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1 Derivation of Evidence Lower Bound

When marginalizing over the rows of F, we induced a Gaussian process over the trajectories, but
by doing so we implicitly induced a Gaussian process over the individual-specific basis coefficients.
Let wi , Fxi ∈ Rd denote the basis weights implied by the mapping F and representation xi in
the reduced-rank LMM, and let w:,k for k ∈ [d] denote the kth coefficient of all individuals in the
dataset. After marginalizing the kth row of F and applying the kernel trick, we see that the vector of
coefficients w:,k has a Gaussian process distribution with mean 0 and covariance

Cov(wik, wjk) = αk(xi,xj). (1)
Moreover, the Gaussian processes across coefficients are statistically independent of one another. To
construct our approximate objective, we first approximate each of the d coefficient Gaussian processes
by introducing p inducing points (see e.g. Snelson and Ghahramani [2005], Titsias [2009]) with
values uk ∈ Rp for each k ∈ [d] observed at common inputs zi ∈ Rq for i ∈ [p]. We assume that
each w:,k and uk are sampled from a common Gaussian process, which implies the joint distribution:

uk | θ ∼ N (0,Kpp) (2)

wk | uk,θ ∼ N (KmpK
−1
pp uk, K̃mm). (3)

where Kpp is the Gram matrix between inducing points, Kmm is the Gram matrix between individuals
(based on their representations xi), Kmp is the cross Gram matrix between individuals and inducing
points, and K̃mm , Kmm −KmpK

−1
pp Kpm.

Now, we stack the inducing point values u1:d into the columns of a matrix U , [u1, . . . ,ud]. We
will use u to denote the “vectorization” of U obtained by stacking the columns. Each row i of
U can be thought of as the vector of coefficients belonging to a single inducing individual which
has an associated representation zi ∈ Rq. Let y , [y>1 , . . . ,y

>
m]> be the vector of concatenated

trajectories and W be the matrix containing individual i’s coefficients wi in each row, then following
the derivation of Hensman et al. [2013], we can lower bound the conditional log-probability of y
given u and x1:m:

log p(y | u,x1:m) = log

∫
p(y |W)p(W | u,x1:m)dW (4)

= log

∫ m∏
i=1

p(yi | wi)p(W | u,x1:m)dW (5)

≥
∫
p(W | u,x1:m)

m∑
i=1

log p(yi | wi)dW (6)

=

m∑
i=1

Ep(wi|u,xi)[log p(yi | wi)]. (7)
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The expectation in each summand is easy to calculate because the mean of yi is linearly dependent
on wi and because the conditional distribution wi given u is multivariate normal. Specifically, we
have that

wi | u,xi ∼ N (U>K−1pp ki, k̃iiId), (8)

where ki is a column vector filled with the ith row of Kmp and k̃ii is the ith diagonal element of K̃mm.
Together with the conditional distribution of yi given wi, we have that each summand can be written
as

Ep(wi|u,xi)[log p(yi | wi)] (9)

= −ni
2

log 2πσ2 − 1

2σ2
Ep(wi|u,xi)[(yi − µ− Biwi)

>(yi − µ− Biwi)] (10)

= logN (yi | µ+BiU
>K−1pp ki, σ

2Ini
)− k̃ii

2σ2
Tr[B>i Bi] (11)

, log p̃(yi | u,xi). (12)

We can now write the lower bound on the conditional log-probability as

log p(y | u,x1:m) ≥
m∑
i=1

log p̃(yi | u,xi) , log p̃(y | u,x1:m). (13)

To complete the derivation of the approximate objective, we use the lower bound on log p(y | u,x1:m)
to create a variational lower bound on the marginal log-probability of the trajectories

log p(y) = log

∫
p(y | u,x1:m)p(u,x1:m)du (14)

≥
∫
q(u,x1:m) (log p(y | u,x1:m)− log q(u,x1:m) + log p(u,x1:m)) dudx1:m (15)

≥
∫
q(u,x1:m) (log p̃(y | u,x1:m)− log q(u,x1:m) + log p(u,x1:m)) dudx1:m (16)

, log p̃(y). (17)

We assume that u, x1, . . . ,xm are all mutually independent in the variational posterior. We use a
multivariate normal variational approximation for each xi with variational parameters mi and Si.

Fixing xi, to find the the optimal form for q(u), note that each log p̃(yi | u,xi) is composed of a
log-likelihood plus an additive term that is independent of u. Therefore, the terms that depend on u
can be written as:

Eq(u)

[
m∑
i=1

logN (yi | µ+BiU
>K−1pp ki, σ

2Ini
)

]
−KL(q‖p). (18)

Now, note that the mean in any of the log-likelihood terms can be rewritten as

µ+BiU
>K−1pp ki = µ+ (Bi ⊗ k>i K

−1
pp )u, (19)

Let Ci , (Bi ⊗ k>i K
−1
pp ) denote the extended design matrix obtained through this rewriting, and

recall that each column uk is normally distributed with mean zero and covariance Kpp. The prior over
the vectorized matrix u is therefore also multivariate normal. The expression above is maximized
when q(u) is equal to the posterior over u given the observed trajectories. Because the prior is
multivariate normal and the mean of the likelihood depends linearly on u, the posterior must also be
multivariate normal. Moreover, we know its exact form:

m∗ = S∗

(
σ−2

m∑
i=1

C>i (yi − µ)

)
, S∗ =

(
σ−2

m∑
i=1

C>i Ci + (Id ⊗K−1pp )

)−1
. (20)

We therefore parameterize q(u) as a multivariate normal distribution with variational parameters m
and S.
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We now derive a closed-form expression for the expectation of log p̃(yi | u,xi) under variational
posterior distribution. Because u and xi are assumed to be independent in the variational posteriors,
we can analyze the expectation in either order. Fix xi, then we see that log p̃(yi | u,xi) depends
on u only through the mean of the Gaussian density, which is a quadratic term in log likelihood.
Because q(u) is multivariate normal, we can compute the expectation in closed form.

Eq(u)[log p̃(yi | u,xi)] = Eq(U)[logN (yi | µ+ (Bi ⊗ k>i K
−1
pp )u, σ

2Ini
)]− k̃ii

2σ2
Tr[B>i Bi]

= logN (yi | µ+Cim, σ2Ini
)]− 1

2σ2
Tr[SC>i Ci]−

k̃ii
2σ2

Tr[B>i Bi],

We can compute the expectation of Eq(u)[log p̃(yi | u,xi)] in closed form by noting that we need
only compute expectations of ki and kik

>
i . Specifically, we have that

Eq(xi)[k(xi, zj)] =
α

|Si|1/2|A|1/2
exp

{
1

2
(B>A−1b− c)

}
, (21)

where A = S−1i + `−2Iq, b = S−1i mi + `−2zj , and c = m>i S
−1
i m+ `−2z>j zj . Similarly, for the

expected outer product, we have

Eq(xi)[k(xi, zj)k(xi, zk)] =
α

|Si|1/2|A|1/2
exp

{
1

2
(B>A−1b− c)

}
, (22)

where A = S−1i +2`−2Iq , b = S−1i mi+`
−2zj+`

−2zk, and c = m>i S
−1
i m+`−2z>j zj+`

−2z>k zk.
Importantly, we can simply substitute these expectations into Eq(u)[log p̃(yi | u,xi)] and the form of
the lower bound does not change (it is still a Gaussian log-likelihood plus the additional trace terms).

2 Optimizing the Evidence Lower Bound

To formulate the complete objective, we use the lower bound derived above and place priors on
the observation noise σ2, and the hyperparameters of the kernel k(·, ·). In this section and in our
experiments we assume that the kernel is a radial basis function (RBF) with scale α and length-scale
(or bandwidth) `. We assume normal distributions over the log of σ2, α, and ` with mean parameters
ms, ma, m` respectively and precision parameters ρs, ρa, and ρ` respectively. Our objective is
therefore

JSA-DTM(m,S,m1:m,S1:m, µ, σ
2, α, `) = (23)

m∑
i=1

−ni
2

log 2πσ2 − 1

2σ2
Eq(xi)[‖yi − µ− (Bi ⊗ k>i K

−1
pp )m‖22] (24)

+

m∑
i=1

− 1

2σ2
Tr[S(B>i Bi ⊗K−1pp Eq(xi)[kik

>
i ]K

−1
pp )] (25)

+

m∑
i=1

− 1

2σ2
Tr[B>i Bi](α− Eq(xi)[k

>
i K
−1
pp ki]) (26)

−
m∑
i=1

1

2

(
Tr[Si +mim

>
i ]− q − log |Si|

)
(27)

− 1

2

(
Tr[(S +mm>)(Id ⊗K−1pp )]− pd+ log

|Kpp|d

|S|

)
(28)

− ρs
2
‖ log σ2 −ms‖22 −

ρa
2
‖ logα−ma‖22 −

ρ`
2
‖ log `−m`‖22. (29)

Note that the last three lines above can be seen as regularizers (log priors for the hyperparameters and
a KL divergence between the variational distribution q and the prior p). The first four lines can be
decomposed across individuals, suggesting that we can use stochastic approximation of the objective
and its gradients to derive a scalable algorithm for optimizing the objective.

We define an iterative first-order optimization algorithm. In broad strokes, within each iteration we
will sample a single individual i (or a batch of patients), maximize the objective with respect to mi
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and Si while holding the global variables fixed, compute the approximate gradients of the objective,
and take a small step in the direction of each gradient for each parameter (the step size is determined
by a learning schedule, which may be specific to each global variable). We discuss each step in detail
below. We do so assuming a single sampled individual i, although in principle we can sample a batch
of individuals to reduce variance in the gradient estimate.

Maximizing wrt local variables (mi,Si). Before computing gradients of the approximate objec-
tive with respect to the global parameters, we first do a block coordinate optimization over the local
variational parameters of individual i. We optimize:

Ji(mi,Si) = (30)

− ni
2

log 2πσ2 − 1

2σ2
Eq(xi)[‖yi − µ− (Bi ⊗ k>i K

−1
pp )m‖22] (31)

− 1

2σ2
Tr[S(B>i Bi ⊗K−1pp Eq(xi)[kik

>
i ]K

−1
pp )] (32)

− 1

2σ2
Tr[B>i Bi](α− Eq(xi)[k

>
i K
−1
pp ki]). (33)

We can optimize this expression using a gradient-based optimizer. We use the scaled conjugate
gradients algorithm.

Estimating gradients of global variables. Having sampled individual i and having refit her local
variational parameters, we now want to approximate the gradient of the full objective with respect to
the global variables m, S, µ, σ2, α, and `. We first look at the approximate gradient with respect to
m.

∇̂JSA-DTM(m) = Eq(xi)[
m

σ2
(B>i ⊗K−1pp ki)(yi − µ− (B⊗ k>i K

−1
pp )m)]− (Id ⊗K−1pp )m. (34)

The approximate gradient with respect to S is

∇̂JSA-DTM(S) =−
m

2σ2
Tr[(B>i Bi ⊗K−1pp Eq(xi)[kik

>
i ]K

−1
pp )] (35)

− 1

2
Tr[(Id ⊗K−1pp )] +

1

2
Tr[S−1]. (36)

Note that if we set these approximate gradients to 0, we obtain the following estimates of m and S:

m̂ = Ŝ
(m
σ2

(B>i ⊗K−1pp Eq(xi)[ki])(y − µ)
)

(37)

Ŝ =
(m
σ2

(B>i Bi ⊗K−1pp Eq(xi)[kik
>
i ]K

−1
pp ) + (Id ⊗K−1pp )

)−1
(38)

We can improve the rate of convergence of our algorithm by taking the geometry of the space of
distributions parameterized by m and S into account. We do so by using the natural gradients
for these two parameters instead of the approximations above. Let θ1 and θ2 denote the canonical
parameterization of the variational multivariate normal, then the gradient updates at time t are
Hoffman et al. [2013]:

θt
1 = θt−1

1 + λt(η
t−1
1 − θt−1

1 ) (39)

θt2 = θt−12 + λt(η
t−1
2 − θt−12 ), (40)

where

ηt−11 =
m

σ2
(B>i ⊗K−1pp Eq(xi)[ki])(y − µ) (41)

ηt−12 = − m

2σ2
(B>i Bi ⊗K−1pp Eq(xi)[kik

>
i ]K

−1
pp ) (42)

To update the hyperparamters, we need to compute the gradients with respect to µ, σ2, α, and `.
We parameterize σ2, α, and ` using their logarithms, and so present gradients with respect to that
representation. To make the expressions more clear, we present the gradients as differentials with
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respect to the kernel, which can be completed using the chain rule. The estimate of the gradient with
respect to µ is

∇̂JSA-DTM(µ) =
m

σ2
(yi − µ− (Bi ⊗ Eq(xi)[k

>
i ]K

−1
pp )m)>1ni

. (43)

The estimate of the gradient with respect to log σ2 is

∇̂JSA-DTM(log σ
2) =− mni

2
+

m

2σ2
Eq(xi)[‖yi − µ− (Bi ⊗ k>i K

−1
pp )m‖22] (44)

+
m

2σ2
Tr[S(B>i Bi ⊗K−1pp Eq(xi)[kix

>
i ]K

−1
pp )] (45)

+
m

2σ2
Tr[B>i B](α− Tr[K−1pp Eq(xi)[kix

>
i ]]) (46)

− ρs(log σ2 −ms). (47)

The estimate of the gradient with respect to logα is

∇̂SA-DTM(logα) = (48)
m

σ2
Eq(xi)[(yi − µ− Cm)>(Bi ⊗ ∂k>i K−1pp − k>i K

−1
pp ∂KppK

−1
pp )m] (49)

− m

σ2
Eq(xi)[Tr[SC

>
i (Bi ⊗ ∂k>i K−1pp − k>i K

−1
pp ∂KppK

−1
pp )]] (50)

− m

2σ2
Tr[B>i Bi]α (51)

+
m

2σ2
Tr[B>i Bi](2Eq(xi)[k

>
i ]K

−1
pp ∂Eq(xi)[ki]− Tr[K−1pp ∂KppK

−1
pp Eq(xi)[kix

>
i ]]) (52)

+
1

2

(
Tr[(S + mm>)(Id ⊗K−1pp ∂KppK

−1
pp )]− dTr[K−1pp ∂Kpp]

)
. (53)

The estimate of the gradient with respect to log ` is

∇̂SA-DTM(log `) = (54)
m

σ2
Eq(xi)[(yi − µ− Cm)>(Bi ⊗ ∂k>i K−1pp − k>i K

−1
pp ∂KppK

−1
pp )m] (55)

− m

σ2
Eq(xi)[Tr[SC

>
i (Bi ⊗ ∂k>i K−1pp − k>i K

−1
pp ∂KppK

−1
pp )]] (56)

+
m

2σ2
Tr[B>i Bi](2Eq(xi)[k

>
i ]K

−1
pp ∂Eq(xi)[ki]− Tr[K−1pp ∂KppK

−1
pp Eq(xi)[kix

>
i ]]) (57)

+
1

2

(
Tr[(S + mm>)(Id ⊗K−1pp ∂KppK

−1
pp )]− dTr[K−1pp ∂Kpp]

)
. (58)

5



References
J. Hensman, N. Fusi, and N.D. Lawrence. Gaussian processes for big data. arXiv:1309.6835, 2013.

M.D. Hoffman, D.M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. JMLR, 14(1):1303–1347,
2013.

E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In NIPS, 2005.

M.K. Titsias. Variational learning of inducing variables in sparse gaussian processes. In AISTATS, 2009.

6


	Derivation of Evidence Lower Bound
	Optimizing the Evidence Lower Bound

