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Abstract

Fast algorithms for nearest neighbor (NN) search have in large part focused on �2
distance. Here we develop an approach for �1 distance that begins with an explicit
and exactly distance-preserving embedding of the points into �22. We show how
this can efficiently be combined with random-projection based methods for �2 NN
search, such as locality-sensitive hashing (LSH) or random projection trees. We
rigorously establish the correctness of the methodology and show by experimen-
tation using LSH that it is competitive in practice with available alternatives.

1 Introduction

Nearest neighbor (NN) search is a basic primitive of machine learning and statistics. Its utility in
practice hinges on two critical issues: (1) picking the right distance function and (2) using algorithms
that find the nearest neighbor, or an approximation thereof, quickly.

The default distance function is very often Euclidean distance. This is a matter of convenience
and can be partially justified by theory: a classical result of Stone [1] shows that k-nearest neigh-
bor classification is universally consistent in Euclidean space. This means that no matter what the
distribution of data and labels might be, as the number of samples n goes to infinity, the kn-NN
classifier converges to the Bayes-optimal decision boundary, for any sequence (kn) with kn → ∞
and kn/n → 0. The downside is that the rate of convergence could be slow, leading to poor perfor-
mance on finite data sets. A more careful choice of distance function can help, by better separating
the different classes. For the well-known MNIST data set of handwritten digits, for instance, the 1-
NN classifier using Euclidean distance has an error rate of about 3%, whereas a more careful choice
of distance function—tangent distance [2] or shape context [3], for instance—brings this below 1%.

The second impediment to nearest neighbor search in practice is that a naive search through n
candidate neighbors takes O(n) time, ignoring the dependence on dimension. A wide variety of
ingenious data structures have been developed to speed this up. The most popular of these fall into
two categories: hashing-based and tree-based.

Perhaps the best-known hashing approach is locality-sensitive hashing (LSH) [4, 5, 6, 7, 8, 9, 10].
These randomized data structures find approximate nearest neighbors with high probability, where
c-approximate solutions are those that are at most c times as far as the nearest neighbor.

Whereas hashing methods create a lattice-like spatial partition, tree methods [11, 12, 13, 14] create
a hierarchical partition that can also be used to speed up nearest neighbor search. There are families
of randomized trees with strong guarantees on the tradeoff between query time and probability of
finding the exact nearest neighbor [15].

These hashing and tree methods for �2 distance both use the same primitive: random projection [16].
For data in R

d, they (repeatedly) choose a random direction u from the multivariate Gaussian
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N(0, Id) and then project points x onto this direction: x �→ u · x. Such projections have many
appealing mathematical properties that make it possible to give algorithmic guarantees, and that
also produce good performance in practice.

For distance functions other than �2, there has been far less work. In this paper, we develop nearest
neighbor methods for �1 distance. This is a more natural choice than �2 in many situations, for
instance when the data points are probability distributions: documents are often represented as dis-
tributions over topics, images as distributions over categories, and so on. Earlier works on �1 search
are summarized below. We adopt a different approach, based on a novel embedding.

One basic fact is that �1 distance is not embeddable in �2 [17]. That is, given a set of points
x1, . . . , xn ∈ R

d, it is in general not possible to find corresponding points z1, . . . , zn ∈ R
q such that

‖xi−xj‖1 = ‖zi−zj‖2. This can be seen even from the four points at the vertices of a square—any

embedding of these into �2 induces a multiplicative distortion of at least
√
2.

Interestingly, however, the square root of �1 distance is embeddable in �2 [18]. And the nearest

neighbor with respect to �1 distance is the same as the nearest neighbor with respect to �
1/2
1 . This

observation is the starting point of our approach. It suggests that we might be able to embed data
into �2 and then simply apply well-established methods for �2 nearest neighbor search. However,
there are numerous hurdles to overcome.

First, the embeddability of �
1/2
1 into �2 is an existential, not algorithmic, fact. Indeed, all that is

known for general case is that there exists such an embedding into Hilbert space. For the special
case of data in {0, 1, . . . ,M}d, earlier work has suggested a unary embedding into a Hamming

space {0, 1}Md (where 0 ≤ x ≤ M gets mapped to x 1’s followed by (M − x) 0’s) [19], but this is
wasteful of space and is inefficient to be used by dimension reduction algorithms [16] when M is
large. Our embedding is general and is more efficient.

Now, given a finite point set x1, . . . , xn ∈ R
d and the knowledge that an embedding exists, we

could use multidimensional scaling [20] to find such an embedding. But this takes O(n3) time,
which is often not viable. Instead, we exhibit an explicit embedding: we give an expression for

points z1, . . . , zn ∈ R
O(nd) such that ‖xi − xj‖1 = ‖zi − zj‖22.

This brings us to the second hurdle. The explicit construction avoids infinite-dimensional space but
is still much higher-dimensional than we would like. The space requirement for writing down the n
embedded points is O(n2d), which is prohibitive in practice. To deal with this, we recall that the two
popular schemes for �2 embedding described above are both based on Gaussian random projections,
and in fact look at the data only through the lens of such projections. We show how to compute these
projections without ever constructing the O(nd)-dimensional embeddings explicitly.

Finally, even if it is possible to efficiently build a data structure on the n points, how can queries
be incorporated? It turns out that if a query point is added to the original n points, our explicit
embedding changes significantly. Nonetheless, by again exploiting properties of Gaussian random
projections, we show that it is possible to hold on to the random projections of the original n em-
bedded points and to set the projection of the query point so that the correct joint distribution is
achieved. Moreover, this can be done very efficiently.

Finally, we run a variety of experiments showing the good practical performance of this approach.

Related work

The k-d tree [11] is perhaps the prototypical tree-based method for nearest neighbor search, and can
be used for �1 distance. It builds a hierarchical partition of the data using coordinate-wise splits, and
uses geometric reasoning to discard subtrees during NN search. Its query time can degenerate badly
with increasing dimension, as a result of which several variants have been developed, such as trees
in which the cells are allowed to overlap slightly [21]. Various tree-based methods have also been
developed for general metrics, such as the metric tree and cover tree [14, 12].

For k-d tree variants, theoretical guarantees are available for exact �2 nearest neighbor search when
the split direction is chosen at random from a multivariate Gaussian [15]. For a data set of n points,
the tree has size O(n) and the query time is O(2d log n), where d is the intrinsic dimension of the
data. Such analysis is not available for �1 distance.
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Also in wide use is locality-sensitive hashing for approximate nearest neighbor search [22]. For a
data set of n points, this scheme builds a data structure of size O(n1+ρ) and finds a c-approximate
nearest neighbor in time O(nρ), for some ρ > 0 that depends on c, on the specific distance function,
and on the hash family. For �2 distance, it is known how to achieve ρ ≈ 1/c2 [23], although the
scheme most commonly used in practice has ρ ≈ 1/c [8]. This works by repeatedly using the
following hash function:

h(x) = 
(v · x+ b)/R�,
where v is chosen at random from a multivariate Gaussian, R > 0 is a constant, and b is uniformly
distributed in [0, R). A similar scheme also works for �1, using Cauchy random projection: each
coordinate of v is picked independently from a standard Cauchy distribution. This achieves exponent
ρ ≈ 1/c, although one downside is the high variance of this distribution. Another LSH family
[22, 10] uses a randomly shifted grid for �1 nearest neighbor search. But it is less used in practice,
due to its restrictions on data. For example, if the nearest neighbor is further away than the width of
the grid, it may never be found.

Besides LSH, random projection is the basis for some other NN search algorithms [24, 25], classifi-
cation methods [26], and dimension reduction techniques [27, 28, 29].

There are several impediments to developing NN methods for �1 spaces. 1) There is no Johnson-
Lindenstrauss type dimension reduction technique for �1 [30]. 2) The Cauchy random projection
does not preserve the �1 distance as a norm, which restricts its usage for norm based algorithms [31].
3) Useful random properties [26] cannot be formulated exactly; only approximations exist. Fortu-
nately, all these three problems are absent in �2 space, which motivates developing efficient embed-
ding algorithms from �1 to �2.

2 Explicit embedding

We begin with an explicit isometric embedding from �1 to �22 for 1-dimensional data. This extends
immediately to multiple dimensions because both �1 and �22 distance are coordinatewise additive.

2.1 The 1-dimensional case

First, sort the points x1, . . . , xn ∈ R so that x1 ≤ x2 ≤ · · · ≤ xn. Then, construct the embedding
φ(x1), φ(x2), . . . , φ(xn) ∈ R

n−1 as follows:

φ(x1)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

0
0
0
...
0

⎤
⎥⎥⎥⎥⎦

φ(x2)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

√
x2 − x1

0
0
...
0

⎤
⎥⎥⎥⎥⎦

φ(x3)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

√
x2 − x1√
x3 − x2

0
...
0

⎤
⎥⎥⎥⎥⎦ . . .

φ(xn)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

√
x2 − x1√
x3 − x2√
x4 − x3

...√
xn − xn−1

⎤
⎥⎥⎥⎥⎦ (1)

For any 1 ≤ i < j ≤ n, φ(xi) and φ(xj) agree on all coordinates except i to (j − 1). Therefore,

‖φ(xi)− φ(xj)‖2 =

[
j∑

k=i+1

(√
xk − xk−1

)2]1/2

=

[
j∑

k=i+1

xk − xk−1

]1/2

= |xj − xi|1/2, (2)

so the embedding preserves the �
1/2
1 distance between these points. Since the construction places no

restrictions on the range of x1, x2, . . . , xn, it is applicable to any finite set of points.

2.2 Extension to multiple dimensions

We construct an embedding of d-dimensional points by stacking 1-dimensional embeddings.

Consider points x1, x2, . . . , xn ∈ R
d. Suppose we have a collection of embedding maps

φ1, φ2, . . . , φd, one per dimension. Each of the embeddings is constructed from the values on a

single coordinate: if we let x
(j)
i denote the j-th coordinate of xi, for 1 ≤ j ≤ d, then embedding φj
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is based on x
(j)
1 , x

(j)
2 , . . . , x

(j)
n ∈ R. The overall embedding is the concatenation

φ (xi) =
(
φτ
1

(
x
(1)
i

)
, φτ

2

(
x
(2)
i

)
, . . . , φτ

d

(
x
(d)
i

))τ

∈ R
d(n−1) (3)

where 1 ≤ i ≤ n, and τ denotes transpose. For any 1 ≤ i < j ≤ n,

‖φ (xi)− φ (xj)‖2 =

[
d∑

k=1

∥∥∥φk

(
x
(k)
i

)
− φk

(
x
(k)
j

)∥∥∥2

2

]1/2

(4)

=

[
d∑

k=1

∣∣∣x(k)
i − x

(k)
j

∣∣∣
]1/2

= ‖xi − xj‖1/21 (5)

It may be of independent interest to consider the properties of this explicit embedding. We can
represent it by a matrix of n columns with one embedded point per column. The rank of this
matrix—and, therefore, the dimensionality of the embedded points—turns out to be O(n). But we
can show that the “effective rank” [32] of the centered matrix is just O(d log n); see Appendix B.

3 Incorporating a query

Once again, we begin with the 1-dimensional case and then extend to higher dimension.

3.1 The 1-dimensional case

For nearest neighbor search, we need a joint embedding of the data points S = {x1, x2, . . . , xn}
with the subsequent query point q. In fact, we need to embed S first and then incorporate q later, but
this is non-trivial since adding q changes the explicit embedding of other points.

We start with an example. Again, assume x1 ≤ x2 ≤ · · · ≤ xn.

Example 1. Suppose query q has x2 ≤ q < x3. Adding q to the original n points changes the
embedding φ(·) ∈ R

n−1 of Eq. 1 to φ(·) ∈ R
n. Notice that the dimension increases by one.

φ(x1)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

φ(x2)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

√
x2 − x1

0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

φ(x3)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

√
x2 − x1√
q − x2√
x3 − q
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦ . . .

φ(xn)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

√
x2 − x1√
q − x2√
x3 − q√
x4 − x3

...√
xn − xn−1

⎤
⎥⎥⎥⎥⎥⎥⎦ (6)

The query point is mapped to φ(q) = (
√
x2 − x1,

√
q − x2, 0, . . . , 0)

τ ∈ R
n.

From the example above, it is clear what happens when q lies between some xi and xi+1. There are
also two “corner cases” that can occur: q < x1 and q > xn. Fortunately, the embedding of S is

almost unchanged for the corner cases: φ(xi) = (φτ (xi), 0)
τ ∈ R

n, appending a zero at the end.

For q < x1, the query is mapped to φ(q) = (0, . . . , 0,
√
x1 − q)τ ∈ R

n; for q ≥ xn, the query is

mapped to φ(q) = (
√
x2 − x1,

√
x3 − x2, . . . ,

√
xn − xn−1,

√
q − xn)

τ ∈ R
n.

3.2 Random projection for the 1-dimensional case

We would like to generate Gaussian random projections of the �2 embeddings of the data points. In
this subsection, we mainly focus on the typical case when the query q lies between two data points,
and we leave the treatment of the (simpler) corner cases to Alg. 1. The notation follows section 3.1,
and we assume the xi are arranged in increasing order for i = 1, 2, . . . , n.

Setting 1. The query lies between two data points: xα ≤ q < xα+1 for some 1 ≤ α ≤ n− 1.
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We will consider two methods for randomly projecting the embedding of S∪{q} and show that they
yield exactly the same joint distribution.

The first method applies Gaussian random projection to the embedding φ of S ∪ {q}. Sample a
multivariate Gaussian vector v from N(0, In). For any x ∈ S ∪ {q}, the projection is

pg(x) := v · φ(x) (7)

This is exactly the projection we want. However, it requires both S and q, whereas in practice, we
will initially have to project just S by itself, and we will only later be given some (arbitrary) q.

The second method starts by projecting the explicitly embedded points S . Later, it receives query
q and finds a suitable projection for it as well. So, we begin by sampling a multivariate Gaussian
vector u from N(0, In−1), and for any x ∈ S , use the projection

pe(x) := u · φ(x) (8)

where the subindex e stands for embedding. Conditioned on the value (pe (xα+1)−pe (xα)), namely√
xα+1 − xα · u(α), the projection of a subsequent query q is taken to be

pe(q) = pe (xα) + Δ

Δ ∼ N
(
σ2
1 · (pe (xα+1)− pe (xα))

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
(9)

where σ2
1 = q − xα, σ2

2 = xα+1 − q.

Theorem 1. Fix any x1, . . . , xn, q ∈ R satisfying Setting 1. Consider the joint distribution of
[pg (x1) , pg (x2) , . . . , pg (xn) , pg(q)] induced by a random choice of v (as per Eq. 7), and the joint
distribution of [pe (x1) , pe (x2) , . . . , pe (xn) , pe(q)] induced by a random choice of u and Δ (as
per Eqs. 8 and 9). These distributions are identical.

The details are in Appendix A: briefly, we show that both joint distributions are multivariate Gaus-
sians, and that they have the same mean and covariance.

We highlight the advantages of our method. First, projecting the data set using Eq. 8 does not require
advance knowledge of the query, which is crucial for nearest neighbor search; second, generating
the projection for the 1-dimensional query takes O(log n) time, which makes this method efficient.
We describe the 1-dimensional algorithm in Alg. 1, where we assume that a permutation that sorts
the points, denoted Π, is provided, along with the location of q within this ordering, denoted α. We
will resolve this later in Alg. 2.

3.3 Random projection for the higher dimensional case

We will henceforth use ERP (Euclidean random projection) to denote our overall scheme consisting
of embedding �1 into �22, followed by random Gaussian projection (Alg. 2). A competitor scheme,
as described earlier, applies Cauchy random projection directly in the �1 space; we refer to this as
CRP. The time and space costs for ERP are shown in Table 1, if we generate k projections for n data
points and m queries in R

d. The costs scale linearly in d, since the constructions and computation
are dimension by dimension. We have a detailed analysis below.

Preprocessing: This involves sorting the points along each coordinate separately and storing the
resulting permutations Π1, . . . ,Πd. The time and space costs are acceptable, because reading or
storing the data takes as much as O(nd).

Project data: The time taken by ERP to project the n points is comparable to that of CRP. But
ERP requires a factor O(n) more space, compared to O(kd) for CRP, because it needs to store the
projections of each of the individual coordinates of the data points.

Project query: ERP methods are efficient for query answering. The projection is calculated directly
in the original d-dimensional space. The log n overhead comes from using binary search, coordi-
natewise, to place the query within the ordering of the data points. Once these ranks are obtained,
they can be reused for as many projections as needed.
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Algorithm 1 Random projection (1-dimensional case)

function project-data (S , Π)
input:
— data set S = (xi : 1 ≤ i ≤ n)
— sorted indices Π = (πi : 1 ≤ i ≤ n)

such that xπ1
≤ xπ2

≤, . . . ,≤ xπn

output:
— projections P = (pi : 1 ≤ i ≤ n) for S
pπ1

← 0

for i = 2, 3, . . . , n do
ui ← N (0, 1)
pπi

← pπi−1
+ ui ·

√
xπi

− xπi−1

end for
return P

function project-query(q, α,S,Π, P )
input:
— query q and its rank α in data set S
— sorted indices Π of S
— projections P of S
output:
— projection pq for q

case: 1 ≤ α ≤ n− 1
σ2
1 ← q − xπα

σ2
2 ← xπα+1 − q

Δ ← N
(
σ2
1 · (pπα+1

− pπα
)

σ2
1 + σ2

2

,
σ2
1σ

2
2

σ2
1 + σ2

2

)
pq ← pπα +Δ
case: α = 0

r ← N (0, 1), pq ← r · √xπ1
− q

case: α = n

r ← N (0, 1), pq ← pπn
+ r · √q − xπn

return pq

Table 1: Efficiency of ERP algorithm: Generate k projections for n data points and m queries in R
d.

Preprocessing Project data Project query
Time cost O(dn log n) O(knd) O(md(k + log n))
Space cost O(dn) O(knd) NA

4 Experiment

In this section, we demonstrate that ERP can be directly used by existing NN search algorithms,
such as LSH, for efficient �1 NN search. We choose commonly used data sets for image retrieval
and text classification. Besides our method, we also implement the metric tree (a popular tree-type
data structure) and Cauchy LSH for comparison.

Data sets When data points represent distributions, �1 distance is natural. We use four such data
sets. 1) Corel uci [21], available at [33], contains 68,040 histograms (32-dimension) for color im-
ages from Corel image collections; 2) Corel hist [34, 21], processed by [21], contains 19,797 his-
tograms (64-dimension, non-zero dimension is 44) for color images from Corel Stock Library; 3)
Cade [35], is a collection of documents from Brazilian web pages. Topics are extracted using latent
Dirichlet allocation algorithm [36]. We use 13,016 documents with distributions over the 120 topics
(120-dimension); 4) We download about 35,000 images from ImageNet [37], and process each of
them into a probabilistic distribution over 1,000 classes using trained convolution neural network
[38]. Furthermore, we collapse the distribution into a 100-dimension representation, summing each
10 consecutive mass of probability. This reduces the training and testing time.

In each data set, we remove duplicates. For either parameter optimization or testing, we randomly
separate out 10% of the data as queries such that the query-to-data ratio is 1 : 9.

Performance evaluation We evaluate performance using query cost. For linear scan or metric
tree, this is the average number of points accessed when answering a query. For LSH, we also need
to add the overhead of evaluating the LSH functions.

The scheme [8, 39] of LSH is summarized as follows. Given three parameters k, L and R (k, L
are positive integers, k is even, R is a positive real), the LSH algorithm uses k-tuple hash functions
of the form g(x) = (h1(x), h2(x), . . . , hk(x)) to distribute data or queries to their bins. L is the
total number of such g-functions. The h-functions are of the form h(x) = 
(v · x + b)/R�, each
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Algorithm 2 Overall algorithm for Random projection, in context of NN search

Starting information:
— data set S = {xi : 1 ≤ i ≤ n} ⊂ R

d

Subsequent arrival:
— query q ∈ R

d

preprocessing:
Sort data along each dimension:
for j ∈ {1, . . . , d} do
Sj = {x(j)

i : 1 ≤ i ≤ n}
Πj ← index-sort (Sj), where

Πj = {πji : 1 ≤ i ≤ n} satisfying

x
(j)
πj1 ≤ x

(j)
πj2 ≤ · · · ≤ x

(j)
πjn

end for
save Π = (Π1,Π2, . . . ,Πd)

project data:
for j = 1, 2, . . . , d do
Pj ← project-data (Sj ,Πj) where

Pj = {pji : 1 ≤ i ≤ n}
end for
save P = (P1, P2, . . . , Pd)

projection of xi ∈ S is
∑d

j=1 pji

project query:
for j = 1, 2, . . . , d do
αj ← binary-search(q(j), Sj ,Πj) satisfying

x
(j)
πjαj

≤ q(j) ≤ x
(j)
πj(αj+1)

end for
save rank α for use in multiple projections

pq ← 0
for j = 1, 2, . . . , d do
pg ← pg+ project-query(q(j), αj ,Sj ,Πj , Pj)

end if
projection for q is pg

Table 2: Performance evaluation: Query cost = Tr + To.

Retrieval cost: Tr Overhead: To

Linear Scan or Metric Tree # Accessed points 0

CRP-LSH # Accessed points k/2 · √2L

ERP-LSH # Accessed points k/2 · √2L+ log n

either explicitly or implicitly associated with a random vector v and a uniformly distributed variable

b ∈ [0, R). As suggested in [39], we implement the reuse of h-functions so that only (k/2 ·√2L) of
them are actually evaluated. For ERP-LSH, there is an additional overhead of log n due to the use
of binary search. We summarize these costs in Table 2; for conciseness, we have removed the linear
dependence on d in both the retrieval cost and the overhead.

Implementations The linear scan and the metric tree are for exact NN search. We use the code
[40] for metric tree. For LSH, there is only public code for �2 NN search. We implement the LSH
scheme, referring to the manual [39]. In particular, we implement the reuse of the h-functions, such

that the number of actually evaluated h-functions is (k/2 · √2L), in contrast to (k · L).
We choose approximation factor c = 1.5 (the results turn out to be much closer to true NN), and
set the success rate to be 0.9, which means that the algorithm should report c-approximate NN
successfully for at least 90% of the queries. Taking the parameter suggestions [8] into account, we
choose R for CRP-LSH from dNN × {1, 5, 10, 50, 100}; we choose R for ERP-LSH from d′NN ×
{1, 2, 3, 4}, where dNN = 1

|Q|
∑

q∈Q ‖q − xNN (q)‖1 is the average �1 NN distance; d′NN =

1
|Q|

∑
q∈Q

√‖q − xNN (q)‖1 is the average �
1/2
1 NN distance. The term dNN or d′NN normalizes

the average NN distance to 1 for LSH. Fixing R, we optimize k and L in the following range:
k ∈ {2, 4, . . . , 30}, L ∈ {1, 2, . . . , 40}.

Results Both CRP-LSH and ERP-LSH achieve a competitive efficiency over the other two meth-
ods. We list the test results in Table 3, and put parameters in Table 4 in Appendix C.
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Table 3: Average query cost and average approximation rate if applicable (in parentheses).

Corel uci Corel hist Cade ImageNet
(d = 32) (d = 44) (d = 120) (d = 100)

Linear scan 61220 17809 11715 31458
Metric tree 2575 718 9184 12375
CRP-LSH 329± 55 (1.07) 245± 43 (1.05) 292± 11 (1.11) 548± 66 (1.09)
ERP-LSH 330± 18 (1.11) 250± 15 (1.08) 218± 8 (1.15) 346± 15 (1.13)

5 Conclusion

In this paper, we have proposed an explicit embedding from �1 to �22, and we have found an algorithm
to generate the random projections, reducing the time dependence of n from O(n) to O(log n). In
addition, we have observed that the effective rank of the (centered) embedding is as low as O(d lnn),
compared to its rank O(n). Algorithms remain to be explored, in order to take advantage of such a
low rank.

Our current method takes space O(ndm) to store the parameters of the random vectors, where m is
the number of hash functions. We have implemented one empirical scheme [39] to reuse the hashing
functions. It is still expected to develop other possible schemes.
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A Proof details

In this section, we give a proof of Theorem 1.

Proof. Both joint distributions are multivariate Gaussian: It is well-known that any linear com-
bination of independent Gaussian random variables is Gaussian. In Eq. 7 and Eq. 8, the variables
[pg (x1) , pg (x2) , . . . , pg (xn) , pg(q)] and [pe (x1) , pe (x2) , . . . , pe (xn)] are linear combinations
of i.i.d Gaussian variables. Furthermore, according to Eq. 9, observe that pe(q) can be written as

pe(q) = pe(xα) +
σ2
1 ·(pe(xα+1)−pe(xα))

σ2
1+σ2

2
+ Y , where Y ∼ N

(
0,

σ2
1σ

2
2

σ2
1 + σ2

2

)
is another independent

variable. In all, the two joint distributions are multivariate Gaussian.

Identical mean: We prove that the means are identical. By linearity of expectation, and because u
and v have zero mean, E[pe(xi)] = E[pg(xi)] = 0 for i = 1, 2, . . . , n. Likewise, for a query q, we
have E[pg(q)] = 0. It remains to determine E[pe(q)]:

E[pe(q)] = Eu,Δ[pe(xα)] + Eu,Δ[Δ]

= Eu[pe(xα)] + Eu[EΔ[Δ|pe(xα+1)− pe(xα)]] (Tower Rule)

= 0 + Eu

[
σ2
1

σ2
1 + σ2

2

(pe (xα+1)− pe (xα))

]
=

q − xα

xα+1 − xα
Eu [pe (xα+1)− pe (xα)] = 0

Identical covariance: We prove the covariances are identical. For the ideal projection pg , we claim
that for any x, y ∈ S ∪ {q} ⊂ R, cov(pg(x), pg(y)) = min{x, y} − x1. Here is the proof for
xi, xj ∈ S where xi ≤ xj ≤ q (the other cases are similar):

cov(pg(xi), pg(xj)) = E

[(
i−1∑
k1=1

v(k1)
√

xk1+1 − xk1

)
·
(

j−1∑
k2=1

v(k2)
√
xk2+1 − xk2

)]

= E

[
i−1∑
k=1

(
v(k)

)2

· (xk+1 − xk)

]
=

i−1∑
k=1

(xk+1 − xk) = xi − x1.

For the actual projection that we use, pe, there are four cases that need to be discussed. In the first
case, consider xi ≤ xj ∈ S where 1 ≤ i ≤ j ≤ n. The proof is similar to the above. We have
cov(pe(xi), pe(xj)) = xi − x1.

Before we prove the other cases, we make some key observations. Note that for pe(q) = pe(xα)+Δ
in Eq. 9, the random variable Δ only depends on the random variable (pe (xα+1) − pe (xα)) =√
xα+1 − xα · u(α), which implies that Δ is independent of pe(xi) if xi ≤ xα; Δ is also in-

dependent of (pe(xi) − pe(xα+1)) if xi ≥ xα+1. In addition, E

[
(pe (xα+1)− pe (xα))

2
]

=

E

[(
u(α) · √xα+1 − xα

)2]
= xα+1 − xα = σ2

1 + σ2
2 .

Now, onto the remaining cases.

• Consider xi < q :

cov(pe(xi), pe(q))

= E [pe(xi) · (pe(xα) + Δ)]

= E [pe(xi) · pe(xα)] + E [E [pe(xi) ·Δ|pe(xα+1)− pe(xα)]]

= E [pe(xi) · pe(xα)] + E [E [pe(xi)|pe(xα+1)− pe(xα)] · E [Δ|pe(xα+1)− pe(xα)]]

= E [pe(xi) · pe(xα)] + E [0 · E [Δ|pe(xα+1)− pe(xα)]]

= E [pe(xi) · pe(xα)] = xi − x1
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• Consider q and q:

cov(pe(q), pe(q))

= E [(pe(xα) + Δ) · (pe(xα) + Δ)]

= E [pe(xα) · pe(xα)] + 2E [pe(xα) ·Δ] + E
[
Δ2

]
= xα − x1 + E

[
Δ2

]
= xα − x1 + E

[
E

[
Δ2

∣∣pe(xα+1)− pe(xα)
]]

= xα − x1 + E

[
σ2
1σ

2
2

σ2
1 + σ2

2

+

(
σ2
1

σ2
1 + σ2

2

(pe (xα+1)− pe (xα))

)2
]

= xα − x1 +
σ2
1σ

2
2

σ2
1 + σ2

2

+ E

[(
σ2
1

σ2
1 + σ2

2

(pe (xα+1)− pe (xα))

)2
]

= xα − x1 +
σ2
1σ

2
2

σ2
1 + σ2

2

+
σ4
1

σ2
1 + σ2

2

= xα − x1 + σ2
1 = q − x1

• Consider xi > q :

cov(pe(q), pe(xi))

= E [pe(xα) · pe(xi)] + E [Δ · pe(xi)]

= xα − x1 + E [Δ · (pe(xα) + (pe(xα+1)− pe(xα)) + (pe(xi)− pe(xα+1)))]

= xα − x1 + E [Δ · (pe(xα+1)− pe(xα−1))]

= xα − x1 + E [(pe(xα+1)− pe(xα)) · E [Δ|pe(xα+1)− pe(xα)]]

= xα − x1 + E

[
σ2
1

σ2
1 + σ2

2

(pe (xα+1)− pe (xα))
2

]
= xα − x1 + σ2

1 = q − x1

B Rank and effective rank

In this section, we would like to show that generally the embedding vectors appear to have a
nearly full rank (O(n)), but it turns out that the (centered) matrix always has a low effective rank
(O(d log n)) .

We introduce several notations. For a matrix A ∈ R
m×n, let L = min{m,n}, and let σ1 ≥ σ2 ≥

· · · ≥ σL ≥ 0 be singular values of A. The Frobenius norm is defined as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|Ai,j |2 =

√√√√ L∑
k=1

σ2
k. (10)

The spectral norm is defined as

‖A‖2 = max
‖x‖2 �=0

‖Ax‖2
‖x‖2 = σ1. (11)

The effective rank [32] is defined as

re(A) =
‖A‖2F
‖A‖22

=
σ2
1 + σ2

2 + · · ·+ σ2
L

σ2
1

(12)

B.1 1-dimension case

We first consider the 1-dimension data x1 ≤ x2 ≤ · · · ≤ xn ∈ R (suppose n is even) and their
embedding φ(x1), φ(x2), . . . , φ(xn) ∈ R

n−1. Define the matrix

Φ = (φ(x1), φ(x2), . . . , φ(xn)) ∈ R
(n−1)×n. (13)
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We formulate the centered embedding matrix A ∈ R
(n−1)×n that we will investigate in the rest of

this subsection.

A = Φ ·H
= (φ(x1)− 	μ, φ(x2)− 	μ, . . . , φ(xn)− 	μ) =

=
1

n
×

⎛
⎜⎜⎜⎜⎝

−(n− 1)
√
x2 − x1

√
x2 − x1 . . .

√
x2 − x1

−(n− 2)
√
x3 − x2 −(n− 2)

√
x3 − x2 . . . 2

√
x3 − x2

−(n− 3)
√
x4 − x3 −(n− 3)

√
x4 − x3 . . . 3

√
x4 − x3

...
...

. . .
...

−√
xn − xn−1 −√

xn − xn−1 . . . (n− 1)
√
xn − xn−1

⎞
⎟⎟⎟⎟⎠ (14)

where H = I − 1

n
	1 · 	1τ ∈ R

n×n 2, I is the n-by-n identity matrix, 	1 ∈ R
n is the all-1 vector,

	μ ∈ R
n−1 is the mean of the embedding vectors 	μ =

1

n

∑n
i=1 φ(xi).

Lemma 1 (Nearly full rank). The matrix A = ΦH ∈ R
(n−1)×n in Eq. 14 has rank at least (n− 2),

if x1, x2, . . . , xn ∈ R are all distinct.

Proof. We observe that

• Rank(Φ) is (n− 1), if x1, x2, . . . , xn are distinct, according to Eq. 1.

• Rank(H) is also (n− 1). It has (n− 1) linearly independent eigenvectors (	e1 −	e2), (	e1 −
	e3), . . . , (	e1 − 	en) for the eigenvalue 1, where 	ei ∈ R

n, i = 1, 2, . . . , n are the standard
bases; the rest eigenvector is (1, 1, . . . , 1)τ for 0. Therefore, H is similar to a (n− 1) rank
matrix, and H also has rank (n− 1).

Then, we have Rank(ΦH) ≥ Rank(Φ) + Rank(H)− n ≥ n− 2.

Theorem 2 (Low effective rank). Take n to be even. The matrix A = ΦH ∈ R
(n−1)×n in Eq. 14

has effective rank at most 2(1 + ln(n/2)), for any x1, x2, . . . , xn ∈ R.

Proof. The main idea of the proof is that we construct an auxiliary matrix B ∈ R
(n−1)×n/2 such

that

• ‖B‖2F ≥ ‖A‖2F
• ‖B‖22 ≤ 2‖A‖22
• re(B) ≤ 1 + ln(n/2)

Then, we have re(A) ≤ 2 · re(B) ≤ 2(1 + ln(n/2)).

This auxiliary matrix is

B(n−1)×n/2 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
x2 − x1 0 0 0√
x3 − x2

√
x3 − x2 0 0

√
x4 − x3

√
x4 − x3

√
x4 − x3

...
...

...
...

. . . 0√
xn/2+1 − xn/2

√
xn/2+1 − xn/2

√
xn/2+1 − xn/2 . . .

√
xn/2+1 − xn/2

...
...

... . .
.

0
√
xn−2 − xn−3

√
xn−2 − xn−3

√
xn−2 − xn−3

...√
xn−1 − xn−2

√
xn−1 − xn−2 0 0√

xn − xn−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

2Multiplying H on the right side of any matrix will remove the mean for each column vector.
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First, we prove that ‖B‖2F ≥ ‖A‖2F by comparing the corresponding terms in Eq. 17 and Eq. 18
below.

‖A‖2F =
1

n2

n−1∑
k=1

[(
k(n− k)2 + (n− k)k2

)
(xk+1 − xk)

]

=
1

n

n−1∑
k=1

k(n− k)(xk+1 − xk) (16)

=

n/2∑
k=1

k · n− k

n
(xk+1 − xk) +

n/2−1∑
k=1

k · n− k

n
(xn−k+1 − xn−k) (17)

Take the sum of the squared entries row by row from B :

‖B‖2F =

n/2∑
k=1

k · (xk+1 − xk) +

n/2−1∑
k=1

k · (xn−k+1 − xn−k) (18)

Second, we prove that ‖B‖22 ≤ 2‖A‖22. For any y ∈ R
n/2, note that

By = A ·
( −y

rev(y)

)
(19)

‖y‖22 =
1

2

∥∥∥∥
( −y

rev(y)

)∥∥∥∥2

2

(20)

where rev(y) ∈ R
n/2, and rev(y)i = yn/2−i+1 for i = 1, 2, . . . , n/2. For a 3-dimension example,

rev

(
1
2
3

)
=⇒

(
3
2
1

)
(21)

They implies that

‖B‖22 = max
y �=0

‖By‖22/||y||22 = 2max
y �=0

∥∥∥∥A
( −y

rev(y)

)∥∥∥∥2

2

/∥∥∥∥
( −y

rev(y)

)∥∥∥∥2

2

≤ 2||A||22 (22)

We conclude that ‖B‖22 ≤ 2‖A‖22.

Finally, we prove that re(B) ≤ 1+ ln(n/2). Take the sum of the squared entries column by column
from B :

‖B‖2F = (xn − x1) + (xn−1 − x2) + · · ·+ (xn/2+1 − xn/2) =

n/2∑
k=1

(xn+1−k − xk) (23)
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For any y ∈ R
n/2,

‖By‖22 =
[
y21 · (x2 − x1)

]
+

[
(y1 + y2)

2 · (x3 − x2)
]
+ · · ·+[

(y1 + y2 + · · ·+ yn/2)
2 · (xn/2+1 − xn/2)

]
(24)

+
[
(y1 + · · ·+ yn/2−1)

2 · (xn/2+2 − xn/2+1)
]
+ · · ·+[

(y1 + y2)
2 · (xn−1 − xn−2)

]
+

[
y21 · (xn − xn−1)

]
= y21 · [(xn − xn−1) + (xn−1 − xn−2) + · · ·+ (x2 − x1)]

+
[
y22 + 2y2y1

] · [(xn−1 − xn−2) + (xn−2 − xn−3) + · · ·+ (x3 − x2)]

+
[
y23 + 2y3(y1 + y2)

] · [(xn−2 − xn−3) + (xn−3 − xn−4) + · · ·+ (x4 − x3)]

+ . . .

+
[
y2k + 2yk(y1 + · · ·+ yk−1)

] ·
[(xn+1−k − xn−k) + (xn−k−1 − xn−k−2) + · · ·+ (xk+1 − xk)]

+ . . .

+
[
y2n/2 + 2yn/2(y1 + · · ·+ yn/2−1)

]
· [(xn/2+1 − xn/2)] (25)

=

n/2∑
k=1

[
y2k + 2yk(y1 + y2 + · · ·+ yk−1)

]
[xn+1−k − xk] (26)

We regroup Eq. 24 according to the largest index of y in each item. For example, the largest y index
for y2k and yi · yk are both k, if i ≤ k. Then, we have Eq. 25 and Eq. 26.

Choose yk = k−1/2, which implies

• ‖y‖22 =
∑n/2

k=1 y
2
k =

∑n/2
k=1

1

k
≤ 1 + ln(n/2)

• In Eq. 26, the item
(
y2k + 2yk(y1 + · · ·+ yk−1)

) ≥ 1, for all k = 1, 2, . . . , n/2. This is

true for k = 1. For k = 2, 3, . . . , n/2, note that 2yk(y1+· · ·+yk−1) ≥ 2yk ·(k−1)·yk−1 =
2
√
k−1√
k

≥ 1.

Thereby, for the above choice of y ,

‖By‖22 ≥
n/2∑
k=1

[xn+1−k − xk] = ‖B‖2F (27)

‖B‖22 ≥ ‖By‖22/‖y‖22 ≥ ‖B‖2F /(1 + ln(n/2)) (28)

We have the bound for re(A)

re(A) ≤ 2re(B) ≤ 2(1 + ln(n/2)) (29)

B.2 Multidimensional case

In the multidimensional case, the centered embedding matrix A is

A =

⎛
⎜⎜⎜⎝

A(1)

A(2)

...
A(d)

⎞
⎟⎟⎟⎠ (30)

where A(i) is the centered embedding matrix for dimension i, for i = 1, 2, . . . , d. The columns of

A(i) may not be arranged in the same order as in Eq. 14, but the norms ‖A(i)‖F and ‖A(i)‖2 are
unchanged by the ordering.
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Table 4: The parameters we use for Cauchy LSH and embedding LSH.

Corel uci Corel hist Cade ImageNet
R 2.43 772079 4.06 2.31

CRP-LSH k 18 18 16 12
L 24 38 28 24
R 0.99 547 1.78 1.36

ERP-LSH k 14 12 22 18
L 32 35 29 29

Table 5: Perturbation on parameters for Cauchy LSH

NN Parameter Set One Parameter Set Two Parameter Set Three
Distance R k L R k L R k L

Corel hish 77208 386040 8 20 772079 18 38 1158118 24 40
Cade 0.81 0.81 4 16 4.06 16 28 8.10 20 8

Lemma 2 (Nearly full rank). The matrix A ∈ R
d(n−1)×n in Eq. 30 has a rank at least (n − 2), if

for some index k where 1 ≤ k ≤ d, x(k)
1 , x

(k)
2 , . . . , x

(k)
n ∈ R are all distinct.

Proof. This is due to that Rank(A) ≥ Rank
(
A(k)

)
.

Theorem 3 (Low effective rank). The matrix A ∈ R
d(n−1)×n in Eq. 30 has an effective rank at

most 2d(1 + ln(n/2)), for any x1, x2, . . . , xn ∈ R
d.

Proof. Without loss of generality, suppose ‖A(1)‖2F ≥ ‖A(i)‖2F for i = 1, 2, . . . , d. We observe that

• ‖A‖2F ≤ d · ‖A(1)‖2F .

• ‖A‖22 ≥ ||A(1)||22 . Note that for any y ∈ R
n, ‖Ay‖22 =

∑d
k=1 ‖A(k)y‖22 ≥ ‖A(1)y‖22.

Therefore,

re(A) ≤ d · re(A(1)) ≤ d · 2(1 + ln(n/2)) (31)

C Experimental parameters

We summarize the parameters that we use in Table 4.

In addition, we show that the parameters that we use are efficient for Cauchy LSH. We perturb the
parameter R in Table 5, with either smaller R (Set One) or larger R (Set Three). Then, we find good
k and L, given R. We show the test results in Table 6, which is performed on a randomly sampled
10% of points as queries. Each test is repeated 10 times.
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Table 6: Test results for Cauchy LSH

Parameter Set One Parameter Set Two Parameter Set Three
Time Ratio Approx. Time Ratio Approx. Time Ratio Approx.

Corel hist 290 90% 1.05 263 91% 1.05 340 93% 1.04
Cade 476 90% 1.1 306 92% 1.1 576 89% 1.1
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