
A Additional Experiment Results

A.1 Rotation

We applied CoGAN to a task of learning a joint distribution of images with different in-plane rotation
angles. We note that this task is very different to the other tasks discussed in the paper. In the
other tasks, the image contents in the same spatial region in the corresponding images are in direct
correspondence. In this task, the content in one spatial region in one image domain is related to the
content in a different spatial region in the other image domain. Through this experiment, we planed
to verify whether CoGAN can learn a joint distribution of images related by a global transformation.

For this task, we partitioned the MNIST training set into two disjoint subsets. The first set consisted
of the original digit images, which constitute the first domain. We applied a 90 degree rotation to all
the digits in the second set to construct the second domain. There were no corresponding images
in the two domains. The CoGAN architecture used for this task is shown in Table 1. Different to
the other tasks, the generative models in the CoGAN were based on fully connected layers, and the
discriminative models only share the last layer. This design was due to lack of spatial correspondence
between the two domains. We used the same hyperparameters to train the CoGAN. The results are
shown in Figure 1. We found that the CoGAN was able to capture the in-plane rotation. For the same
noise input, the digit generated by GAN2 is a 90 degree rotated version of the digit generated by
GAN1.

Table 1: CoGAN for generating digits with different in-plane rotation angles

Generative models
Layer Domain 1 Domain 2 Shared?

1 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
2 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
3 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
4 FC-(N1024), BN, PReLU FC-(N1024), BN, PReLU Yes
5 FC-(N784), Sigmoid FC-(N784), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N20,K5x5,S1), POOL-(MAX,2) CONV-(N20,K5x5,S1), POOL-(MAX,2) No
2 CONV-(N50,K5x5,S1), POOL-(MAX,2) CONV-(N50,K5x5,S1), POOL-(MAX,2) No
3 FC-(N500), PReLU FC-(N500), PReLU No
4 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Figure 1: Generation of digit and 90-degree rotated digit images. We visualized the CoGAN results by rendering
pairs of images, using the vectors that corresponded to paths connecting two pints in the input noise space. For
each of the sub-figures, the top row was from GAN1 and the bottom row was from GAN2. Each of the top and
bottom pairs was rendered using the same input noise vector. We observed that CoGAN learned to synthesized
corresponding digits with different rotation angles.

A.2 Weight Sharing

We analyzed the effect of weight sharing in the CoGAN framework. We conducted an experiment
where we varied the numbers of weight-sharing layers in the generative and discriminative models

1

to create different CoGAN architectures and trained them with the same hyperparameters. Due to
lack of proper validation methods, we did a grid search on the training iteration and reported the
best performance achieved by each network configuration for both Task A and B1. For each network
architecture, we run 5 trails with different random network initialization weights. We then rendered
10000 pairs of images for each learned network. A pair of images consisted of an image in the first
domain (generated by GAN1) and an image in the second domain (generated by GAN2), which were
rendered using the same z.

For quantifying the performance of each weight-sharing scheme, we transformed the images generated
by GAN1 to the second domain by using the same method employed for generating the training
images in the second domain. We then compared the transformed images with the images generated
by GAN2. The performance was measured by the average of the ratios of agreed pixels between the
transformed image and the corresponding image in the other domain. Specifically, we rounded the
transformed digit image to a binary image and we also rounded the rendered image in the second
domain to a binary image. We then compared the pixel agreement ratio—the number of corresponding
pixels that have the same value in the two images divided by the total image size. The performance
of a trail was given by the pixel agreement ratio of the 10000 pairs of images. The performance of a
network configuration was given by the average pixel agreement ratio over the 5 trails. We reported
the performance results for Task A in Table 2 and the performance results for Task B in Table 3.

From the tables, we observed that the pair image generation performance was positively correlated
with the number of weight-sharing layers in the generative models. With more shared layers in the
generative models, the rendered pairs of images were resembling more to true pairs drawn from
the joint distribution. We noted that the pair image generation performance was uncorrelated to the
number of weight-sharing layers in the discriminative models. However, we still preferred applying
discriminator weight sharing because this reduces the total number of parameters.

Table 2: The table shows the performance of pair generation of digits and corresponding edge images (Task A)
with different CoGAN weight-sharing configurations. The results were the average pixel agreement ratios over
10000 images over 5 trials.

Avg. pixel agreement ratio Weight-sharing layers in the generative models
5 5,4 5,4,3 5,4,3,2

Weight-sharing 0.894 ± 0.020 0.937 ± 0.004 0.943 ± 0.003 0.951 ± 0.004
layers in the 4 0.904 ± 0.018 0.939 ± 0.002 0.943 ± 0.005 0.950 ± 0.003
discriminative 4,3 0.888 ± 0.036 0.934 ± 0.005 0.946 ± 0.003 0.941 ± 0.024
models 4,3,2 0.903 ± 0.009 0.925 ± 0.021 0.944 ± 0.006 0.952 ± 0.002

Table 3: The table shows the performance of pair generation of digits and corresponding negative images (Task
B) with different CoGAN weight-sharing configurations. The results were the average pixel agreement ratios
over 10000 images over 5 trials.

Avg. pixel agreement ratio Weight-sharing layers in the generative models
5 5,4 5,4,3 5,4,3,2

Weight-sharing 0.932 ± 0.011 0.946 ± 0.013 0.970 ± 0.002 0.979 ± 0.001
layers in the 4 0.906 ± 0.066 0.953 ± 0.008 0.970 ± 0.003 0.978 ± 0.001
discriminative 4,3 0.908 ± 0.028 0.944 ± 0.012 0.965 ± 0.009 0.976 ± 0.001
models 4,3,2 0.917 ± 0.022 0.934 ± 0.011 0.955 ± 0.010 0.969 ± 0.008

A.3 Comparison with the Conditional Generative Adversarial Nets

We compared the CoGAN framework with the conditional generative adversarial networks (GAN)
framework for joint image distribution learning. We designed a conditional GAN where the generative
and discriminative models were identical to those used in the CoGAN in the digit experiments. The
only difference was that the conditional GAN took an additional binary variable as input, which
controlled the domain of the output image. The binary variable acted as a switch. When the value of
the binary variable was zero, it generated images resembling images in the first domain. Otherwise,
it generated images resembling those in the second domain. The output layer of the discriminative

1We noted that the performances were not sensitive to the number of training iterations.

2

Table 4: Network architecture of the conditional GAN
Layer Generative models
input z and conditional variable c ∈ {0, 1}

1 FCONV-(N1024,K4x4,S1), BN, PReLU
2 FCONV-(N512,K3x3,S2), BN, PReLU
3 FCONV-(N256,K3x3,S2), BN, PReLU
4 FCONV-(N128,K3x3,S2), BN, PReLU
5 FCONV-(N1,K6x6,S1), Sigmoid

Layer Discriminative models
1 CONV-(N20,K5x5,S1), POOL-(MAX,2)
2 CONV-(N50,K5x5,S1), POOL-(MAX,2)
3 FC-(N500), PReLU
4 FC-(N3), Softmax

Table 5: Performance Comparison. For each task, we reported the average pixel agreement ratio scores and
standard deviations over 5 trails, each trained with a different random initialization of the network connection
weights.

Experiment Task A: Digit and Edge Images Task B: Digit and Negative Images
Conditional GAN 0.909 ± 0.003 0.778 ± 0.021

CoGAN 0.952 ± 0.002 0.967 ± 0.008

Figure 2: Digit Generation with Conditional Generative Adversarial Nets. Left: generation of digit and
corresponding edge images. Right: generation of digit and corresponding negative images. We visualized the
conditional GAN results by rendering pairs of images, using the vectors that corresponded to paths connecting
two pints in the input space. For each of the sub-figures, the top row was from the conditional GAN with the
conditional variable set to 0, and the bottom row was from the conditional GAN with the conditional variable set
to 1. That is each of the top and bottom pairs was rendered using the same input vector except for the conditional
variable value. The conditional variable value was used to control the domain of the output images. From the
figure, we observed that, although the conditional GAN learned to generate realistic digit images, it failed to
learn the correspondence in the two domains. For the edge task, the conditional GAN rendered images of the
same digits with a similar font. The edge style was not well-captured. For the negative image generation task,
the conditional GAN simply failed to capture any correspondence. The rendered digits with the same input
vector but different conditional variable values were not related.

model was a softmax layer with three neurons. If the first neuron was on, it meant the input to the
discriminative model was a synthesized image from the generative model. If the second neuron was

3

on, it meant the input was a real image from the first domain. If the third neuron was on, it meant
the input was a real image from the second domain. The goal of the generative model was to render
images resembling those from the first domain when the binary variable was zero and to render
images resembling those from the second domain when the binary variable was one. The details of
the conditional GAN network architecture is shown in Table 4.

Similarly to CoGAN learning, no correspondence was given during the conditional GAN learning.
We applied the conditional GAN to the two digit generation tasks and hoped to answer whether a
conditional model can be used to render corresponding images in two different domains without pairs
of corresponding images in the training set. We used the same training data and hyperparameters as
those used in the CoGAN learning. We trained the CoGAN for 25000 iterations2 and used the trained
network to render 10000 pairs of images in the two domains. Specifically, each pair of images was
rendered with the same z but with different conditional variable values. These images were used to
compute the pair image generation performance of the conditional GAN measured by the average
of the pixel agreement ratios. For each task, we trained the conditional GAN for 5 times, each with
a different random initialization of the network weights. We reported the average scores and the
standard deviations.

The performance results are reported in Table 5. It can be seen that the conditional GAN achieved
0.909 for Task A and 0.778 for Task B, respectively. They were much lower than the scores of 0.952
and 0.967 achieved by the CoGAN. Figure 2 visualized the conditional GAN’s pair generation results,
which suggested that the conditional GAN had difficulties in learning to render corresponding images
in two different domains without pairs of corresponding images in the training set.

2 We note the generation performance of the conditional GAN did not change much after 5000 iterations.

4

B CoGAN Learning Algorithm

We present the learning algorithm for the coupled generative adversarial networks in Algorithm 1.
The algorithm is an extension of the learning algorithm for the generative adversarial networks (GAN)
to the case of training two GANs with weight sharing constraints. The convergence property follows
the results shown in [1].

Algorithm 1 Mini-batch stochastic gradient descent for training coupled generative adversarial nets.

1: Initialize the network parameters θ
f
(i)
1

’s θ
f
(i)
2

’s θ
g
(i)
1

’s and θ
g
(i)
2

’s with the shared network
connection weights set to the same values.

2: for t = 0, 1, 2, ...,maximum number of iterations do
3: Draw N samples from pZ , {z1, z2, ..., zN}
4: Draw N samples from pX1

, {x1
1,x

2
1, ...,x

N
1 }

5: Draw N samples from pX2
, {x1

2,x
2
2, ...,x

N
2 }

6: Compute the gradients of the parameters of the discriminative model, f t
1, ∆θ

f
(i)
1

;

∇θ
f
(i)
1

1

N

N∑
j=1

− log f t
1(xj

1)− log
(

1− f t
1

(
gt1(zj)

))
7: Compute the gradients of the parameters of the discriminative model, f t

2, ∆θ
f
(i)
2

;

∇θ
f
(i)
2

1

N

N∑
j=1

− log f t
2(xj

2)− log
(

1− f t
2

(
gt2(zj)

))
8: Average the gradients of the shared parameters of the discriminative models.
9: Compute f t+1

1 and f t+1
2 according to the gradients.

10: Compute the gradients of the parameters of the generative model, gt1, ∆θ
g
(i)
1

;

∇θ
g
(i)
1

1

N

N∑
j=1

− log
(

1− f t+1
1

(
gt1(zj)

))
11: Compute the gradients of the network parameters of the generative model, g2, ∆θ

g
(i)
2

;

∇θ
g
(i)
2

1

N

N∑
j=1

− log
(

1− f t+1
2

(
gt2(zj)

))
12: Average the gradients of the shared parameters of the generative models.
13: Compute gt+1

1 and gt+1
2 according to the gradients.

14: end for

5

C Training Datasets

In Figure 3, Figure 4, Figure 5, and Figure 6, we show several example images of the training images
used for the pair image generation tasks in the experiment section. Table 6, Table 7, Table 8, and
Table 9 contain the statistics of the training datasets for the experiments.

Figure 3: Training images for the digit experiments. Left (Task A): The images in the first row are from the
original MNIST digit domain, while those in the second row are from the edge image domain. Right (Task B):
The images in the first row are from the original MNIST digit domain, while those in the second row are from
the negative image domain.

Figure 4: Training images from the Celeba dataset [2].

Figure 5: Training images from the RGBD dataset [3].

Figure 6: Training images from the NYU dataset [4].

Table 6: Numbers of training images in Domain 1 and Domain 2 in the MNIST experiments.
Task A Task B

Pair generation of digits and Pair generation of digits and
corresponding edge images corresponding negative images

of images in Domain 1 30,000 30,000
of images in Domain 2 30,000 30,000

Table 7: Numbers of training images of different attributes in the pair face generation experiments.

Attribute Smiling Blond hair Glasses
of images with the attribute 97,669 29,983 13,193

of images without the attribute 104,930 172,616 189,406

Table 8: Numbers of RGB and depth training images in the RGBD experiments.

of RGB images 93,564
of depth images 93,564

Table 9: Numbers of RGB and depth training images in the NYU experiments.

of RGB images 514,192
of depth images 1,449

6

D Networks

In CoGAN, the generative models are based on the fractional length convolutional (FCONV) layers,
while the discriminative models are based on the standard convolutional (CONV) layers with the ex-
ceptions that the last two layers are based on the fully-connected (FC) layers. The batch normalization
(BN) layers [5] are applied after each convolutional layer, which are followed by the parameterized
rectified linear unit (PReLU) processing [6]. The sigmoid units and the hyperbolic tangent units are
applied to the output layers of the generative models for generating images with desired pixel range
values.

Table 10: CoGAN for digit generation

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K3x3,S2), BN, PReLU FCONV-(N512,K3x3,S2), BN, PReLU Yes
3 FCONV-(N256,K3x3,S2), BN, PReLU FCONV-(N256,K3x3,S2), BN, PReLU Yes
4 FCONV-(N128,K3x3,S2), BN, PReLU FCONV-(N128,K3x3,S2), BN, PReLU Yes
5 FCONV-(N1,K6x6,S1), Sigmoid FCONV-(N1,K6x6,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N20,K5x5,S1), POOL-(MAX,2) CONV-(N20,K5x5,S1), POOL-(MAX,2) No
2 CONV-(N50,K5x5,S1), POOL-(MAX,2) CONV-(N50,K5x5,S1), POOL-(MAX,2) Yes
3 FC-(N500), PReLU FC-(N500), PReLU Yes
4 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Table 11: CoGAN for face generation

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K4x4,S2), BN, PReLU FCONV-(N32,K4x4,S2), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N3,K3x3,S1), TanH No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

7

Table 12: CoGAN for color and depth image generation for the RGBD object dataset

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K3x3,S1), BN, PReLU FCONV-(N32,K3x3,S1), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N1,K3x3,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

Table 13: CoGAN for color and depth image generation for the NYU indoor scene dataset

Generative models
Layer Domain 1 Domain 2 Shared?

1 FCONV-(N1024,K4x4,S1), BN, PReLU FCONV-(N1024,K4x4,S1), BN, PReLU Yes
2 FCONV-(N512,K4x4,S2), BN, PReLU FCONV-(N512,K4x4,S2), BN, PReLU Yes
3 FCONV-(N256,K4x4,S2), BN, PReLU FCONV-(N256,K4x4,S2), BN, PReLU Yes
4 FCONV-(N128,K4x4,S2), BN, PReLU FCONV-(N128,K4x4,S2), BN, PReLU Yes
5 FCONV-(N64,K4x4,S2), BN, PReLU FCONV-(N64,K4x4,S2), BN, PReLU Yes
6 FCONV-(N32,K4x4,S2), BN, PReLU FCONV-(N32,K4x4,S2), BN, PReLU No
7 FCONV-(N3,K3x3,S1), TanH FCONV-(N1,K3x3,S1), Sigmoid No

Discriminative models
Layer Domain 1 Domain 2 Shared?

1 CONV-(N32,K5x5,S2), BN, PReLU CONV-(N32,K5x5,S2), BN, PReLU No
2 CONV-(N64,K5x5,S2), BN, PReLU CONV-(N64,K5x5,S2), BN, PReLU No
3 CONV-(N128,K5x5,S2), BN, PReLU CONV-(N128,K5x5,S2), BN, PReLU Yes
4 CONV-(N256,K3x3,S2), BN, PReLU CONV-(N256,K3x3,S2), BN, PReLU Yes
5 CONV-(N512,K3x3,S2), BN, PReLU CONV-(N512,K3x3,S2), BN, PReLU Yes
6 CONV-(N1024,K3x3,S2), BN, PReLU CONV-(N1024,K3x3,S2), BN, PReLU Yes
7 FC-(N2048), BN, PReLU FC-(N2048), BN, PReLU Yes
8 FC-(N1), Sigmoid FC-(N1), Sigmoid Yes

8

E Visualization

Figure 7: Left: generation of digit and corresponding edge images. Right: generation of digit and corresponding
negative images. We visualized the CoGAN results by rendering pairs of images, using the vectors that
corresponded to paths connecting two pints in the input noise space. For each of the sub-figures, the top row
was from GAN1 and the bottom row was from GAN2. Each of the top and bottom pairs was rendered using
the same input noise vector. We observed that for both tasks the CoGAN learned to synthesized corresponding
images in the two domains. This was interesting because there were no corresponding images in the training
datasets. The correspondences were figured out during training in an unsupervised fashion.

9

Figure 8: Generation of faces with blond hair and without blond hair.

10

Figure 9: Generation of faces with blond hair and without blond hair.

11

Figure 10: Generation of faces with blond hair and without blond hair.

12

Figure 11: Generation of smiling and non-smiling faces.

13

Figure 12: Generation of smiling and non-smiling faces.

14

Figure 13: Generation of smiling and non-smiling faces.

15

Figure 14: Generation of faces with eyeglasses and without eyeglasses.

16

Figure 15: Generation of faces with eyeglasses and without eyeglasses.

17

Figure 16: Generation of faces with eyeglasses and without eyeglasses.

18

Figure 17: Generation of RGB and depth images of objects. The 1st row contains the color images. The 2nd row
contains the depth images. The 3rd and 4th rows visualized the point clouds under different view points.

19

Figure 18: Generation of RGB and depth images of objects. The 1st row contains the color images. The 2nd row
contains the depth images. The 3rd and 4th rows visualized the point clouds under different view points.

20

Figure 19: Generation of RGB and depth images of indoor scenes.

21

Figure 20: Generation of RGB and depth images of indoor scenes.

22

References

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[2] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In ICCV, 2015.

[3] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-view
rgb-d object dataset. In ICRA, 2011.

[4] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and
support inference from rgbd images. In ECCV, 2012.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167, 2015.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In ICCV, 2015.

23

