an
analyst who wishes to run one of these algorithms on some new dataset, and doesn’t have the either the resources
or inclination to implement and tune each algorithm. Which should she choose? We suggest the following
heuristic: pick the algorithm with the lowest loss averaged across datasets.

This heuristic is problematic because datasets in which all algorithms do very poorly will dominate the cross-
dataset average. In order address this issue and compare losses across datasets properly, we compute a normalized
loss for each algorithm and dataset. The normalized loss for an algorithm on a dataset is given by taking the
loss experienced by the algorithm on its best hyperparameter setting on that dataset divided by the lowest loss
observed by any algorithm and hyperparameter setting on that dataset. Thus a normalized loss of 1 on a dataset
indicates that an algorithm outperformed all other algorithms on the dataset (at least for its best hyperparameter
setting). We then average the normalized loss for each algorithm across datasets to obtain the scores for each
algorithm (see Table 1).

These data indicate that while ADAGRAD has a slight edge after tuning, RESCALEDEXP and ADADELTA do
nearly equivalently well (4% and 6% worse performance, respectively). Therefore we suggest that if our intrepid
analyst is willing to perform some hyperparameter tuning, then ADAGRAD may be slightly better, but her choice
doesn’t matter too much. On the other hand, using RESCALEDEXP will allow her to skip any tuning step without
compromising performance.

19

